
RESOLVING ARTIFACT DESCRIPTION AMBIGUITIES
DURING SOFTWARE DESIGN USING SEMIOTIC

AGENT MODELLING

Daniel Gross and Eric Yu
Faculty of Information, University of Toronto, 140 St. George Street, Toronto, Canada

Keywords: Semiotic Agents, Software Design, Design Modelling, Software Architecture.

Abstract: For software designers to effectively collaborate, they must share an understanding of how software design
artifacts contribute to the execution of software processes (the artifact’s operational meaning). However,
during design, artifact descriptions often lack sufficient detail to unequivocally establish operational
meaning. This is because during design, artifact descriptions are initially usually first-cut, and are then
successively refined to include additional design details, until the operational meaning of artifacts can be
unequivocally demonstrated. Ensuring shared meaning in larger projects is particularly difficult because of
the plethora of interrelated artifacts designers deal with, and because the design details in descriptions of
different artifacts can vary greatly. In this paper we argue that a semiotic meaning analysis supports
clarifying the operational meaning of artifacts during software design, and can help in identifying whether
and in what way artifact descriptions must be further elaborated. We further argue that clarifying the
operational meaning of artifacts is closely intertwined with design decision-making. Adapting an existing
semiotic agent modelling approach, we propose an approach to capturing the evolving operational meaning
of artifacts during software design and decision processes, and illustrate the approach with examples taken
from a large design project at an insurance company.

1 INTRODUCTION

To collaborate during software system development,
designers must discuss software designs. To support
effective and efficient design discussions, software
designers use specialized terminology and/or
conceptual models (e.g., (Gamma et al., 1995,
Fowler and Scott, 2000)). The assumption is that
these terms and models efficiently and
unequivocally communicate design information
amongst designers, and help prevent
misunderstandings. But does this assumption hold?

Consider the following excerpt from a design
discussion reported by an enterprise architect at an
insurance company. The enterprise architect is
responsible for the overall enterprise architecture of
enterprise systems, whereas a number of designers
are responsible for the design of individual system
components. The enterprise architect asks that a
consumer component designer utilizes an
asynchronous messaging approach to sending
insurance policy data from a consumer to a provider,
while the consumer component designer argues for a

synchronous messaging approach. Consumer,
provider and messaging are terms taken from the
service-oriented architecture (SOA) design style
(Erl, 2007, Josuttis, 2007). Broadly speaking, SOA
is a distributed system design approach, whereby
consumers request, through a messaging
infrastructure, computational services from, usually
remote, service providers (Erl, 2007, Josuttis, 2007).

Figure 1: High level service-oriented architecture in
Business Enterprises.

Figure 1 depicts a simplified schematic
illustration of how SOA is usually applied in
business enterprises. The figure shows consumer and
provider components, as well as a messaging
infrastructure component, often called an enterprise
service bus (ESB). Components are shown using
rectangles. The double sided arrows between
components refer to sending and receiving messages
between components. We assume the enterprise

77
Yu E. and Gross D.
RESOLVING ARTIFACT DESCRIPTION AMBIGUITIES DURING SOFTWARE DESIGN USING SEMIOTIC AGENT MODELLING.
DOI: 10.5220/0003270200770086
In Proceedings of the Twelfth International Conference on Informatics and Semiotics in Organisations (ICISO 2010), page
ISBN: 978-989-8425-26-3
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

architect and system designers have a good
understanding of these SOA concepts, including
synchronous and asynchronous messaging, before
embarking on this project.

The consumer designer prefers to directly request
a necessary service from a specific provider, and to
deal with an immediate response from the provider.
This results in a synchronous style of messaging.
From the consumer designer point of view, this is
the simplest design which accomplishes the
requirements. The enterprise architect explains that
requesting a service directly from a provider harms
future extensibility of the consumer component. This
is because it limits the consumer to that specific
provider to process its service requests. If, in the
future, other providers need to process the
consumer’s service request, the need would
necessitate changes in the consumer component. The
enterprise architect therefore advocates
asynchronous messaging, which would result in a
loosely coupled design. In contrast the consumer
designer’s approach would be referred to as point-to-
point integration, which results in tight coupling.

Reflecting on this example, we make the
following observations:

(1) The terms “synchronous messaging” and
“asynchronous messaging” compactly refer to the
use of a number of design artifacts, which
respectively implement different approaches for
integrating enterprise systems.

(2) The collective software behaviour of these
artifacts is the intended “operational” meaning that
the enterprise architect implies when using these
terms during the design discussion.

(3) For a system designer to clearly
understand the meaning that the enterprise architect
attributes to these terms there must be agreement on
the operational meaning.

(4) The design discussion between the
enterprise architect and the system designers occurs
at a particular level of abstraction. This influences
the kind and number of artifacts that are chosen
during the discussion that describes operational
meaning.

(5) To achieve effective communication, the
enterprise architect and system designer may need to
understand each other’s design situation,
particularly, the different demands that each of them
faces and these demands may well be in conflict. A
design situation includes objectives, constraints,
solution alternative, artifacts, evaluations, and the
like.

We now review these observations in more
detail, and explain why the use of specialized

terminology and/or notation is usually not sufficient
to support unequivocal understanding among
designers during design discussions.

Consider the first three observations. A
specialized term, such as “synchronous messaging”,
translates in the enterprise architect’s mind into a
number of artifacts that collectively exhibit some
software system behaviour. Usually, such a
translation is not mechanically derivable, but
involves interpretation and decision making. For
example, the enterprise architect explains that during
synchronous messaging the consumer knows and
makes use of the physical address of the provider to
send a service request to the provider. However, as
we will demonstrate, the term synchronous
messaging allows for an alternative operational
meaning, and does not necessarily involve such a
physical point-to-point integration. During the
design discussion the consumer designer may have
this other alternative operational meaning in mind.
Shared operational meaning of the terms
synchronous and asynchronous messaging is thus
problematic.

Consider now the fourth observation – levels of
abstraction. The meaning attributed by the enterprise
architect to the point-to-point integration style
involves artifacts at a particular level of abstraction.
For example, the enterprise architect may have
thought of the address artifact of a second system as
a physical address, such as a static IP address, that
unequivocally identifies a first and a second system
in a network. Alternatively, the enterprise architect
may indeed have considered a logical address
artifact that allows for some routing decisions within
the ESB, thereby “loosening” the operational
meaning of point-to-point integration style, but still
objecting to this approach. Clarifying the level of
abstraction at which a design discussion takes place
is thus crucial for understanding operational
meaning and for clarifying design intents.

Finally, consider the fifth observation. During a
design discussion both the enterprise architect and
the system designers are actively involved in the
design of enterprise systems, but from different
vantage points. The system designer is responsible
for the design and goal achievement of a single
system, while the enterprise architect is responsible
for enterprise-wide goals. This includes also dealing
with single systems, however from a systemic point
of view, such as in relation to other systems. Each
designer therefore comes to the design situation with
different objectives in mind, which can conflict, and
different design intents may lead designers to
interpret design approaches quite differently.

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

78

In this example, the design intent of the
enterprise architect to avoid a point-to-point
integration style relates to the additional
development effort needed to support a service
request from the consumer to be processed in the
future by additional providers. This intent leads the
enterprise architect to focus on ensuring that the
provider address is not directly known to the
consumer component when sending the service
request message. However, suppose the consumer
designers thinks that a main concern of the
enterprise architect is, instead, to avoid the
(symbolic) inclusion of the provider service
interfaces within the consumer code, since this can
create a costly syntactic and semantic dependence
between a provider and its consumer components,
when the provider’s interface is changed in the
future (interface has a broad meaning, including
knowledge of a messaging protocol between a
consumer and provider, and which can greatly vary
for synchronous messaging). The operational (and
structural) meaning that the consumer designer then
attributes to the point-to-point integration term,
would then focus on artifacts embodying interface
knowledge within the consumer, rather than on a
physical or logical provider address. Knowing each
other’s design demands may thus help clarify what
artifacts and behaviours are involved in the
operational meaning of terms.

The core problem we identify is the need to
clarify what designers mean when they use
specialized terminology during discussions or in
conceptual models, while acknowledging that
meaning is constructed from interpreting the
operational meaning of existing artifacts in the
design space (e.g., consumer, provider, etc.), and
from interpreting operational meaning of new
artifacts the designers envision included in the
design space (e.g., consumers’ and providers’
messaging routines). Searching for an appropriate
theoretical approach to capturing and analyzing
meaning of design artifacts during design leads us to
consider semiotics in general, and the semiotic agent
modelling approach developed by Stamper, Liu and
colleagues for dealing with meaning during
information system requirements and design (Liu,
2000, Stamper, 1973, Stamper, 2006, Stamper et al.,
2003, Liu et al., 2001) in particular. More
specifically, we adopt Stamper’s actualism ontology
that accepts as assumption that knowing depends on
a knowing (semiotic) agent, and that knowledge
depends on the actions afforded by the agents
perception (Stamper, 2006, Michaels and Carello,
1981, Gibson, 1977). We further adopt Stamper’s

ontological dependence schemas which applies these
philosophical notions in the form of a semantic
analysis approach using semiotic agents (Liu, 2000,
Stamper, 2006).

We extend ontological dependence schemas to
software design. We define a new logical
relationship between semiotic agents (a “modifies”
link), that supports defining new agents by
extending existing agents and their ontological
dependence schema; we distinguish between regular
semiotic agents, and symbolic semiotic agents which
refer to “symbol processing” (computational)
artifacts designed by semiotic agents; we specialize
affordances (the “things” and “actions” agents
perceive and do) to distinguish between substantive
(design application domain specific) and symbolic
affordances (such as software operations). Finally,
we support linking ontological dependence schemas
to agent and goal-oriented analysis models that
support capturing and reasoning about intents and
decision making in development organizations
(Gross and Yu, 2001a, Gross and Yu, 2001b, Gross
and Yu, 2010, Yu, 1994a). This last contribution is
however only briefly discussed and not illustrated in
this paper. Note that the term “agent” appears in
semiotic work (semiotic agent) as well in our work
on intentional modelling and analysis in
organizations (intentional agent). These agents have
different meanings and application, and we briefly
discuss these in the discussion section.

The next section illustrates our proposed
approach through a semiotic analysis of the design
discussion between the enterprise architect and the
designer of the software component. Section 3
discusses our approach and related work, while
section 4 concludes and points to future work.

2 SEMIOTIC AGENT MODELING
OF AN ARCHITECTURAL
DECISION

2.1 Semiotic Agent Modelling of Terms

Affordance is a central concept during semiotic
agent modelling. Generally speaking, one “thing” or
concept affords another, if the first helps the second
in some way. For example, an ink pen affords
writing. Gibson elaborates that affordance must be
understood in relation to an agent, or more precisely,
the perceptive capability of the agent (Gibson, 1977,
Michaels and Carello, 1981). It is the writer who can

RESOLVING ARTIFACT DESCRIPTION AMBIGUITIES DURING SOFTWARE DESIGN USING SEMIOTIC
AGENT MODELLING

79

Figure 2: Semiotic analysis of point-to-point integration style.

perceive the affordance, and thus can understand the
meaning of an ink pen for writing. Stated differently,
the meaning of the concept “ink pen” is operational
(“for writing”), and is a perceived affordance, and its
perceptibility is dependent on the writer’s writing
capability. In short, perceived affordance is
perceived operational meaning. A person who
cannot write, nor has seen writing before, would not
perceive the pen’s affordance for writing, and thus
fail to understand the ink pen’s meaning (that it is
for writing). An agent’s ability to perceive
affordances are “preconditioned” by what the agent
is in principle capable of sensing and doing, and by
learned experiences of past encountered affordances
in the agents living environment. In Gibson’s theory
of affordance, the relationship between environment
and perceptive capacity of an agent is interrelated,
the living environment of an agent affords the
evolution of capabilities in the agent, and the agent’s
evolved capabilities afford perceived affordances in
the environment. According to Gibson, it is possible
that some objects that have no perceivable
affordances to an agent, would not be perceived, and
thus do not exist for that agent.

Stamper’s ontological dependence schema
captures such ontological necessity between
affordances. For instance, that “person stumbling”
can only exist if “person running” or “person
walking” first exists; without these affordances
“stumbling” is not perceivable by person, and hence
does not exist. A semiotic agent analysis of the term
“physical point-to-point integration” attempts to
identify, and capture in the form of an ontological
dependence schema, affordances that are necessary
for a software system designer to perceive actions or
operations relevant to “physical point-to-point
integration”, such as the physical point-to-point

transmission of data, and the designing of a
physically point-to-point integrated consumer
component. Note, that we distinguish between
“action” directly performed by the agent and
“operation” performed by a software system.

In our proposed approach a semiotic agent
indicates a design capability and perceptive vantage
point of a designer. For example, by naming a
semiotic agent “Physical point-to-point integration
designer” we indicate a designer’s capability of
perceiving all affordances necessary for defining or
performing any or all actions or operations afforded
by a physical point-to-point integration. The name of
a semiotic agent captures a modelling intent to
explore and delineate the name’s meaning, by
identifying the indicated affordances. For instance,
the adjective “physical” in the above semiotic
agent’s name focuses the meaning analysis to
physical affordances, while limiting the scope of the
analysis to exclude the capability of perceiving a
“logical point address”, and anything this concept
affords, which is left for a different semiotic agent to
perceive.

In our proposed approach semiotic agents are
therefore a structuring mechanism for software
system design terminology in terms of afforded
design capabilities and actions, which parallels how
design responsibilities are identified and allocated
amongst designers in development organizations.

2.2 Semiotic Agent Analysis of
Point-to-point Integration

Figure 2 illustrates the result of a semiotic agent
analysis of physical point-to-point integration. The
semiotic agent model is read from left to right.
Elements more to the left afford elements more to

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

80

the right. Elements are linked via ontological
dependence links. Captured on the far left using a
solid ellipse is the semiotic agent “Physical point-to-
point integration designer”. The semiotic agent
represents a human designer who is capable of
designing a physical point-to-point integration. The
agent is therefore capable of perceiving the
affordances for any or all automated operations as
well as relevant designer actions applicable to a
physical point-to-point integration.

Figure 2 illustrates one key operation: “Transmit
data from a physical Sender address to a Physical
Recipient address”. This automated operation is
captured on the far right using a dashed rectangle
indicating a symbolic affordance -- a software
operation. Since it’s a symbolic operation, it refers
to its dependee affordances using symbols; therefore
the affordances it directly depends on are linked via
symbolic ontological dependence links (dotted
lines). Note that as a result of semiotic analysis the
label of this operation is more precise than the one
we used before (“physical point-to-point
transmission of data”), including additional terms
derived from its preceding affordances.

“Data” and “Physical connection” are
affordances (captured as sold rectangles) that help
define the automated operation. Figure 2 further
shows that a “Physical connection” affords the
“Communication device”. The “Communication
device” is from the perspective of the semiotic agent
perceived as a symbolic semiotic agent – an agent
that performs automated symbolic operations. In
other words it’s a computational device that
processes software code. The symbolic nature of this
agent is indicated by an ellipse with dashed lines.
Having a “communication device” affords a
“Sender” and a “Receiver” role for the
Communication Device, as well as a “Physical
Device Address.”

The ontological dependence schema in figure 2
indicates that all these affordances are necessary for
defining the “Transmit data from a physical sender
address to a physical recipient address” operation.
Removing any affordance included in the schema
should make defining the operations impossible. If
this is not the case, then the semantic agent schema
is incorrect and needs to be revised.

2.3 A Fuller Semiotic Agent Analysis of
Discussed Terms

In the introduction we mentioned the Enterprise
Architect’s preference for asynchronous messaging,
because it involves loose coupling and avoids point-

to-point integration, while the consumer component
designer prefers synchronous messaging, since
point-to-point integration has some properties of
advantage to him (e.g. simplicity). In this section we
present a fuller semiotic agent analysis of these
terms, and illustrate that the exact operational
meaning of synchronous and asynchronous
messaging is in fact independent of the operation
meaning of point-to-point or loosely coupled
integration.

This analysis reveals that the architect and the
consumer designer seem to conflate “orthogonal”
operational meanings when discussing synchronous
and asynchronous messaging in terms of point-to-
point and loosely coupled integration. It is, for
instance, possible to transmit messages
asynchronously and point-to-point, and it is possible
to offer loose coupling and synchronous messaging.
Conflating operational meaning may involve
implicit, and unintended, design decision making.
Semiotic agent modelling helps ensure that such
conflations and related decisions are made visible
and amendable to analysis, and not made
unintentionally, which in turn helps avoid
misunderstandings.

Figure 3 shows how ontological dependencies of
“higher level” terms, are selectively composed from
ontological dependence schemas of “lower level”
terms. For example, to construct the operational
meaning for the higher level term “Logical loosely
coupled integration”, we define and link the semiotic
agent “Logical loosely coupled integration
designer”, via a “modifies link” to the lower level
“Physical point-to-point integration designer” agent,
we defined earlier. This indicates that everything the
Physical point-to-point integration designer
perceives is also perceived by a Logical loosely
coupled integration designer. The Logical loosely
coupled integration designer however perceives
more, and can perceive affordances relevant to a
logical integration, such as, to perceive the notion of
a “Logical device address”. The “Logical device
address”, together with the “Sender” and “Receiver”
roles (of the Communication device), affords
defining the operation “Transmit data from logical
sender address to logical recipient address” and
“Translate logical device address to one or more
physical device addresses” (the latter is afforded by
including the “Physical device address” affordance
also). Without specifically restricting the meaning of
the logical device address (by placing it in context of
additional gents and affordances), it can be
interpreted quite generally, allowing for different
kinds of loose coupling. Figure 3 further illustrates

RESOLVING ARTIFACT DESCRIPTION AMBIGUITIES DURING SOFTWARE DESIGN USING SEMIOTIC
AGENT MODELLING

81

Figure 3: Fuller semiotic agent analysis.

the ontological dependences for the SOA term
“Consumer”. The “Consumer designer” agent
perceives “Service”, “Message”, “Provider”, and
“Own identity”. Selections of these in turn afford
perceiving “Service request message”, “Messaging
service”, “Feedback message”, “Provider address”
and “own address”. Finally, with these affordances
defined the operations “Send service request

message from own address to provider address via
the Messaging Service” and “Respond to feedback
message from Provider” are defined. Note that to
reduce link clutter in the diagram, we capture some
ontological dependence links by a simple
identification and referencing scheme. A bracketed
identifier, such as (e1), appended to a label uniquely
identifies a model elements, while a bracketed

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

82

identifier prefixed to a label indicates an ontological
dependence link on the element referenced. For
example, the affordance “Logical Device address
(e2)” is uniquely identified by the identifier “e2”.
The affordance “(e2, e4) Logical Provider address”
indicates that the logical provider address is
ontologically dependent on “Logical device address
(e2)”, and “Logical provider address (e4)”.
Including “symbol” in a prefixed bracketed
identifier indicates a symbolic ontological
dependence link.

After defining the semiotic agents and respective
ontological dependence schema for “physical point-
to-point integration”, “Logical loosely coupled
integration designer”, and “consumer”, we construct
higher level semiotic agents. The “Physical point-to-
point Consumer designer” agent is a modification of
the “Consumer designer” agent, and defines the
terms “Physical Provider address”, “Physical own
address” and the operation “Send service request
message from own physical address to Provider
physical address via the Messaging service”. We
similarly define the “Logical loosely coupled
consumer designer” agent.

Stepping up another level we modify these
agents to define two synchronous and two
asynchronous messaging related semiotic agents, the
synchronous physical point-to-point consumer
designer, the asynchronous physical point-to-point
consumer designer, and synchronous logical loosely
coupled consumer designer and finally, the
asynchronous logical loosely coupled consumer
designer. The ontological dependence schema for
synchronous messaging indicates that with respect to
the consumer designer, synchronous messaging is
defined by a designer action (captured by a solid
rectangle) embodied in the manner software code is
strung together so that when executed the consumer
waits for a feedback message from the provider, and
then immediate handles the feedback message.

A careful analysis of the ontological
dependences of these designer actions indicates that
they are afforded by any consumer agent (and
selected consumer’s affordances), including all
agents that modify the consumer agent (the
modification link, acts with this respect like an ISA
relationship in object-oriented analysis (Fowler and
Scott, 2000)). Synchronousity is thus applicable to
Physical point-to-point consumer designers and to
logical loosely coupled consumer designers. This is
also the case for Asynchronousity. To establish this,
we trace back the affordances of the designer action
and note the semiotic agents whose affordances are
required. We also perform a “factoring” analysis, a

type of analysis afforded by the “modifies”
relationship we introduced, to identify for some
affordances lower level affordances that can be
“factored out”, to leave only higher level affordance
in the ontological dependence chain.

For example, tracing back from the “Wait for
feedback message from provider” designer action of
the “Synchronous Physical Point-to-point Consumer
designer” agent, we find that it is afforded by
“Feedback Message”, “Response to feedback
message from Provider”, “Provider”, “Feedback
message response code”, “Send message routine
call”, “Send service request message from own
physical address to Provider physical address via the
Messaging Service”, “Message”, “Service”,
“Physical Provider address”, “Physical own
address”, “Provider address”, “Own address “,
“Physical Device Address”, “Communication
Device” and “Physical Connection”.

If we trace back from the “Don’t wait for
feedback message from provider” we find that
affordances found differ only with respect to the
following alternatives: “Logical Provider Address”
vs. “Physical Provider Address” and “Logical own
address” vs. “Physical own address”. If these
different preceding affordances are not relevant with
respect to the affordances factoring analyzed (the
wait and not wait for feedback message from
provider operation), then the differences can be
factored out and subsumed into a relevant higher
level affordance such as “Provider Address” and
“Own address”, which then also removes all lower
level dependent affordances. This leaves a common
higher level “thread” of dependent affordances,
which in our case, are link to the consumer designer
semiotic agent only. Factoring analysis also helps in
identifying restructuring opportunities of agent
models to making them more concise by
introducing, moving, redefining and and/or relinking
affordances.

The semiotic agent model in figure 3 therefore
reveals that whether a consumer is involved in a
direct point-to-point integration and uses a provider
physical address, or whether it is loosely coupled
using a logical or symbolic address, has no bearing
on the operational meaning of synchronous and
asynchronous messaging. Equipped with such a
semiotic agent analysis, architects and designers can
clarify what exact operational meaning they have in
mind during design discussion, and make explicit
what level of abstraction they assume
unproblematic, which facilitates architectural design
and reasoning, and helps avoid misunderstandings
and unintended design decisions.

RESOLVING ARTIFACT DESCRIPTION AMBIGUITIES DURING SOFTWARE DESIGN USING SEMIOTIC
AGENT MODELLING

83

3 DISCUSSION AND RELATED
WORK

Misunderstandings and ensuing decision errors
during architectural design carry a cost. While it is
difficult to provide an empirical answer to what the
cost is, mainly due to the difficulty in collecting
relevant data in industry to study these costs
(Westland, 2002), there is empirical research
available that does provide some indications.
Westland for instance found that errors that require
significant system redesign generate significant
costs, and that unresolved errors become
exponentially more costly with each phase in which
they are left unresolved (Westland, 2002). It is
therefore clear that architectural design errors can
become very costly. They do require significant
system redesign to correct, and do occur at early
phases during software development. It thus appears
justified to perform a semiotic analysis during
architectural design to reduce misunderstandings
amongst designers and developers.

A key question, however, during semiotic agent
analysis is how much analysis to perform. How
many levels of semiotic agents to explore and how
fine grained to develop the affordance dependence
structures. Ultimately, we believe that the answer to
these questions is subjective, and it is up-to the
designers involved in semiotic agent analysis to
decide when they feel operational meaning has
sufficiently been clarified. However, the semiotic
agent concept provides a useful focal point to guide
designers, while making these subjective decisions.
Using semiotic agents the question “how much
semiotic analysis” is transformed to the question: to
what extent to rely on the experience and know-how
of a designer (captured as a semiotic agent) to
interpret the meaning of terms, and whether it
matters that the agent may invoke different
interpretations.

For example, in figure 3 the “Consumer
designer” agent perceives a “Service” affordance.
However, what is the exact meaning of a “Service”?
We have chosen not to analyze that further, and rely
on the consumer designer’s knowledge and skills to
interpret the meaning for us. This choice is further
strengthened by our judgment that with respect to
analyzing the operational meaning of synchronous
and asynchronous messaging, the exact operational
meaning of a “Service” is inconsequential. It is of
course possible that our judgment is incorrect,
however, semiotic analysis affords these kinds of
judgment questions and guides when and for what
agents and terms to ask them.

Stamper suggests constructing dependence
schemas using strict rules, such as that every
affordance, apart from the root, depends for its
existence on at most two antecedent affordances
(Stamper and Ades, 2004). A schema complying
with these rules is called in canonical form, which,
based on empirical observations, helps expose errors
and reduce semantic confusion. The diagrams in this
paper are not in canonical form. As we gain more
experience with this notation the utility of the
canonical form will also become better understood.

The proposed approach should be seen as
complementing other design approaches. For
example to support terminology use during UML
modelling and analysis (Fowler and Scott, 2000).
Future work will also look at integrating this
approach with an architectural design reasoning and
analysis approach (Gross and Yu, 2010).

Besides operational meaning we also distinguish
between the structural and intentional meaning of
artifacts. Structural meaning relates to a physical or
conceptual structure an artifact contributes to. For
example, a “Service” offered by a provider affords a
“Service Interface”, which is a structuring concept in
software architecture, and which is, in turn,
symbolically referred to by a consumer. The
enterprise architect could have the distribution of the
providers interface structure to consumer
components in mind when discussing point-to-point
integration. However, ultimately, every structural
meaning leads to operational meaning, such as
“what does a service interface, or symbolic reference
to an interface afford to do?” The structural meaning
of an artifact may be a convenient intermediate
concept when capturing artifact meaning.

The intentional meaning of an artifact refers to a
higher level purpose of the artifact’s operational and
structural meaning. For instance, intentionally,
asynchronous messaging affords systems that are
scalable and easier to extend. Scalability and ease of
extension are the intentions that justify the decision
to adopt asynchronous messaging. Ultimately,
however, also intentional meaning leads to designer
actions. The intentional meaning of an artifact offers
a bridge between the semiotic agent work and our
prior work on intentional agents and decision
making (Yu, 1994b, Gross and Yu, 2010).

For example, the semiotic analysis in figure 3
illustrates the operational meaning of synchronous
and asynchronous messaging and shows that either
one is possible when adopting point-to-point
integration or more loosely coupled integrations.
However, which of these should, say, a consumer
designer choose, and how should a consumer

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

84

designer justify his/her choice. These questions lead
us to the intentional meaning of artifacts, and
intentional modelling and analysis of the artifact in
terms of intentional agents in organizations (Yu,
1994b, Gross and Yu, 2010). The exact relationship
between intentional agents, who reason about design
intents and decision making, and semiotic agents,
who perceive operational meaning, needs more
research.

As outlined in the preface, the contribution of
this work is in applying and extending Stamper and
Liu’s approach to modelling and specifying meaning
during information system development. Little work
was done in applying semiotic agent modelling to
architectural design. Luo and Liu applied semiotic
agent analysis for Information Systems Architecture
Design (Luo and Liu, 2009). Their work focuses on
using semiotic agents to capturing organizational
requirements in preparation for architectural design,
rather than offering an approach for a semiotic
analyze of architecture artifacts.

Nobel et. al. present a semiotic analysis of object
oriented design patterns (Nobel et al., 2006). While
their work specifically deals with design patterns,
which are artifacts relevant to architectural design,
their work uses a more general semiotic framework
based on Saussure’s binary model of a sign, and
Peirce three part relationship. While these allows
deriving useful insights into the meaning and
relationships amongst design patterns, the analysis is
too coarse-grained to provide insights into the
operational meaning of design patterns, and artifacts
comprising patterns. Our work, which uses an
extended version of Stamper’s semiotic agent
analysis as its underlying analysis framework, offers
finer grained analysis of the operational meaning of
artifacts.

Berry et. al. have studied ambiguity in natural
language requirements (Berry et al., 2003).
However, while enumerating many didactic
examples of ambiguity, and providing informal
writing guidelines how to reduce ambiguity during
requirements drafting, no analysis method is offered
to help clarify meaning to avoid ambiguity.

4 CONCLUSIONS AND FUTURE
WORK

In this paper we offered a semiotic agent modelling
approach to dealing with ambiguity during
architectural design. The proposed approach extends
Stamper’s and Liu’s work on Semiotic agents and

ontological dependence schema’s to apply to
software design. The proposed approach uses the
notion of affordance to helps clarify the operational
meaning of technical design vocabulary used during
free form discussion, captured in documents or
included in conceptual models.

Future work will focus on further integrating the
semiotic modelling approach into our work on
representing, capturing and analyzing designers and
stakeholder’s intents and decision making in
development organizations. Such integration
promises advantages for semiotic analysis, in that it
makes decision making during operational meaning
construction visible and amendable to intentional
analysis, and it promises advantages to the
modelling and analysis of decision making processes
in organizations, in that it helps clarify the
terminology used and referred to in intentional
models. Future work will also focus on further
exploring the semantic of the “modifies” link
between semiotic agents, and in particular, how to
support “polymorphic” affordance definitions that
selectively override respective affordances in the
“parent” semiotic agent, which supports simplifying
agent models.

Finally, since new terminology is introduced as
design unfolds, the relationship between semiotic
agent creation, to capture meaning of evolving and
new terminology, and responsibility creation and
assignment during intentional agent modelling needs
to be further explored.

Another line of future work is the inclusion of
norm analysis and a denotational language to capture
architectural rules and guidelines that architects
specify in development organizations. Perhaps some
activities such as “Wait for feedback from provider”
in figure 3 are better captured as norms rather than
affordances. Also, a request such as “use
asynchronous messaging” may be captured using
norms defined over an ontological dependence
schema. This future work would also focus on how
to incorporate norms into intention agent modelling
and analysis.

Finally, future work will also focus on modelling
and analysis tools to support designers in capturing,
reusing, applying, presenting, analysing and
disseminating semiotic agent models during
architectural design and change.

RESOLVING ARTIFACT DESCRIPTION AMBIGUITIES DURING SOFTWARE DESIGN USING SEMIOTIC
AGENT MODELLING

85

REFERENCES

Berry, D., Kamsties, E. & Kriekger, M. (2003). From
Contract Drafting to Software Specification:
Linguistic Sources of Ambiguity. School of Computer
Science, University of Waterloo.

Erl, T. (2007). SOA Principles of Service Design (The
Prentice Hall Service-Oriented Computing Series from
Thomas Erl).

Fowler, M. & Scott, K. (2000). UML distilled: a brief
guide to the standard object modeling language,
Reading, Mass., Addison Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995).
Design patterns: elements of reusable object-oriented
software, Reading: Mass., Addison-Wesley.

Gibson, J. J. (1977). The Theory of Affordances. IN
SHAW, R. E. & BRANSFORD, J. (Eds.) Perceiving,
Acting, and Knowing. Hillsdale, N.J., Lawrence
Erlbaum Associates.

Gross, D. & Yu, E. (2001a). Evolving System
Architecture to Meet Changing Business Goals: An
Agent and Goal-Oriented Approach. Proceedings of
the Fifth IEEE International Symposium on
Requirements Engineering. IEEE Computer Society.

Gross, D. & Yu, E. (2001b). From Non-Functional
Requirements To Design Through Patterns.
Requirements Engineering, 6, 18-36.

Gross, D. & Yu, E. (2010). Supporting the evolution of
software architectures in development organizations
using intentional agents. Fourth International i*
Workshop - istar 2010.

Josuttis, N. M. (2007). SOA in Practice - The Art of
Distributed System Design, O'Reilly.

Liu, K. (2000). Semiotics in Information Systems
Engineering, Cambridge University Press.

Liu, K., Sun, L., Dix, A. & Narasipuram, M. (2001).
Norm-based agency for designing collaborative
information systems. Information Systems Journal, 11,
229-247.

Luo, A. & Liu, K. (2009). Using Organizational Semiotics
Methods for Information Systems Architecture
Design. The 11th International Conference on
Informatics and Semiotics in Organizations. Beijing,
China.

Michaels, C. F. & Carello, C. (1981). Direct Perception,
Englewood Cliffs, New Jersey 07632, Prentice-Hall,
Inc.

Nobel, J., Biddle, R. & Tempero, E. (2006). Patterns as
Signs: A Semiotics of Object-Oriented Design
Patterns. An International Journal on Communication,
Information Technology and Work, 2, 3-40.

Stamper, R. (1973). Information in Business and
Administrative Systems, Oxford, Blackwell.

Stamper, R. (2006). Exploring the semantics of
communication acts. Proceedings of the tenth
international conference on the language action
perspective. Kiruna: Linköping University.

Stamper, R. & Ades, Y. (2004). Semantic Normal Form
and System Quality. Proceedings IEEE Conference on
Requirements Engineering, Kyoto.

Stamper, R., Liu, K., Sun, L., Tan, S., Shah, H., Sharp, B.
& Dong, D. (2003). Semiotic Methods for Enterprise
Design and IT Applications. Staffordshire University,
Reading University.

Westland, J. C. (2002). The cost of errors in software
development: evidence from industry. The Journal of
Systems and Software, 62, 1-9.

Yu, E. (1994a). Modeling Strategic Relationships for
Process Re-Engineering. Department of Computer
Science. University of Toronto.

Yu, E. (1994b). Understanding "Why" in Software Process
Modelling, Analysis, and Design. Proceedings of 16th
International Conference on Software Engineering.
IEEE Computer Society Press.

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

86

