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Abstract: This paper studies the global robust stability of delayed neural networks. A new sufficient condition that
ensures the existence, uniqueness and global robust asymptotic stability of the equilibrium point is presented.
The obtained condition is derived by using the Lyapunov stability and Homomorphic mapping theorems and
by employing the Lipschitz activation functions. The result presented establishes a relationship between the
network parameters of the neural system independently of time delays. We show that our results is new and
improves some of the previous global robust stability results expressed for delayed neural networks.

1 INTRODUCTION

In recent years, neural networks proved to be a use-
ful system which has been successfully applied to
various practical engineering problems such as op-
timization, image and signal processing, and asso-
ciative memory design. In the design of neural net-
works for solving practical problems, the key fac-
tor associated with the dynamical behavior of neu-
ral networks is the characterization of the equilibrium
point in terms of the network parameters and activa-
tion functions. In some special applications of neu-
ral networks such as designing neural networks for
solving optimization problems, the equilibrium point
of the designed neural network must be unique and
globally asymptotically stable. On the other hand,
when an electronically implemented neural network
is used in real time applications, we might get faced
with two undesired physical event that may affect the
dynamics of neural networks. The first event is the
time delays time delays that occur during the signal
transmission between the neurons, the other one is the
deviations due the to the tolerances of the electronic
components used in the implementation of neural net-
works. The readers can find a detailed robust stability
analysis of delayed neural networks under various as-
sumptions on the activation functions and present var-
ious robust stability conditions for different classes of
neural networks in (Arik and Tavsanoglu, 2000); (Cao
and Wang, 2003); (Cao and Wang, 2005); (Ensari and
Arik, 2010); (Forti and Tesi, 1995); (Li et al., 2003);
(Liao and Wang, 2000);(Liao et al., 2002); (Liao and

Yu,1998); (Liao et al., 2001); (Mohamad, 2001); (Oz-
can and Arik, 2006); (Singh, 2007); (Sun and Feng,
2003); (Wang and Michel, 1996); (Yi and Tan, 2002).

The neural network model we consider in this pa-
per is described by the following equations:

dxi(t)
dt

=−cixi(t)+
n

∑
j=1

ai j f j (x j(t)

+
n

∑
j=1

bi j f j (x j(t − τ j))+ui, i = 1,2, ...,n (1)

wheren is the number of the neurons,xi(t) denotes
the state of the neuroni at timet, fi(·) denote activa-
tion functions,ai j andbi j are the weight coefficients,
τ j are the delay parameters,ui is the constant input to
the neuroni, ci is the charging rate for the neuroni.

Neural network model (1) can be written in the
vector-matrix form as follows

ẋ(t) =−Cx(t)+A f(x(t))+B f(x(t− τ))+u (2)

where x(t) = (x1(t),x2(t), ...,xn(t))T ∈ Rn,
C = diag(ci > 0)n×n is a positive diagonal ma-
trix, A = (ai j )n×n, B = (bi j )n×n, u = (u1,u2, ...,un)

T

and f (x(t)) = ( f1(x1(t)), f2(x2(t)), ..., fn(xn(t)))T

and f (x(t − τ)) = ( f1(x1(t − τ1)), f2(x2(t −
τ2)), ..., fn(xn(t − τn)))

T .
It will be assumed that the matricesC, A andB

in (2) are uncertain but their elements have the lower
and upper bounds. That is to say,C, A and B are
assumed to have the parameter ranges defined as

603Ozcan N. and Arik S..
Robust Stability Analysis of a Class of Delayed Neural Networks.
DOI: 10.5220/0004090506030606
In Proceedings of the 4th International Joint Conference on Computational Intelligence (NCTA-2012), pages 603-606
ISBN: 978-989-8565-33-4
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



follows :

CI := {0<C≤C≤C, i.e.,0< ci≤ci≤ci}

AI := {A= (ai j ) : A≤A≤A, i.e.,ai j≤ai j≤ai j } (3)

BI := {B= (bi j ) : B≤B≤B, i.e.,bi j≤bi j≤bi j }

We also assume thatfi(·) are Lipschitz continuous,
i.e., there exist some positive constantsℓi > 0 such
that

| fi(x)− fi(y)|≤ℓi|x− y|, i = 1,2, ...,n, ∀x,y∈ R,x 6=y

The class of Lipschitz activation functions is
denoted byf ∈ L .

The following two lemmas will play an important
role in determining the sufficient conditions for the
global robust exponential stability of the equilibria of
neural networks (1) and (2) :

Lemma 1 (Cao and Wang, 2005). Let the matricesA
andB in (3) be defined in the intervalsA∈ [A,A] and
B∈ [B,B]. Then, the following inequalities hold :

||A||2≤||A∗||2+ ||A∗||2

||B||2≤||B∗||2+ ||B∗||2

whereA∗ = 1
2(A+A), A∗ =

1
2(A−A), B∗ = 1

2(B+B)
andB∗ =

1
2(B−B).

Lemma 2 (Ensari and Arik, 2010). Let the matrices
A andB in (3) be defined in the intervalsA ∈ [A,A]
andB∈ [B,B]. Then, the following inequalities hold :

||A||2≤
√

||A∗||22+ ||A∗||22+2||AT
∗ |A∗|||2

||B||2≤
√

||B∗||22+ ||B∗||22+2||BT
∗ |B∗|||2

whereA∗ = 1
2(A+A), A∗ =

1
2(A−A), B∗ = 1

2(B+B)
andB∗ =

1
2(B−B).

Lemma 3 (Singh, 2007). Let the matricesA andB in
(3) be defined in the intervalsA∈ [A,A] andB∈ [B,B].
Then, the following inequalities hold :

||A||2≤||Â||2
||B||2≤||B̂||2

where Â = (âi j )n×n with âi j = max{|ai j |, |ai j |} and

B̂= (b̂i j )n×n with b̂i j = max{|bi j |, |bi j |}.

Lemma 4 (Forti and Tesi, 1995). If H(x) ∈ C0

satisfies the following conditions

(i) H(x) 6= H(y) for all x 6= y,

(ii) ||H(x)||→∞ as||x||→∞,

then,H(x) is homeomorphism ofRn.

We also make use of the following vector norm
and matrix norm in the proof of our main result. Let
v= (v1,v2, ...,vn)

T ∈ Rn andW = (wi j )n×n. Then, we
have

||v||2 =

{ n

∑
i=1

|vi |
2
}1/2

, ||Q||2 = [λmax(Q
TQ)]1/2

Throughout this paper, forv = (v1,v2, ...,vn)
T ∈ Rn,

|v| will denote|v|= (|v1|, |v2|, ..., |vn|)
T . For any ma-

trix W = (wi j )n×n, |W| = (|wi j |)n×n. If W is positive
definite, then,λm(W) andλM(W) will denote the min-
imum and maximum eigenvalues ofW, respectively.

2 GLOBAL ASYMPTOTIC
ROBUST STABILITY ANALYSIS

In this section, we present new sufficient conditions
for the existence, uniqueness and global robust sta-
bility of the equilibrium point for the neural systems
(1). We proceed with following result:

Theorem 1: Let f ∈ L . Then, the neural network
model (2) is globally asymptotically robust stable, if
the following condition holds

Ω∗ = r −||P||2−||Q||2 > 0

wherer = cm
µM

with cm = min(ci) andµM = max(µi),
and

||P||2 = min{||A∗||2+ ||A∗||2,
√

||A∗||22+ ||A∗||22+2||AT
∗ |A∗|||2, ||Â||2}

||Q||2 = min{||B∗||2+ ||B∗||2,
√

||B∗||22+ ||B∗||22+2||BT
∗ |B∗|||2, ||B̂||2}

Proof: For the map

H(x) =−Cx+A f(x)+B f(x)+u
we have

H(x)−H(y) = −C(x− y)+A( f (x)− f (y))

+B( f (x)− f (y))

If we multiply both sides of (20) by(x−y)T , then we
get :

(x− y)T(H(x)−H(y))

= −(x− y)TC(x− y)

+(x− y)TA( f (x)− f (y))

+(x− y)TB( f (x)− f (y))

≤ −cm||x− y||22
+(||A||2+ ||B||2)||x− y||2|| f (x)− f (y)||2
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The fact that|| f (x)− f (y)||2 ≤ µM||x− y||2 implies

(x− y)T(H(x)−H(y))

≤ −cm||x− y||22+µM(||A||2+ ||B||2)||x− y||22

Since||A||2≤||P||2, ||B||2≤||Q||2, we obtain

(x− y)T(H(x)−H(y))

≤ −cm||x− y||22+µM(||P||2+ ||Q||2)||x− y||22

which is equivalent to

1
µM

(x− y)T(H(x)−H(y))

≤ −(r − (||P||2+ ||Q||2))||x− y||22
= −Ω∗||x− y||22 (4)

implying that

(x− y)T(H(x)−H(y))< 0,∀x 6= y

from which it can be directly concluded that
H(x) 6= H(y) whenx 6= y.

In order to show that||H(x)|| → ∞ as ||x|| → ∞,
we lety= 0 in (21), in which case, we can write

1
µM

xT(H(x)−H(0)) ≤ −Ω∗||x||22

from which one can derive that

||x||∞||H(x)−H(0)||1 ≥ Ω∗µM||x||22

Using ||x||∞ ≤ ||x||2 and ||H(x) − H(0)||1 ≥
||H(x)||1 − ||H(0)||1, it follows that ||H(x)||1 ≥
Ω∗µM||x||2 + ||H(0)||1. Since||H(0)||1 is finite, we
conclude that||H(x)|| → ∞ as ||x|| → ∞. Hence,
under the condition of Theorem 1, neural network (1)
has a unique equilibrium point.

We will now simplify system (1) as follows : we
let zi(·) = xi(·)− x∗i , i = 1,2, ...,n and note that the
zi(·) are governed by :

żi(t)=−cizi(t)+
n

∑
j=1

ai j g j(zj(t))

+
n

∑
j=1

bi j g j(zj(t − τi j )), i = 1,2, ...,n (5)

wheregi(zi(·))= fi(zi(·)+x∗i )− fi(x∗i ), i = 1,2, ...,n.
It can easily be verified that the functionsgi satisfy
the assumptions onfi i.e., f ∈ L implies thatg∈ L .
We also note thatgi(0) = 0, i = 1,2, ...,n. It is thus
sufficient to prove the stability of the origin of the
transformed system (4) instead of considering the
stability ofx∗ of system (1).

For τi j = τ j , (4) can be expressed in the matrix-
vector form as follows :

ż(t) =−Cz(t)+Ag(z(t))+Bg(z(t− τ)) (6)

where z(t) = (z1(t),z2(t), ...,zn(t))T ∈ Rn is state
vector of transformed neural system,g(z(t)) =
(g1(z1(t)),g2(z2(t)), ...,gn(zn(t)))T andg(z(t − τ)) =
(g1(z1(t − τ1)),g2(z2(t − τ2)), ...,gn(zn(t − τn)))

T .
Now construct the following positive definite Lya-

punov functional

V(z(t)) = zT(t)z(t)+ k
n

∑
i=1

∫ t

t−τi

z2
i (ζ)dζ

where thek is a positive constant to be determined
later. The time derivative of the functional along the
trajectories of system (5) is obtained as follows

V̇(z(t)) = −2zT(t)Cz(t)+2zT (t)Ag(z(t))

+2zT(t)Bg(z(t − τ))+k||z(t)||22

−k||z(t − τ)||22
≤ −2cm||z(t)||

2
2+2||A||2||z(t)||2||g(z(t))||2

+2||B||2||z(t)||2||g(z(t − τ))||2
+k||z(t)||22−k||z(t − τ)||22

≤ −2cm||z(t)||
2
2+2µM ||A||2||z(t)||

2
2

+2µM ||B||2||z(t)||2||z(t − τ)||2
+k||z(t)||22−k||z(t − τ)||22

≤ −2cm||z(t)||
2
2+2µM ||A||2||z(t)||

2
2

+µM ||B||2||z(t)||
2
2+µM ||B||2||z(t − τ)||22

+k||z(t)||22−k||z(t − τ)||22
≤ −2cm||z(t)||

2
2+2µM ||P||2||z(t)||

2
2

+µM ||Q||2||z(t)||
2
2

+µM ||Q||2||z(t − τ)||22+k||z(t)||22

−k||z(t − τ)||22

Lettingk= µM||Q||2 results in

V̇(z(t)) ≤ −2(cm−µM ||P||2−µM ||Q||2)||z(t)||
2
2

= −2µM(r −||P||2−||Q||2)||z(t)||
2
2

= −2µMΩ∗||z(t)||22

It is easy to see thaṫV(z(t)) < 0 for all z(t) 6= 0,
andV̇(z(t)) = 0 if and only if z(t) 6= 0. In addition,
V(z(t)) is radially unbounded sinceV(z(t)) → ∞ as
||z(t)|| → ∞. Thus, it follows that the origin system
(5), or equivalently the equilibrium point of system
(2) is globally asymptotically stable.
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We will now compare our result obtained in
Theorem 1 with a previously reported corresponding
stability result which is given in the following:

Theorem 2 (Ozcan and Arik, 2006). Let f ∈
L . Then, the neural network model (2) is globally
asymptotically robust stable, if

σ = r − (||A∗||2+ ||A∗||2+ ||B∗||2+ ||B∗||2)> 0

wherer = cm
µM

with cm = min(ci)andµM = max(µi).

Since ||P||2≤||A∗||2 + ||A∗||2, ||Q||2≤||B∗||2 +
||B∗||2, Theorem 1 directly implies the result of The-
orem 2.The result of Theorem 2 can be considered a
special case of the result of Theorem 1.

3 CONCLUSIONS

By using a proper Lyapunov functional, we have ob-
tained a easily verifiable delay independent sufficient
condition for the global robust stability of the equilib-
rium point. We have also compared our result with the
previous corresponding robust stability results pub-
lished in the previous literature, proving that our con-
dition is new and generalizes previously reported re-
sults.
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