
OPENING TEL SYSTEMS FOR TEACHERS  
A Domain-specific Modeling & Model-driven Engineering Approach 

El Amine Ouraiba, Christophe Choquet and Philippe Cottier 
Maine University, IUT de Laval, 52 rue des Docteurs Calmette et Guérin, 53020 Laval Cedex 9, France 

Keywords: Open Technology Enhanced Learning Systems, Instructional Design, Open Pedagogical scenario, Learning 
Session Adaptation, Domain-Specific Modeling, Model-Driven Engineering. 

Abstract: Despite their quality, few TEL systems are actually adopted in educational institutions. These educational 
technologies have not always the necessary flexibility for use in real educational contexts that often 
requiring the rapid adaptations to new and often unexpected events (Cottier et al., 2008). Indeed, TEL 
environements should be designed as “open” in which the teacher himself is able to lead the adaptation and 
reengineering of learning system at an abstract level. In our work, we consider that opening of pedagogical 
scenario allows for the opening of TEL system. This article focuses on an approach based on the Domain-
Specific Modeling and Model-driven Engineering for supporting practitioner teachers in their activities 
through the instructional design process. In order to verify our proposal we took Hop3x as experimentation 
field. Our objective is to open this TEL system for its users by providing them a user-friendly editor which 
allows the design and adaptation of learning sessions at a high-level of abstraction. We illustrate the 
development process of Hop3x’s Domain-Specific Language and specific editor. 

1 INTRODUCTION 

Technology-enhanced learning (TEL) systems are 
dedicated to making their users learn. A TEL system 
is a complex environment that mobilizes human 
agents (learner, teacher) and artificial ones in 
interactions conceived in order to improve the 
quality of the human learning. The design of a TEL 
system is a significant effort for a learning 
institution. It is a complex process that is expensive 
in time and also in technical and human means. In 
this process the designer is involved to perform 
several choices about pedagogy, technology and 
interaction modalities. It must that the designed TEL 
system could be adapted to the evolution of usage’s 
context, and be configured according to the 
evolution of users needs and activities. According to 
(Rogalski, 2003) the teacher, in his/her activity, 
should manage an "open dynamic environment". 
Dynamic because the learning process evolves even 
without teacher’s intervention, this is called a 
spontaneous evolution.  Open because the teacher 
cannot predict the spontaneous evolution of learners 
and the effect of his/her possible interventions 
(Roditi, 2003).  

(Henri et al., 2007) affirm that the learning 
environment is a work in progress which is 
improved session after session. This particularity 
requires, according to (Cottier and El-Kechaï, 2009), 
to think the design as a continuous and situated 
process. However, the engineering’s classical 
methods are characterized by their rigidity and 
linearity. In one hand, after that the developed 
system is implanted, the only evolution that can have 
been is its maintenance. In other hand, for building 
this system, the design process is performed in steps 
that segment the time, the actors, and the works to 
realize (Bourguin and Derycke, 2005). This brings 
about a discontinuity between the design process and 
the usage process (separation between designers and 
users), and difficulties to fill the gap between the 
scientific disciplines mobilized, in particular 
between computer science and human and social 
sciences (Bowker, Star and Turner, 1997), 
(Bourguin and Derycke, 2005). 

TEL systems should be designed as “open” (e.g. 
systems where the teacher is able to lead the 
adaptation and reengineering of learning system by 
himslef). The question asked by engineering of TEL 
systems is to “develop an adaptable and 
reconfigurable TEL system by its users according to 

312 Amine Ouraiba E., Choquet C. and Cottier P..
OPENING TEL SYSTEMS FOR TEACHERS - A Domain-specific Modeling & Model-driven Engineering Approach.
DOI: 10.5220/0003345803120317
In Proceedings of the 3rd International Conference on Computer Supported Education (CSEDU-2011), pages 312-317
ISBN: 978-989-8425-49-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

usage’s context evolution” rather than to “develop a 
TEL system according to a given specification”. In 
the open TEL systems engineering, the decisions 
and practices of instructional designer are 
fundamental (Cottier and El-Kechaï, 2009).   

We consider that the pedagogical scenario is a 
relevant and strong model for TEL systems 
engineering and that the opening of learning 
scenario allows the opening of TEL system. The 
scenario is formalized with the help of an EML 
(Educational Modeling Langage) (Koper, 2001), 
defined by a specific meta-model which is itself 
linked by conformity relations with the scenario. 
Within this framework, two approaches exist in the 
research field for the scenario based TEL systems 
engineering (Choquet, 2007) : (1) interpretative 
approach, where an existing EML (such as (IMS 
LD, 2003)) is proposed to designer for specifying 
scenarios; (2) constructive approach, where the 
designer, generally helped by modeling specialists, 
build the meta-model which describes their domain-
specific EML and use it for specifying scenarios. 

Our work falls under this last approach. By the 
use of Domain-Specific Modeling (DSM) and 
Model-driven Engineering (MDE) paradigm we 
want to surpass the difficulties a teacher can 
encounter when using generic EMLs and existing 
editors (Ouraiba et al., 2010). This, by defining the 
Domain-Specific Language (DSL) of teacher and 
developing accordingly a dedicated editor. The next 
section of this article presents the DSM/MDE 
paradigm how we instantiates it to support teacher 
both at design and run time. Thus, we took Hop3x as 
experimentation field of our approach. In section 3, 
we detail the work realized on the Hop3x TEL 
system for opening it where we illustrate our first 
results of the development process of Hop3x’s 
Domain-Specific Language (DSL) and specific 
editor thanks to EMF tooling. We conclude by 
discussing the benefits of our approach and our 
future works.  

2 DSM / MDE FOR SUPPORTING 
TEACHER 

Model-Driven Engineering (MDE) is basically a 
software development approach where the code is 
produced by some transformations and combinations 
of models of the required artifact. It is an 
enhancement of the Model-Driven Architecture 
(MDA) approach, initially proposed by Object 
Management Group (MDA) in 2001 (the MDA 
document Guide (OMG, 2006) provides an overview 

and definitions of the used concepts) to provide a 
solution to the problem of software technologies 
continual emergence that forces companies to adapt 
their software systems every time a new “hot” 
technology appears (adaptability problem). 

The first principle is to use modeling and models 
to develop software systems. The second principle is 
the separation of the enterprise functionalities of an 
information system from the implementation of 
those functionalities on specific technological 
platforms (EJB, CORBA, and so on). The abstracted 
specification of the system becomes the main asset 
in software development: many implementations 
using concrete technologies may be derived from the 
specification. It is model-driven while “it provides a 
means for using models to direct the course of 
understanding, design, construction, deployment, 
operation, maintenance and modification” (OMG, 
2006). The software development process is based 
on automatic or semi-automatic transformations 
between models, from abstracted, domain centered 
and generally informal models (Computation 
Independent Model – CIM) to specific and platform 
dependent ones (Platform Specific Model – PSM). 

Based on this initial proposal, the Domain 
Specific Modeling approach (DSM) was defined (1) 
to reduce the complexity of the transformations and 
the semantic losses they generate, and (2) to enhance 
the level of abstraction of the software specification 
(Kelly and Tolvanen, 2008). The principle here is to 
develop a Domain Specific Language (DSL), 
tailored for specifying software which instruments a 
specific activity in a specific context. This DSL has 
to be formal but its meta-model reflects the domain 
of the users: the modeling vocabulary used is the 
domain one. Then, code generators could be 
developed for directly transform models expressed 
with a DSL into a specific technological platform 
framework. 

Particularly, we propose to adopt a DSM/MDE 
approach for allowing the teacher to assume his/her 
designer role, and the learning session actors to 
adapt the open pedagogical scenario dynamically. 
We consider that a pedagogical scenario, for being 
really designed and manipulated by a teacher, has to 
be considered as a domain specific model, expressed 
with a DSEML (Domain-Specific Educational 
Modeling Language) situated in his/her teaching 
context and rooted in his/her practices. In such a 
paradigm, MDE techniques have to support the 
transformation of the scenario from domain specific 
representation to operationalized one, both at the 
design phase to support the operationalization and at 
runtime to support the dynamic adaptation (Ouraiba 

OPENING TEL SYSTEMS FOR TEACHERS - A Domain-specific Modeling & Model-driven Engineering Approach

313



 

et al., 2010).  
The following figure 1 illustrates how we 

instantiates DSM/MDE paradigm to support teacher 
both at design and run time.  

 
Figure 1: OMG layers view of the open pedagogical 
scenarios engineering. 

3 DSM/MDE FOR OPENING 
HOP3X TEL ENVIRONMENT 
FOR TEACHERS 

3.1 Hop3x TEL System  

Hop3x is a practical works TEL environment 
developed for learning and teaching object-oriented 
programming languages, like: C, Ruby, and Java. 
We will focus here on Java programming. On one 
hand, Hop3x is structured around a specific Java 
editor/compiler where the learner has to solve 
programming exercises. In the other hand, it allows 
a tutor to intervene remotely and at runtime by 
providing help and recommendation to learners 
thanks to feedback system which provides high level 
information about learners' productions and tasks by 
the way of indicators calculated from tracks with 
DCL4UTL language (Pham Thi Ngoc et al., 2009). 

Hop3x is operating-systems independent and its 
architecture is composed of three applications:  

 Hop3x-Learner Interface, which allows 
learners to write, edit, compile and run code 
and program. It also allows them to ask for 
help from the teacher via a synchronous 
communication tool. 

 Hop3x-Server, which collects interaction 
tracks of learners and save them as Hop3x 
events. It allows real-time calculation of 
indicators. 

 Hop3x-Tutor Interface, which is a monitoring 
tool for tutors. It allows them to manage a 
group of learners in a situation of distance but 
synchronous practical work.  

After their authentication, learners can use their 
working interface. Before trying to solve exercises, 
learners must read the what-to-do and how-to-do 
instructions. The set of questions is presented as a 
sequence that is not static, in a way where learners 
can browse the list of questions and choose the order 
that they want to follow. Answering questions 
requires writing a Java-code. Generally, before 
obtaining a correct and executable Java-code, 
learners perform a series of updates on it (writing, 
editing and deletion), sometimes compilations and 
runs. If a learner finds a difficulty in his/her activity 
he/she can request help from tutor via the audio 
communication functionality.  

The tutor, after authentication, can use the 
relevant interface which is composed of a set of 
functionalities developed in order to help him in 
sessions control and learners monitoring during their 
activities. These functionalities allow to: know 
which learners are connected and which are not;  
observe at real-time the Java-code written by each 
learner (in fact, a mirror of the learner’s interface); 
replay with a selected speed the different stages a 
learner’s session; have a look on each compilations 
and executions results for a given learner; make 
tutoring interventions via audio or textual (proactive 
messages) modalities; responds orally or textually to 
a learner’s call (reactive message); see the history of 
the tutoring interventions, read the content of 
questions and instructions; consult specific and 
transversal indicators calculated at real time. 

Each tutoring intervention is characterized by its 
manner, its modality, its category and its strategy. A 
proactive intervention could be motivated by the 
Java-code written quality and/or thank to indicators 
characterizing the learners activities. A reactive 
intervention could be fed also by indicators. These 
indicators are calculated using the language 
DCL4UTL (Pham Thi Ngoc et al., 2009). The 
dimensions of tutoring interventions are classified 
into four categories (Després, 2001): didactical 
support about the taught content; methodological 
support about learning organization; technical 
support about resources provided to perform 
activities; and motivation about the psychological 
and emotional state. Thus, the intervention strategy 

CSEDU 2011 - 3rd International Conference on Computer Supported Education

314



 

corresponds to the action that can be performed by 
tutor such as: making a course reminding, modifying 
a question, recommending the consultation of an 
additional (external) resource, encouraging learner 
to document his/her Java-code, explaining in order 
to help learner to have some reflection, etc. 

3.2 Hop3x Learning Sessions  

The sessions we have chosen to highlight here are 
parts of a course entitled “Object-oriented 
programming and Java”. The learners involved are 
undergraduate learners. These learners are novices in 
Java programming but they had, during the 
preceding term, an introductory course entitled 
“Introduction to Object-oriented Programming”. 
They attended lectures and tutorials about the basics 
notions and concepts of object-oriented 
programming such as class, object, instance, 
message passing, inheritance, encapsulation, 
overriding, overwriting and polymorphism. Then 
they use the Hop3x TEL system in order to 
implement these concepts in situation. 

In the version used here, Hop3x-server can only 
run learning sessions that are provided in the format 
of a XML file. Thus, to design a Hop3x learning 
session, designer (which is a teacher) writes 
manually a XML file in which he/she defines its 
structure (help by a template). He/she identifies 
firstly the basic elements that compose the 
mandatory layer of the session’s structure (section 
4), these elements are: session’s characteristics 
(name, programming language, pedagogical 
objective, time of its start and end), actors who can 
be involved (learners, tutors and groups), the 
instructions to be respected by learners, and some 
elements that can be used such as the necessary 
resources. Secondly, he/she defines different 
learning sequences (scenarios) that he/she can 
anticipate. The set of these sequences defines the 
foreseen contextual layer in the session’s structure. 
A learning scenario is composed of a set of 
questions characterized by an ID, a content, a set of 
indicators and three types of tasks: required (what 
the learner has to do), optional (what the learner has 
of doing to think) and prohibited (what the learner 
cannot do).   

3.3 Development Process of Hop3x 
DSEML and Specific Editor 

The Hop3x system is developed initially for 
executing linearly learning sessions, without 
deviation and dynamic adaptations at runtime of 
predictive learning scenarios. Our ultimate objective 

is to “open” more this TEL system which remains 
rather closed in its current version. We think that the 
opening of a TEL system can be realized by its 
reengineering in order to have a new version which 
can allows its users (especially teachers) to design 
and adapt dynamically learning sessions according 
to the current context. We want indeed to enable 
teachers to participate actively in the adaptation and 
reengineering activities.  

We aim by our work to provide the necessary 
tools and conceptual means to teachers who use 
Hop3x to enable them to design and adapt learning 
sessions at a high-level of abstraction without 
needing to create XML files by hand or with the 
help of a generic tool (such as Reload Editor 
(Reload, 2004)), we adopt the DSM/MDE approach 
to help teachers to define their business language 
(DSL) for developing accordingly a specific editor 
more user-friendly. For this, we followed a 
pragmatic methodology that starts from an existing 
situation that is of legacy Hop3x TEL system, and 
then try to propose improvement solutions to make it 
more open for users who haven’t much technical 
knowledge. First of all, through a first process that is 
presented in the rest of this article we want to 
develop knowledge about the relevance of the 
implementation of specific tools, which are based on 
the users business, without taking into account the 
dynamic adaptation aspects.   

This first process of our methodology lasts 4 
steps (see Figure 2). In the first step, we investigated 
the semantic of Hop3x: we collected and analyzed 
the use cases of the actual version of Hop3x for 
extracting domain specific concepts and rules 
(Sections 3.1 and 3.2). Then based on this, we 
specified the metamodel that describes the Hop3x’s 
domain specific language. This metamodel 
formalizes the semantic of Hop3x field by 
specifying the meaning of each concept and how it 
can be used according to domain‘s rules and 
respecting constraints. In the third step, a Hop3x-
specific editor was generated from the DSL 
metamodel. This editor makes available as 
specification tools the concepts and rules that are 
handled usually in the Hop3x practices. Finally, a 
teacher could use this editor for designing the 
practical works sessions at an abstract level. 

 
Figure 2: Development process of Hop3x DSL and 
specific editor. 

OPENING TEL SYSTEMS FOR TEACHERS - A Domain-specific Modeling & Model-driven Engineering Approach

315



 

3.4 Use of the EMF Tooling  

The Eclipse Modeling Projects (EMP, 2008) 
provides a unified set of modelling frameworks, 
tooling, and standard implementations, such as EMF 
(Eclipse Modeling Framework), GMF (Graphical 
Modeling Framework) and ATL (ATLAS 
Transformation Language). In the following, we use 
the EMF because it facilitates code generation for 
building tools and other applications based on a 
structured metamodel (Steinberg et al., 2008). Our 
objective was to specify a metamodel which 
describes the Hop3x’s DSL, and then generating 
from this metamodel the code of the editor thanks to 
tools provided in EMF. Indeed, this metamodel is an 
ECORE model where ECORE is the MOF-like 
meta-meta-model in EMF. Figure 3 illustrates this 
metamodel in the class-diagram-oriented view 
proposed by the ECORE graphical internal editor of 
EMF.  

 
Figure 3: Hop3x’s DSL metamodel. 

A first version of the editor has been generated 
automatically from Hop3x’s DSL metamodel thanks 
to the EMF tooling. This editor provides a tree-view 
of the models which are namely the Hop3x learning 
sessions (see Figure 4). By using this editor the 
teachers who want to use Hop3x can design the 
practical works sessions at an abstract level 
compared to the manual creation of XML files as it 
is the case currently.   

 
Figure 4: Example of a Hop3x learning session designed 
by the specific editor.  

Finally, thanks to this editor, designer can 
generate learning sessions in the XML format 
required by Hop3x system. The following figure 5 
shows an example of a Hop3x learning session 
generated as an XML file after its design by the 
specific editor. 

 
Figure 5: XML file of a Hop3x learning session designed 
by the specific editor. 

Recently, we have conducted a testing 
experimentation of the specific editor with the 
students who preparing the “Professional License in 
the Design and Realization of Multimedia Services 
and Products”. These 22 students had particularly 
lessons related to learning design. As work they had 
to describe a practical learning session of Hop3x 
using two editors separately, the first one is generic 
(Reload Editor (Reload, 2004) which implements 
IMS LD (IMS LD, 2003)) and the second one is the 
specific editor which we have developed based on 
Hop3x’s DSEML (see Figure 4). Our goal was 
simply to verify which editor was intuitive enough 
to enable the autonomy of its user. Beyond this 
testing, we have noted the interests of "putting in the 
hands of users" a specific editor, freed from the 
conceptual and technical barriers of learning 
session’s representation.   

CSEDU 2011 - 3rd International Conference on Computer Supported Education

316



 

4 CONCLUSIONS 

The pedagogical scenario can be considered among 
the strong models for investigating the engineering 
of open TEL systems. It is relevant to open TEL 
system through the opening of scenario. Our work 
falls under the constructive approch of instructional 
design of open scenarios where we have adopted the 
DSM/MDE paradigm. To verify our proposal we 
took Hop3x as experimentation field. The ultimate 
objective is to further open this TEL system for its 
users. For this, we follow a pragmatic methodology 
that spans on two processes. In the first one, 
presented in this article, we deal with the potential of 
specific tools of instructional design. While in the 
second one, we plan to investigate the adaptation 
possibilities by specific tools. Indeed, although our 
methodology spends more time and effort, a first 
benefit is that teachers have to develop a reflexive 
analysis on their practices and what they could do 
with the TEL system.  

Using the developed Hop3x-specific editor we 
are currently conducting interviews with Hop3x’s 
users in order to promote the expression of the 
adaptation requirements of learning sessions and the 
openness needs of TEL system. The information 
gathered from these interviews will help us to define 
another version of metamodel which will be more 
optimized in order to: (1) guide us in the perfection 
of Hop3x’s functionalities for transforming it into a 
TEL system more open, and (2) to develop a 
graphical editor dedicated to the design and 
adaptation of learning sessions at a high-level of 
abstraction. We have planned to use the GMF in a 
second time to add a graphical layer on top of EMF.  

ACKNOWLEDGEMENTS 

Authors acknowledge the designers and users of 
Hop3x TEL Environment for their help and 
information about their habitual practices.   

REFERENCES 

Bourguin, G., Derycke, A., 2005. Systèmes Interactifs en 
Co-évolution Réflexions sur les apports de la Théorie 
de l’Activité  au support des Pratiques Collectives 
Distribuées. Revue d’Interaction Homme-Machine 
Vol 6 N°1. 

Bowkers, G., Leigh Star, S., Turner, W., Gasser, L., 1997. 
Social science, technical systems and cooperative 
work: beyond the great divide. Lawrence Erlbaum 
Associates, “Computer, cognition and work” series, 
470 p. 

Choquet, C., 2007. Ingénierie et réingénierie des EIAH-
L’approche REDiM. Habilitation à diriger les 
recherches en informatique, Université du Maine. 

Cottier, P., Choquet, C., Tchounikine, P. 2008. Repenser 
l’ingénierie des EIAH pour des enseignants 
concepteurs. In: Usages, usagers et compétences 
informationnelles au XXIème siècle, Jérôme Dinet 
(ed.), p.159-193. Édité par Hermes Lavoisier, ISBN 
978-2-7462-2193-2.  

Cottier, P., EL-Kechaï, H., 2009. L'usager concepteur en 
situation: Conception collective d'un livret 
électronique d'apprentissage (LÉA).In: Ingénierie des 
systèmes d'information, ISSN1633-1311. vol.14, no3. 
p162 

Després, C., 2001. Modélisation et conception d'un 
environnement de suivi pédagogique synchrone 
d'activités d'apprentissage à distance, Phd Thesis, 
Université du Maine, 286p 

Eclipse EMP, 2008. Eclipse Modeling Projects. 
http://www.eclipse.org/modeling/. Retrieved from 
Octobre 2008. 

Henri, F., Compte, C., Charlier, B., 2007. La scénarisation 
pédagogique dans tous ses débats. Revue 
internationale des technologies en pédagogie 
universitaire, 4(2). 

IMS Global Learning Consortium, “IMS Learning Design 
Specification, Version 1 - Final Specification”, 2003, 
available at: http://www.imsglobal.org/learningdesign/  

Kelly, S., Tolvanen, J., 2008. Domain-specific modeling: 
enabling full code generation. 448 pages. Wiley-IEEE 
Computer Society Press. ISBN: 978-0-470-03666-2. 

Koper, R., 2001. Modeling units of study from a 
pedagogical perspective: the pedagogical meta-model 
behind EML, Open University of the Netherlands. 

OMG, 2006. MDA specification guide. Version 1.0.1. 
Report—omg/03-06-01. 

Ouraiba, E. A., Choquet, C., Cottier, P., Després, C., 
Jacoboni, P., 2010. Engineering of open learning 
scenarios: the case of Hop3x learning scenarios. 
Proceedings of IEEE ICALT’10, Tunisia, pp. 264-268.  

Pham Thi Ngoc, D., Iksal, S., Choquet, C., Klinger, E., 
2009. UTL-CL:A Declarative Calculation Language 
Proposal for a Learning Tracks Analysis Process. 
Proceeding of the 9th IEEE International Conference 
on Advanced Learning Technologies (ICALT'09), 
Riga, Latvia, July, pp.681-685.   

Roditi, É., 2003. Régularité et variabilité des pratiques 
ordinaires d’enseignement. Le cas de la multiplication 
des nombres décimaux en sixième, Recherches en 
Didactique des Mathématique. 23 (2). 

Rogalski, J., 2003.Y a-t-il un pilote dans la classe ? Une 
analyse de l’activité de l’enseignant comme gestion 
d’un environnement dynamique ouvert. Recherches en 
Didactique des Mathématiques. 23(3)342-348.  

Steinberg, D., Budinsky, F., Paternostro, M., 2008. EMF: 
Eclipse Modeling Framework, Second Edition. 
Publisher: Addison Wesley Professional. 

The Reload Project, The University of Bolton, The 
University of Strathclyde and JISC, 2004. Available 
at: http://www.reload.ac.uk/editor.html 

OPENING TEL SYSTEMS FOR TEACHERS - A Domain-specific Modeling & Model-driven Engineering Approach

317


