
DETERMINISTIC RUNTIME ADAPTATION FOR HARD
REAL-TIME EMBEDDED SYSTEMS WITH PROCESSING

CONSTRAINTS

Fahad Bin Tariq
Design of Distributed Embedded Systems, University of Paderborn, Fuerstenallee 11, Paderborn, Germany

Keywords: Runtime Adaptation, Determinism, Hard Real-time, Processing Constraints, Middleware, Embedded Systems.

Abstract: Increasing the connectivity of systems at various levels gives rise to potential benefits that is addressed by
trends such as the Internet of Things, Cyber-Physical Systems and Cyber-Biosphere. It is inevitable that the
vast global network will consist of computationally constrained units. The ability of such systems to adapt
while being connected to a global network presents new opportunities. Qualities such as fault tolerance and
load sharing may be extended to nodes in the network that initially were devoid of them. On the other hand,
an open adaptable system that does not limit its adaptation to pre-defined and pre-containing states needs to be
connected to one or more sources that may provide the necessary behavioral units to switch to the new state.
Extending computationally constrained nodes with the ability to adapt is in itself challenging, which increases
when timely behavior is required due to real-time requirements. The system must then guarantee all deadlines
implying the need for deterministic adaptation. The question of when to adapt becomes an important one with
real-time deadlines involved. We present our work on a framework that aims to achieve deterministic runtime
adaptation on single processor systems thereby enabling such computationally constrained systems to extend
their functionality and non-functional qualities.

1 INTRODUCTION

Embedded systems are typically designed to have
long life cycles. Consider the systems found in
modern vehicles such as airplanes and cars, or
those running industrial systems. Unmanned de-
vices such as autonomous submarines or mobile
robots(Herbrechtsmeier et al., 2009) fully rely on the
embedded systems within them to achieve their tasks.
Once deployed, the system will be expected to run for
periods ranging from months to decades (Koopman,
1996). It is inevitable that such systems come across
changes in their context. This may include changes
to other components working with the embedded sys-
tem such as hardware replacement due to a failure.
System objectives and requirements may evolve over
time with changes in the environment. QoS require-
ments may vary over time as well as resource con-
sumption. To cater to these changes, the system needs
to adapt while maintaining a safe level of operation.

The idea of runtime adaptation in general is not
new as can be seen by work done in (Fabry, 1976) as
early as 1976. Its application to embedded real-time
systems was only a matter of time and recent years

have shown an increased interest by the embedded
systems community in harnessing the benefits asso-
ciated with it. Runtime adaptation is the ability of a
system to change its behavior and/or structure while
remaining in a desirable state of operation. A desir-
able state of operation implies the system remains on
course to meet certain functional and/or QoS objec-
tives.

There exist various reasons for having runtime
adaptation as a characteristic property of the sys-
tem. As the complexity of systems and their devel-
opment process has increased over time, so have the
costs and efforts to maintain them. An architecture
enabling adaptation inherently supports change dur-
ing the runtime phase of the system lifecycle making
maintenance less costly. Resource requirements may
change overtime depending on various factors such as
computational load and communication requirements.
The occurrence of failure on one node in a distributed
environment may force topological restructuring such
as the sharing of processing load or the creation of
new connections. Hence the ability to adapt enables
systems to acquire other properties, for example, fault
tolerance.

469
Bin Tariq F. (2012).
DETERMINISTIC RUNTIME ADAPTATION FOR HARD REAL-TIME EMBEDDED SYSTEMS WITH PROCESSING CONSTRAINTS.
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems, pages 469-477
DOI: 10.5220/0003943504690477
Copyright c
 SciTePress



The increasing complexity of embedded systems
is due, but not limited, to the increasing quality and
quantity of the resources involved (e.g. Multi-core
processing units). It is interesting to note that such
resources are there in the first place to tackle the in-
creasing complexity brought onto the system by ever-
increasing requirements and functionality (realized by
software). Another approach to handle such complex-
ity and, as a result give rise to different complexity, is
to distribute the system or to increase its connectivity.
Increasing the connectivity of systems at various lev-
els gives rise to potential benefits that is addressed by
trends such as the Internet of Things, Cyber-Physical
System (Lee, 2008) and Cyber Biosphere (Rammig,
2008). Hence, simple computational and communi-
cation units connected with similar units give rise to
complex behavior which is also the basic concept of
swarms (Dorigo and Birattari, 2007). An example
where units (or nodes) that are relatively simple at
the individual level but combine to create more com-
plex behavior, is a group of communicating mobile
robots called bebots (Herbrechtsmeier et al., 2009).
The Bebots consist of a relatively simple architecture
and communicate via an ad-hoc network. Another
more common example is a sensor network, which
relies on very simple but large number of stationary
sensing nodes, possibly distributed over a vast area to
gather information. Thus it is inevitable that the vast
global network mentioned above will consist of com-
putationally constrained units.

The ability of systems to adapt while being con-
nected to a global network presents new opportuni-
ties. Qualities such as fault tolerance and load sharing
may be extended to nodes in the network that initially
were devoid of them. Conversely, an open adaptable
system that does not limit its adaptation to pre-defined
and pre-containing states needs to be connected to
one or more sources that may provide the necessary
components to switch to the new state. Extending
computationally constrained nodes with the ability to
adapt is in itself challenging, which increases when
timely behavior is required due to real-time require-
ments. The system must then guarantee all dead-
lines implying the need for deterministic adaptation.
The question when to adapt becomes an important
one with real-time deadlines involved. In literature
we find two common techniques namely (a) adapt at
once and (b) adapt on demand. In the former, all
the required adaptation steps are scheduled in a sin-
gle block. The duration of this block is not fixed and
depends on the amount of adaptation. In the latter,
adaptation takes place only when the functionality, to
be directly effected by the adaptation, is accessed. In
the first case, the duration of the adaptation is unpre-

dictable, whereas in the second case, access times be-
come unpredictable since an access may trigger adap-
tation.

In this paper we present an approach to tackle the
issue of runtime adaptation on computationally con-
strained systems with real-time constraints. Our focus
is on systems with only a single general purpose pro-
cessor, with the responsibility to run the system and
application software. In section 2, we introduce our
Framework followed by the architecture and evalua-
tion in sections 3 and 4 respectively. Related work is
then found in section 5 followed by the conclusion in
section 6.

2 FRAMEWORK

The inevitable presence of computationally con-
strained systems in emerging paradigms such as the
Internet of Things, has already been emphasized
above. This section introduces a framework that en-
ables such systems to adapt during runtime and par-
take in the dynamics of the global network thus cre-
ated. To achieve this the framework, viewed from the
bottom up, provides a supporting mechanism to (a)
enable the behavior to execute and (b) enable the sys-
tem to deterministically adapt. Adaptation may in-
clude changes to the current behavior of the system,
as well as addition of new behavior. These tasks are
the responsibility of the Middleware. To facilitate the
work of the Middleware and pave way for efficient
behavioral reconfiguration, a behavioral model is pro-
vided. The model lays forth the anatomy of the appli-
cation designed for the embedded system enabling the
behavior to be captured in a desired structure. Further,
the model lays down rules of communication that al-
low for efficient connection reconfiguration between
the behavioral units. The idea is to support the adapta-
tion process with applications having features making
them inherently adaptive. Hence in order to under-
stand the tasks of the Middleware, a brief description
of the behavioral model is first provided.

2.1 Behavioral Model

Embedded systems tend to be application specific, the
question how an application should be implemented,
instead of what it implements, is addressed by the be-
havioral model. The result is an application behaving
desirably from a structural point of view, and commu-
nicating between its constituent components without
any explicit connections. This is achieved without the
need to dictate or even know its functional behavior.
In our model, the behavior is seen as a composition of

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

470



Figure 1: Behavioral unit with entry points and exit indices.

behavioral units, as is done in programming-in-the-
large. This is in contrast to programming-in-the-small
where granularity of models is at the level of classes,
objects and methods. The behavioral units are de-
veloped independently and appear to each other and
the underlying system as black boxes. If the behavior
consists of k behavioral units, then the composition
of behavioral units Ci;8i : 1 � i � k making up the
behavior is denoted by Ĉ.

Typically, a behavioral unit has a required and pro-
vided interface, where the former specifies the pre-
requisites of the behavioral unit before it can fulfill
its functionality. The provided interface then, mani-
fests the different results the behavioral unit produces
on completing its function. In this model, the required
interface consists of many entry points, as can be seen
in Fig. 1. Each entry point s j can be seen as provid-
ing an access point to the functionality a behavioral
unit has to offer. Hence, different entry points allow
for access to different functionality of the behavioral
unit. The set of entry points of a behavioral unit C is
denoted by EPC.

A behavioral unit may, for example, offer two
compression techniques. A client wishing to access
one of these must then provide the data to be com-
pressed along with the associated entry state. Fur-
ther, a behavioral unit may combine two or more in-
ternal functionalities to fulfill a composite function.
For example, a third compression technique may be
provided by combining the first two. This compos-
ite function will again have only one associated en-
try point instead of requiring the client to provide an
entry point for every function involved. Thus from
the client perspective, access to a simple or composite
functionality of the behavioral unit is transparent. An
entry point triggers an atomic run that, upon comple-
tion, releases an exit index. An exit index xi denotes
the state that the behavioral unit is in, from a set of
possible and predefined states. Further, an exit index
may be accompanied by data generated by the behav-
ioral unit during execution. The underlying system
(section 2.2) notifies other behavioral units about the

received exit index based on behavioral unit connec-
tions registered in the connection list.

A connection is simply the association of an exit
index of a behavioral unit to an entry point of another
behavioral unit. In other words, the generation of an
exit index by a behavioral unit may trigger the entry
point of another behavioral unit. One exit index may
be associated with one or more entry points and vice
versa. Thus the connection list is a mathematical re-
lation between all the exit indices and their triggered
entry points, as given below:

CL = f(xi;s j;o)jxi 2 XICl ;(s j 2 EPCk _ s j 2 EPC /0);

8Ck;Cl 2 Ĉ;8o 2 Ng

Ĉ is the set of behavioral units in the system, and
Ck and Cl are two such behavioral units. XICl are the
exit indices belonging to behavioral unit Cl , whereas
EPCk are the entry points of behavioral unit Ck. EPC /0

specifies the possibility of an exit index not being as-
sociated with the entry point of any behavioral unit.
An exit index may be associated with more than one
entry point of the same behavioral unit, hence a turn
based approach is used to disambiguate between the
entry points. The ordering o specifies which entry
point to choose at a given instance.

A behavioral unit has certain platform indepen-
dent and platform specific properties associated with
it. These properties are packaged along with the be-
havioral unit and called the meta-data. The meta-
data consists of, for every behavioral unit, the plat-
form independent relative deadline, the platform spe-
cific worst case execution time and worst case mem-
ory usage. Besides these, pointers to the starting point
of behavioral unit code execution and communication
interface are also provided. These are used by the
underlying system to transfer execution control and
send/receieve data to/from the behavioral unit via the
Middleware-Application Interface.

2.2 Middleware

The mechanism to enable the behavior to execute
and the system to adapt, is provided by the middle-
ware. From the application behavioral units perspec-
tive(section 2.1), the middleware acts as a execution
engine on top of which the behavioral units execute
and communicate. From a node perspective, in a
networked environment with different nodes running
their own instances of the execution engine, the en-
gine is the middleware through which nodes commu-
nicate. Even on a single node, the execution engine is
the middleware that separates the application behav-

DETERMINISTIC RUNTIME ADAPTATION FOR HARD REAL-TIME EMBEDDED SYSTEMS WITH
PROCESSING CONSTRAINTS

471



Figure 2: Timed phases.

ioral units from the underlying operating system and
other behavioral units.

The middleware consists of two modes namely,
the initialization mode and the running mode. In the
initialization mode, all the behavioral units that cur-
rently makeup the application are plugged in. Plug-
ging in the behavioral units consists of allocating re-
sources such as memory space, registering the meta-
data and linking the execution and communication in-
terface pointers with the middleware. The initial con-
nection list is then used to register the connections
between the behavioral units.

The drawbacks of two approaches to adaptation
namely adapt at once and adapt on demand were
mentioned in section 1. The middleware employs a
highly deterministic approach called timed phases to
achieve the intended objectives of behavioral execu-
tion and runtime adaptation. As already mentioned,
the target embedded systems have processing con-
straints with only one processing unit, therefore the
timed phases approach divides the processing time-
line of the single processor into phases for compu-
tation, communication and adaptation, as shown in
Fig. 2. Effectively, processing time is allocated for
the three separate concerns. Adaptation is not treated
by the system as a low priority, optional activity but
as a main concern. The approach not only aims to
guarantee deterministic behavior from the functional-
ity perspective but also guarantees processing time for
adaptation activities.

After the behavioral units have been plugged in
and connections registered, the middleware initializes
the timed phases with the help of services offered by
the underlying real-time operating system (section 3),
such as the timer and interrupt services. The lengths
of the computation, communication and adaptation
phases, denoted by Ta, Tb and Tg respectively, may
differ from one another and are predetermined based
on the current application. Once set, the three phase
lengths remain constant throughout the system life-
time.

The commencement of the timed phases signals
the switch of the middleware to the running mode.
In the running mode, the three phases are executed
one after the other. The end of the adaptation phase

triggers the start of another computation phase and the
phases are repeated in cyclic manner, as is shown in
Fig. 2.

2.2.1 Computation Phase

The behavioral units are scheduled for execution dur-
ing the computation phase. Every behavioral unit
flagged for release is given the processor based on the
scheduling policy being used. The scheduling pol-
icy, for instance the Earliest Deadline First (EDF) or
Fixed Priority (FP), is chosen at design time and re-
mains constant throughout the system lifetime. Upon
release, a behavioral unit receives an entry point and
a block of data (mail) registered under it in the mid-
dleware. This mail contains the data required by the
behavioral unit to proceed with the functionality. As
mentioned earlier in section 2.1, upon completion the
behavioral unit releases an exit index and data. Fur-
ther, a behavioral unit may have data that it uses over
a period of time, for example the average tempera-
ture of a device over a given duration. Such data is
classified as the state of the behavioral unit and is
recorded by the middleware at the end of the com-
putation phase.

2.2.2 Communication Phase

In the communication phase the middleware executes
the communication protocol. The connection list is
used to map the exit indices to entry points. This pro-
cess employs the publish-subscribe pattern by mak-
ing a behavioral unit have the task of only publishing
an exit index without having any knowledge of sub-
scriptions to the exit index. The subscribing behav-
ioral unit(s) receive an entry point from the middle-
ware based on the connection list. Data is transferred
by providing a buffer to the publisher where standard
size packets are created. This buffer along with the
packets, is then routed to the subscribing behavioral
units. The data is consumed during the computation
phase. All inter-behavioral unit communication in-
cluding data transfer is done indirectly via the middle-
ware. Due to this, communication between geograph-
ically distant nodes connected via a network appears
transparent to all behavioral units on these nodes.

2.2.3 Adaptation Phase

The adaptation phase runs in two modes namely the
normal mode and the adapt mode. The middleware
checks at the beginning of the phase for an adaptation
request. If none is found, the normal mode is executed
where soft real-time messages are exchanged for sys-
tem diagnostics and the system is monitored to check

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

472



Figure 3: Hierarchial adaptation.

if adaptation is required. An adaptation request may
be triggered locally or remotely. A local request is
sent from a reflection monitor responsible to reflect
upon the system and ensure certain constraints are
met. These constraints vary depending on the adapta-
tion policy. For example, the system may have a pol-
icy of executing a certain load during the computation
phase, which may decrease depending on the energy
utilization of the system. It is possible that at a certain
energy level, the monitor decides to decrease the load
and hence send an adaptation request. Terminology
introduced by (Ibm, 2006) and commonly used for
adaptive systems namely the Monitor, Analyze, Plan
and Execute cycle (MAPE) may be applied to the ac-
tivities of the reflection monitor. The MAPE activi-
ties of the reflection monitor are limited to the ones
present within the monitor resulting in a restricted-
MAPE. Since the monitor itself is a behavioral unit, it
may be replaced during runtime in effect making the
local adaptation policy replaceable, as can be seen
in Figure 3. A separate system (e.g. a server), au-
tomated or human controlled, and connected via net-
work, monitors the adaptable node (current system)
as well as for the presence of new adaptation poli-
cies and node objectives. New node objectives and/or
adaptation policies may require new reflection mon-
itors not present with the server. These reflection
monitors are then acquired from third-parties via the
global network. Since there is no restriction to the
change of objectives or adaptation policies that can
be created locally or acquired by the server, the activ-
ities can be termed as unrestricted-MAPE. A request
to replace the reflection monitor can be sent to the

adaptive node.
Having dealt with local adaption requests trig-

gered by the reflection monitor, remote requests may
also be received from an external source, such as a hu-
man controller or a monitor in another node, in a net-
worked system. If an adaptation request is found, the
middleware enters the adapt mode and executes the
adaptation protocol. A Standard Adaptation Request
(SAR) specifies the type of adaptation required which
can either be the addition/removal of behavioral units
and/or a reconfiguration of behavioral unit connec-
tions. Reconfiguring connections during adaptation
is the simple task of changing the connection list, in-
stead of needing to go through every behavioral unit
and changing the connections, since no direct con-
nections exist and all inter-behavioral unit communi-
cation is handled by the middleware. The new con-
nection configuration is read from the SAR. In case
where whole behavioral units need to be added, the
SAR contains the quantity of the behavioral units and
their meta-data, mentioned in section 2.1. This meta-
data is used for admission control where, based on
the scheduling strategy used, the middleware checks
the processor utilization to conclude whether the tim-
ing and memory requirements of existing and new be-
havioral units can be met. In case they are met, an
approval is sent to the source of the request to start
transfer of the behavioral unit binaries.

The length of the adaptation phase Tg is not fixed
since no optimal value, applicable to all scenarios,
exists. This follows from the work done by Gupta
which proves that ”determining appropriate con-
straints for the timing of an update is undecidable in
general”(Gupta, 1994). An appropriate value for Tg

can be determined case by case, considering certain
parameters such as the expected adaptation frequency
and application performance requirements.

2.3 Performance in Highly Adaptive
Environment

The presence of multiple processing units gives rise to
the possibility of delegating adaptation to a dedicated
processor or one with less computation load. When
only a single processing unit is available, computation
time must be allocated to adaptation while guarantee-
ing deadlines of existing hard real-time computation
load. Any guarantee depends on the system remain-
ing deterministic while accommodating adaptation.

Having already outlined the benefits of adapta-
tion made possible in an open and networked envi-
ronment, the assumption that systems will be working
in highly adaptive environments is realistic. Efforts in
areas such as Cloud Computing outline a path towards

DETERMINISTIC RUNTIME ADAPTATION FOR HARD REAL-TIME EMBEDDED SYSTEMS WITH
PROCESSING CONSTRAINTS

473



leaner systems that acquire functionality on demand.
This results in many design time decisions to be for-
warded to system runtime enabling an increase in de-
cision accuracy.

We assume an adaptive system deployed in such
a scenario with a high frequency of adaptation. In
resource constrained embedded systems, besides hav-
ing timed phases, other possibilities are to have adapt-
at-once or adapt-on-demand approaches, mentioned
in section 1. We compare the adapt at once approach
with the timed phases one. Without loss of gener-
alization, let cp denote the time allotted for compu-
tation, cm for communication, ac the time needed to
only check if an adaptation request has arrived and ap
the time allotted for adaptation in a single phase. Let
Ta denote the cycle of a system Sysa using the timed
phases approach and Tb the cycle of a system Sysb us-
ing the adapt-at-once approach. We assume a cycle to
have finished in in Sysb once cp,cm and ac have been
allotted once. Hence:

Ta = cp+ cm+ac+ap
Tb = cp+ cm+ac

To get a comparable term, we acquire a common
multiple (c.m.) of Ta and Tb.eT = Tb�TaeT implies that in Sysa, there are Tb cycles of Ta
and similarly in Sysb there are Ta cycles of Tb. Let
cp+ cm+ ac be denoted by tcca, which is also equal
to Tb. So,

Ta = tcca +ap

In eT there are Tb cycles of tcca:eT = Tb(tcca)+Tb(ap) (1)

From Sysa perspective in eT , Tb(ap) time was
given for adaptation. We assume an adaptation re-
quest took that much time to successfully complete
up till time eT . From Sysb perspective there exist Ta
cycles of computation and communication up till timeeT : eT = Ta(tcca)

As already mentioned, we need Tb(ap) amount of
time to adapt, hence in Sysb adaptation needs to start
at Tstart :

Tstart = eT �Tb(ap)
Tstart = Tb(tcca +ap)�Tb(ap) (from (1))
Tstart = Tb(tcca)

Thus Sysb also provides Tb computation and com-
munication cycles as Sysa, after which adaptation will
need to start to be successfully completed. Hence

having an adaptation phase in every cycle will not de-
crease system performance in a highly adaptive envi-
ronment. On the contrary, Sysa performs better when
it comes to managing adaptation with hard real-time
tasks already scheduled. Assume there is a high pri-
ority periodic task with a period Ptask, with Ptask � Ta.
In Sysb, a stretch of Tb(ap) after Tstart for adaptation
will either not start an instance of the periodic task or
not complete adaptation till eT . Hence another feature
of the approach employed by the middleware, is be-
sides guaranteeing determinism for the hard real-time
behavior, a guarantee that adaptation will take place
and not denied processing time by a high priority ac-
tivity, is also provided.

3 ARCHITECTURE

The behavioral model and middleware described in
section 2 gave an idea of the architecture of a sys-
tem following the frameowork. The application be-
havior is vertically partitioned into a set of loosely
coupled behavioral units that interact indirectly via
the middleware below. Hence taking a horizontally
partitioned view, the top layer consists of the appli-
cation layer followed by the middleware layer, as can
be seen in Fig. 4. To achieve low level functional-
ity such as allocating storage space to incoming be-
havioral units, garbage collection after behavioral unit
removal, scheduling behavioral units for execution on
the single processor, timer interrupt handling etc., the
middleware uses the services of a Real-Time Oper-
ating System (RTOS). The RTOS is also responsible
to act as an interface between the processing unit and
software layers running above. To make the middle-
ware independent of any specific RTOS, an Operating
System Adaptor Layer (OSAL) is present between the
middleware and the RTOS. The middleware does not
make any direct calls to any specific RTOS services
but to generic services provided by the OSAL. The
middleware can be ported to any RTOS by porting the
OSAL to the desired RTOS. The scope of the frame-
work concepts encapsulates the top three layers and is
called Framework for Deterministic Runtime Adapta-
tion of Real-time Embedded systems (F-DRARE).

The system is a node in a network with each node
having the same software architecture with the pos-
sibility of heterogeneous hardware platforms, or may
even be a standalone system such as a single robot. A
node may even have many application specific pro-
cessing units (e.g. DSP) with the assumption that
only a single processing unit is provided for the sys-
tem software. In the networked case (Fig.4), each
node runs its own independent copy of the middle-

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

474



Figure 4: Architecture of system on a node in a network.

ware. The application running at the top layer may
be distributed into many behavioral units running on
different nodes. Keeping with the idea of Cyber Phys-
ical Systems, these nodes may be connected to exter-
nal networks with or without the same architecture.
A server used for external monitoring, as mentioned
in section 2.2, is connected and also acts a behavioral
unit repository.

A node may send/receive an SAR and behavioral
units to/from either the repository, other nodes in the
local network or an external network. The nodes in
the local network synchronize by using any bounded
delay network protocol. This enables behavioral units
of a distributed application present on different nodes
to synchronize via the middleware and also fulfill
adaptation timing requirements.

4 EVALUATION

The concepts presented earlier have been imple-
mented and an evaluation is shown in this section.
The middleware or execution/adaptation engine of F-
DRARE has been implemented in C++, as well as the
OSAL. Following the behavioral model enabled the
creation of different behavioral units loosely coupled
by mapping exit indices to entry points in the connec-
tion list. The resulting composition became the ap-
plication. Similar to the middleware, the behavioral
units were also implemented in C++. The TrueTime
Kernel(Cervin et al., 2003) has been used as the un-
derlying RTOS, which runs on Matlab/Simulink.

The example used consists of two categories of
uni-processor Bebots. The first category consists of
lighter and cheaper worker-bots with a small camera,

Figure 5: Normal mode execution.

a general purpose processor, wireless communication
device, a motor for movement and a limited power
supply. The second category consists of server-bots
equipped with an additional dedicated visual process-
ing unit (Digital Signal Processor). All the worker-
bots have a server-bot within communication range at
all times. The Bebots move around an area in search
of a chemical found in plants growing in the desig-
nated area. The presence of the chemical is identified
by analyzing the shade of the leaves of the plant in
question. The application on a worker-bot consists of
behavioral units B1, the main controller also responsi-
ble for the direction of movement; B2, responsible to
acquire the image using the on-board camera; and B3,
responsible to compress the image and send it to the
server-bot which in-turn analyzes it and returns the
boolean result (chemical present or not). B2 and B3
are registered to listen to the exit index of B1 result-
ing in respective entry points. The entry point for B2
instructs it acquire an image whereas the entry point
for B3 instructs it to compress and send the last image
to the server-bot. In turn, B1 is registered to listen for
the exit indices of both B2 and B3, which effectively
delivers the results to B1.

A normal mode simulation with the granularity of
time in milliseconds, is shown in Fig 5. The end of
the computation phase is triggered by the start of the
communication phase. Similarly the end of the com-
munication phase is triggered by the start of the adap-
tation phase. The phase durations Ta, Tb and Tg, cor-
respond to current simulation values of 0.6 ms, 0.4
ms and 0.4 ms respectively . The small duration of
the phase switch triggering the start of a phase spec-
ifies the handover activity carried out by the middle-
ware when switching from one phase to the next. The
behavioral units are released for execution during the
computation phase. The communication and adapta-
tion protocols described in section 2.2, and denoted
here by Comm protocol and Adpt protocol are exe-
cuted in their respective phases. A reflection monitor
reflects upon the system during the adaptation phase.
In this example, the reflection monitor tracks the en-

DETERMINISTIC RUNTIME ADAPTATION FOR HARD REAL-TIME EMBEDDED SYSTEMS WITH
PROCESSING CONSTRAINTS

475



Figure 6: Reconfiguration of behavioral units and connec-
tions.

ergy consumption of the robot to check that enough
samples are analyzed before the battery runs out. Dur-
ing the course of the search it is realized that enough
samples will not be analyzed with the current energy
consumption. A local adaptation request is triggered
and according to the current adaptation policy, the be-
havioral unit B3, responsible to compress and com-
municate with the server-bot, is replaced with a new
behavioral unit B4, with a software image processing
algorithm. This results in the worker-bot saving en-
ergy by not communicating with the server-bot and
instead relying on a less accurate software analysis.

Simulation results in Fig. 6 depict the handling
of the adaptation request. At time 53 ms an SAR is
processed resulting in the replacement of behavioral
unit B3 with the new behavioral unit B4. Connection
reconfiguration also occurs with B4 registering to the
exit index of B2, resulting in the image taken by B2 to
be sent to B4 for analysis. Connection entries related
to B3 are removed. The following computation phase
executes the already scheduled B2 followed by execu-
tion of the new behavioral unit B4 in the computation
phases starting at time 70 ms.

5 RELATED WORK

The introduction of this paper already stated that the
concept of runtime adaptation has been present with
some variation as far back as the pioneering work
done by Fabry in 1976 (Fabry, 1976). A great vari-
ation exists from naming (e.g. online update, run-
time reconfiguration etc.), as well as the target system
characteristics, to approaches for achieving it. For in-
stance, Fabry in his work strives to change Abstract
Data Types with the scope of the change already pro-
vided by the programmer and realized by using priv-
ileged instructions. A good survey on these varia-
tions can be found by Vandewoude et. al. in (Vande-
woude, 2002). The same authors present their work

on a Java-based component system SEESCOA (Van-
dewoude and Berbers, 2004) that employs the adapt
at once technique, mentioned in section 1. Ritzau
et.al. also present a Java based approach where the
Java Virtual machine (JVM) is extended (Ritzau and
Andersson, 2000). This work is notable since it uses
the other approach mentioned in section 1, namely
adapt on demand. We differ from these and similar
approaches with respect to the timing of the adapta-
tion by employing the timed phases to achieve de-
terminism, a top priority in hard real-time systems.
Another difference is the special focus on processing
constrained systems.

The Flexible Resource Manager tries to optimize
system behavior using a heuristic based on latest re-
quirements (Hojenski and Oberthür, 2006). This is
achieved by toggling between a set of pre-defined pro-
files to reach the goal of resource optimization. Be-
sides resource optimization, our work enables the ac-
quisition of new behavior un-defined at system design
time. Heavier adaptive platforms such as the Simplex
Architecture (Sha et al., 1995), besides having other
differences, are not suited to the target embedded sys-
tem in our focus.

In (Andersson et al., 2009), we find a reference
model for adaptive systems which enables a qualita-
tive evaluation of systems with the ability to reflect
upon themselves, a necessary quality for self-adaptive
systems. This is done by analyzing a system via the
given reflection prism.

6 CONCLUSIONS

In this paper we have presented a framework that pro-
vides a behavioral model and an underlying support
mechanism to achieve deterministic runtime adapta-
tion for processing constrained embedded systems.
With the concepts of Cyber Physical Systems and the
Internet of Things changing the stance from closed to
open and connected embedded systems, the potential
to harness new abilities such as the acquisition of sys-
tem qualities as well as functionality not present at
design time, becomes a possibility. To achieve this,
systems must have the ability to adapt while simul-
taneously fulfilling their timing guarantees. It is in-
evitable that the vast global network will consist of
nodes with processing constraints, making adaptation
a problem. The work in this paper moves towards
solving this problem. A realization of the concepts
and evaluation was done by presenting F-DRARE.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

476



REFERENCES

Andersson, J., de Lemos, R., Malek, S., and Weyns, D.
(2009). Reflecting on self-adaptive software systems.
In SEAMS, pages 38–47.

Cervin, A., Henriksson, D., Lincoln, B., Eker, J., and rzn,
K.-E. (2003). How does control timing affect perfor-
mance? analysis and simulation of timing using jitter-
bug and truetime. In IEEE Control Systems Magazine.

Dorigo, M. and Birattari, M. (2007). Swarm intelligence.
Scholarpedia, 2(9):1462.

Fabry, R. S. (1976). How to design systems in which mod-
ules can be changed on the fly. In Intl. Conf. on Soft-
ware Engineering.

Gupta, D. (1994). On-line software version change.
Herbrechtsmeier, S., Witkowski, U., and Rückert, U.

(2009). Bebot: A modular mobile miniature
robot platform supporting hardware reconfiguration
and multi-standard communication. In Progress in
Robotics, Communications in Computer and Infor-
mation Science. Proceedings of the FIRA RoboWorld
Congress 2009, volume 44, pages 346–356, Incheon,
Korea. Springer.

Hojenski, K. and Oberthür, S. (2006). Towards self-
optimizing distributed resource management. In Selb-
storganisierende, Adaptive, Kontextsensitive verteilte
Systeme (SAKS 06), Kassel, Germany.

Ibm (2006). An architectural blueprint for autonomic com-
puting. Quality, 36(June):34.

Koopman, P. (1996). Embedded system design issues (the
rest of the story). In Proceedings of the 1996 Interna-
tional Conference on Computer Design, VLSI in Com-
puters and Processors, ICCD ’96, pages 310–, Wash-
ington, DC, USA. IEEE Computer Society.

Lee, E. A. (2008). Cyber physical systems: De-
sign challenges. In International Symposium on
Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC). Invited Paper.

Rammig, F. J. (2008). Cyber biosphere for future embed-
ded systems. In Proceedings of the 6th IFIP WG 10.2
international workshop on Software Technologies for
Embedded and Ubiquitous Systems, SEUS ’08, pages
245–255, Berlin, Heidelberg. Springer-Verlag.

Ritzau, T. and Andersson, J. (2000). Dynamic deployment
of java applications. In IN JAVA FOR EMBEDDED
SYSTEMS WORKSHOP.

Sha, L., Rajkumar, R., and Gagliardi, M. (1995). Evolv-
ing dependable real-time systems. In IEEE Aerospace
Applications Conference, pages 335–346.

Vandewoude, Y. (2002). Run-time evolution for embed-
ded component-oriented systems. In in Proceedings
of the International Conference on Software Mainte-
nance, pages 242–245. IEEE Computer Society.

Vandewoude, Y. and Berbers, Y. (2004). Supporting run-
time evolution in seescoa. J. Integr. Des. Process Sci.,
8:77–89.

DETERMINISTIC RUNTIME ADAPTATION FOR HARD REAL-TIME EMBEDDED SYSTEMS WITH
PROCESSING CONSTRAINTS

477


