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Abstract: Learning linear subspaces for high-dimensional data is an important task in pattern recognition. A modern 
approach for linear subspace learning decomposes every training image into a more discriminative part 
(MDP) and a less discriminative part (LDP) via sparse coding before learning the projection matrix. In this 
paper, we present a new linear subspace learning algorithm through discriminative dictionary learning. Our 
main contribution is a new objective function and its associated algorithm for learning an overcomplete 
discriminative dictionary from a set of labeled training examples. We use a Fisher ratio defined over sparse 
coding coefficients as the objective function. Atoms from the optimized dictionary are used for subsequent 
image decomposition. We obtain local MDPs and LDPs by dividing images into rectangular blocks, 
followed by blockwise feature grouping and image decomposition. We learn a global linear projection with 
higher classification accuracy through the local MDPs and LDPs. Experimental results on benchmark face 
image databases demonstrate the effectiveness of our method. 

1 INTRODUCTION 

Linear subspace learning (LSL) is a popular method 
for dimensionality reduction and feature extraction 
for many pattern recognition tasks, including face 
recognition (Cai et al., 2007, Huang et al., 2011, Lu 
et al., 2010). It typically learns an optimal subspace 
or linear projection according to a task-driven 
criterion. High-dimensional data can be linearly 
reduced to lower-dimensional subspaces through 
LSL. Usually, recognition performance can be 
improved in such lower-dimensional subspaces (Cai 
et al., 2007).  

There are both unsupervised and supervised LSL 
methods according to whether they exploit the class 
label information of train data. Representative 
techniques of the two classes of LSL methods are 
Eigenface (Turk et al., 1991) and Fisherface 
(Belhumeur et al., 1997), respectively. The 
corresponding algorithms are Principal Component 
Analysis (PCA), and Linear Discriminant Analysis 
(LDA). PCA seeks an optimal subspace with 
maximal variances while LDA looks for a linear 
combination of features which characterize or 
separate two or more classes of objects. A 
supervised LSL method that utilizes the label 

information can usually obtain a better 
discriminative subspace for classification problems. 
Many supervised LSL methods have been proposed 
as variants of LDA, including regularized LDA 
(RLDA) (Lu et al., 2005), and perturbation LDA 
(PLDA) (Zheng et al., 2009). As shown in (Zheng et 
al., 2009), both of LDA and RLDA share an 
assumption that the class empirical mean is equal to 
its expectation. This assumption may not be valid in 
practice and a new algorithm, called perturbation 
LDA (PLDA), is developed. In the algorithm, 
perturbation random vectors are introduced to learn 
the effect of the difference between the class 
empirical mean and its expectation under the Fisher 
criterion. When the number of training samples is 
less than the dimensionality of a sample, the within-
class scatter matrix in LDA becomes singular, and 
PCA is often used to reduce the dimensionality 
before LDA. In (Zheng et al., 2005) a GA-Fisher 
method is proposed to select the eigenvectors 
automatically in PCA before LDA. In (Qiao et al., 
2009) a sparse LDA is presented to overcome the 
small sample problem. In (Ji et al., 2008), the 
authors present a unified framework for generalized 
LDA via a transfer function. 

A common goal shared among existing LSL 
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methods is that the learned subspace should be as 
discriminative as possible. However, every image is 
a superposition of both discriminative and non-
discriminative information. Most existing LSL 
methods estimate the scatter matrices directly from 
the original training samples or images. The non-
discriminative information in such training samples, 
such as noise and trivial structures, may interfere 
with discriminative subspace learning. Different 
from most existing LSL methods, such as PCA, 
FLDA/RLDA, LPP and SPP, where the subspace is 
learned for image decomposition, a new LSL 
framework is presented in (Zhang et al., 2011) to 
perform image decomposition for subspace learning. 
Dictionary learning and sparse coding are used for 
adaptive image decomposition during the learning 
stage, where the image is decomposed and the image 
components are used for guiding subspace learning.  

With the development of l0- and l1-minimization 
techniques, sparse coding and dictionary learning 
have received much attention recently. The 
dictionary learned in (Zhang et al., 2011) is a 
generative or reconstructive dictionary which only 
minimizes reconstruction errors. The atoms of the 
dictionary do not necessarily have sufficient power 
to discriminate among data with different class 
labels. Thus, selecting the most discriminative atoms 
from such a dictionary as in (Zhang et al., 2011) 
may not achieve the full potential of sparse coding. 
On the other hand, several methods have been 
developed to represent discriminative information 
during dictionary learning. A discriminative term 
based on LDA is integrated into the classical 
reconstructive energy formulation of sparse coding 
in (Huang et al., 2007, Rodriguez et al., 2008). 
However, a predefined dictionary instead of a 
learned dictionary is used in (Huang et al., 2007).  In 
(Yang et al., 2011), a discriminative dictionary is 
learned based on an objective function combining a 
variant of Fisher criterion and a reconstruction error. 
A potential problem with such an approach is that 
the reconstruction error term may interfere with the 
Fisher criterion and reduce its power when learning 
a discriminative dictionary. A formulation of the 
classification error of a linear SVM has also been 
incorporated into dictionary learning (Jiang et al., 
2011, Zhang et al., 2010). Other efforts along this 
direction include multi-class dictionary optimization 
for gaining discriminative power in texture analysis 
(Mairal et al., 2008). A compact dictionary is 
learned from affine-transformed input images to 
increase discriminative information (Kulkarni et al., 
2011). In (Mairal et al., 2012) a task-driven 
supervised dictionary learning method is proposed 

where dictionary learning relies on a subgradient 
method to perform a nonconvex optimization. Note 
that learning discriminative dictionaries based on the 
SVM error term is not well suited for problems that 
involve image patches because even images from 
different classes may share similar patches, whose 
class labels would be very hard to determine.  

In this paper, we present a new linear subspace 
learning method based on sparse coding using a 
novel technique for discriminative dictionary 
learning. We use a Fisher ratio defined over sparse 
coding coefficients as the objective function for 
optimizing a discriminative dictionary while the 
condition that the sparse coding coefficients should 
minimize the reconstruction error is imposed as a 
constraint. Atoms that can achieve a higher Fisher 
ratio of the sparse coding coefficients are considered 
better. Therefore, discriminative information is 
emphasized during the atom construction process. In 
our decomposed image, the more discriminative part 
(MDP) has a larger fisher ratio than the one obtained 
from a reconstructive dictionary. We further obtain 
local MDPs and LDPs by dividing images into 
rectangular blocks, followed by blockwise feature 
grouping and image decomposition. A more 
effective global MDP and LDP can be obtained by 
concatenating these local MDPs and LDPs. We learn 
a global linear projection with higher classification 
accuracy through the global MDPs and LDPs. 
Experimental results on benchmark face image 
databases demonstrate the effectiveness of our 
method. The flowchart of the proposed LSL method 
is shown in Fig. 1. 

 

Figure 1: The flowchart of the proposed method. 

2 IMAGE DECOMPOSITION 
AND RECONSTRUCTION VIA 
SPARSE CODING 

The sparse representation model is a modern method 
for image decomposition and reconstruction, which 
have been used in many image-related applications, 
such as image restoration and feature selection. The 
sparse representation of a signal over an over-
complete dictionary is achieved by optimizing an 
objective function that includes two terms: one 
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measures the signal reconstruction error and the 
other measures the coefficients’ sparsity (Huang et 
al., 2007). Suppose that the data 

 1 2, , , R m n
nx x x  X (n is the number of 

samples, m is the number of dimensions) admits a 
sparse approximation over an over-complete 
dictionary  1 2, , , R m K

Kd d d  D  (with K>m) 

with K atoms. Then X can be approximately 
represented as a linear combination of a sparse 
subset of atoms from D. The over-complete 
dictionary D can be obtained by solving the 
following optimization problem: 
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The weight  controls the trade-off between the 
reconstruction accuracy and the sparseness of the 
coefficient vectors. The cost function given above is 
non-convex with respect to both D and i . 

However, it is convex when one of them is fixed. 
Thus, this problem can be approached by alternating 
between learning D while fixing i and inferring i
while fixing D. We can see that a data sample x can 
be decomposed into

1

( )
K

k
k

x k d 


  D . If the 

sparse coefficient vector  for the data item x is 
known under the dictionary D, then the pre-image 
can be reconstructed by x̂  D . The sparse 
coefficient vector and the dictionary D contain the 
most information about the data item x, therefore, 
they have been used for tasks such as recognition, 
feature extraction and image restoration. 

3 DISCRIMINATIVE 
DICTIONARY LEARNING 

In this section, we introduce a new objective 
function and its associated algorithm for learning an 
overcomplete discriminative dictionary from a set of 
labeled training image patches. Supervised 
dictionary learning for achieving a goal other than 
data reconstruction has proven to be a hard problem, 
especially when the objective function for dictionary 
learning is not differentiable everywhere in l1 norm 

restraint. Our algorithm relies on the subgradient 
method to obtain optimized atoms. One of the key 
contributions of our work is to train a discriminative 
dictionary for subsequent feature grouping. 

Note that Fisher’s criterion is motivated by the 
intuitive idea that data samples from multiple classes 
are maximally separated when samples from 
different classes are distributed as far away from 
each other as possible and samples from the same 
class are distributed as close to each other as 
possible. Because of the reconstructive capability of 
an over-complete dictionary, the degree of 
separation among data samples can be indicated by 
the degree of separation among the sparse 
coefficient vectors coding the data samples using the 
dictionary. Thus, discriminative components of data 
samples can be discovered by seeking a dictionary 
whose corresponding sparse coefficient vectors 
achieve a high Fisher’s ratio. Therefore, we use the 
Fisher’s ratio defined over the sparse coefficient 
vectors as the objective function for learning a 
discriminative dictionary. 

Let R m
ix  ( 1, 2, ,

kCi n  ) be a training 

sample, an m-dimensional vector formed by image 

patches of size m m from images in the kC -th 

class,
kCn is the number of training samples in the 

kC -th class. The Fisher’s criterion is defined as 

       B WF isher x tr x tr x S S , where  W xS is 

the within-class scatter matrix,  BS x is the between-

class scatter matrix, which are defined as 
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the mean of training samples in class kC , and m is 

the mean of all training samples. We can see that  
       B WFisher x tr x tr x S S =
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Based on the Fisher’s criterion, we define 
discriminative dictionary learning as follows: 
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s.t. 2
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where α ( , )i x D represents the optimal sparse 

coefficient vector coding the training sample x using 
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the learned dictionary D, 
1
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above objective function,  2
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represents the intra-class compactness, and the 
denominator, 2

μ μ
kC k F

k C

n


 , represents the inter-

class separability. Note that
   α 1 α (x , )Fisher J  D is the Fisher’s ratio 

defined over the optimal sparse coefficient vectors. 
So    m in α ( x , ) m a x αJ F is h e r D . Note that 

in the optimization defined in equation (2), the 
discriminative Fisher ratio and the reconstruction 
term are separated, one as the objective function and 
the other as the constraint. Such a scheme guarantees 
that there is least interference between the two and 
the power of the Fisher criterion is fully realized. 

Our method learns an entire discriminative 
dictionary from labeled training data using the 
Fisher criterion. The optimal sparse coefficient 
vector of a training sample is actually a function of 
dictionary D due to

2

1
α

α ( , ) a rg m in α αi i F
x x    D D . Therefore, 

dictionary D is the only variable of the objective 
function  α ( , )J x D . We will use ( )F D as a short 

notation in place of  α ( , )J x D when necessary. In 

(Boureau et al., 2010, Mairal et al., 2012, Yang et al., 
2010), the subgradient method was used to optimize 
functions of α ( , )i x D with respect to D (see the 

APPENDIX). In our problem, the subgradient of 
( )F D with respect to D can in turn be computed 

using the chain rule 
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In summary, the subgradient of ( )F D at D can be 

computed as 

 *T T   G DΒΑ X DA Β  (6)

Since the subgradient method can obtain a search 
direction at a certain point during optimization, it 
can be used in convex, quasiconvex and nonconvex 
problems (Burachik et al., 2010, Neto et al., 2011, 
Yang et al., 2010). Here the dictionary D can be 
updated by the subgradient G. That is 
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where t is a learning rate, t is the current iteration 

step. The step size of the learning rate should be 
chosen carefully. In this paper, the learning rate t is 

calculated from  0 1t t T   , where 0 is the 

initial learning rate, t is the current learning rate, 
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T is a predefined parameter, and the initial 
dictionary is learned using equation (1). Figure 2 
shows the Fisher ratio versus the number of 
iterations on image patches from the CMU PIE 
database. We can see that the subgradient-based 
optimization is a process with oscillatory 
convergence. 

Once the dictionary D has been learned, a data 
sample can be decomposed into components using 
the atoms in D as follows,

,1 , 2 ,j j j j j Kx x x x    D , where 

 ,j k j kx k d  

 

Figure 2: Fisher ratio versus the number of iterations on a 
subset of the CMU PIE database. 

4 LSL VIA DISCRIMINATIVE 
DICTIONARY LEARNING  
AND BLOCKWISE 
DECOMPOSITION 

4.1 Patch-based Dictionary Learning 

The relatively high dimensionality of an image as 
well as the usual relatively small number of training 
images prevent us from learning a redundant 
dictionary directly from a set of training images 
under the sparse coding framework. Same to (Zhang 
et al., 2011), a patch-based scheme is used to learn a 
dictionary. As mentioned above, the defined 
objective function (3) is very fit for patch-based 
discriminative dictionary learning. Each training 
image Ii is partitioned into overlapping patches. The 
complete set of patches from all training images is 
denoted as X=[x1, x2, …,xn], in which h is the total 
number of patches. A discriminative dictionary is 
learned from T following the optimization 
framework presented in the previous section. Each 
patch tj can be reconstructed through the atoms in the 

learned dictionary as follows,

1 2(1) (2) ( )j j j j j Kx d d K d       D . 

 

Figure 3: Partition of training images into blocks. 

4.2 Blockwise Feature Grouping 

We also partition an image Ii into relatively large 
blocks and perform blockwise feature grouping. Note 
that each block includes multiple image patches. If an 
image is divided into L blocks, for each patch l

jx  in 

block l,
 

,
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l l l l
i i i i KR R R R    . 

Each of these components is treated as a feature, and 
all K features are separated into two groups, a more 
discriminative part (MDP) and a less discriminative 
part (LDP), according to the magnitude of the 
following Fisher ratio, 
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where l
zR the mean of the z-th feature of block l from 

all training images, and by ,
l
z kR the mean of the z-th 

feature of block l from images that belong to class k. 
Those features of block l that have larger l

zf are 

added together to form the MDP image of block l, 
the LDP image of block l is formed by original 
images with the MDP image subtracted. In this way, 
we compute the MDP and LDP of every block 
within every training image. We denote by ,l a

iR  the 

MDP of block l within image Ii, and ,l b
iR the LDP of 

block l within image Ii. 
Finally, we define the MDP and LDP of a 

training image by concatenating the MDPs and 
LDPs of all blocks within the image. That is, let ,L a

iI

and ,L b
iI  be the MDP and LDP of image Ii when it is 

partitioned into L blocks, then , ,L a L b
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The superscript L in ,L a
iI and ,L b

iI is due to the fact 

that the MDP and LDP of an image are dependent 
on the number of blocks in the image. When the 
number of blocks changes, the MDP and LDP may 
also change. Here we assume when the number of 
blocks is fixed, only one particular way is allowed to 
partition an image into blocks. 

4.3 Subspace Learning 

Once the MDP and LDP of an image have been 
defined, the whole dataset Q can be written as

a bQ Q Q  , where , , ,
1 2, , ,a L a L a L a

nQ I I I    and

, , ,
1 2, , ,b L b L b L b

nQ I I I    . As suggested by [11], with 

a learned linear projection matrix P, that is
a bQ Q Q P P P , the features in aQ should be 

preserved and the features in bQ should be 

suppressed after the projection by P. Thus, the 
optimal linear projection should be 

 
     

tr
arg max

tr 1 tr

a
B

a b
W  P

PS P

PS P PS P
 (9)

where a
BS  is the MDP between-class scatter matrix,

a
WS is the MDP within-class scatter matrix, and bS  is 

the scatter matrix of the less discriminative parts in 
all images. The exact definitions of these matrices 
can be found in (Zhang et al., 2011). 
 
Remarks. In comparison with the linear subspace 
learning method in (Zhang et al., 2011), our 
algorithm exhibits a few advantages. First, different 
from the reconstructive dictionary used in (Zhang et 
al., 2011), we train a discriminative dictionary. 
Atoms in a discriminative dictionary can better 
expose discriminative components in an image. 
Second, the objective function we use for training 
the dictionary is a Fisher ratio, which is perfectly 
consistent with the subsequent feature grouping 
criterion, which is also based on a Fisher ratio. In 
contrast, the dictionary training criterion in (Zhang 
et al., 2011) is not consistent with the feature 
grouping criterion. Third, instead of selecting the 
same features for an entire image, we perform 
blockwise feature grouping. Our selected features 
are optimally discriminative for each local image 
block and may vary from block to block. Such a 
spatially varying strategy can potentially discover 
more discriminative image components. 
 
 

Table 1: Outline of our algorithm. 

Linear Subspace Learning via Discriminative 
Dictionary 

Initialize: face images, t=1, learning rate T

t t
 , 

number of iterations maxt . 

Output: linear projection P. 
Initialize D1 according to equation (1); 
Repeat 
Compute coefficients αt

i via
2

1
arg min

i

t
i i iF

x


   D ; 

Compute Fisher ratio  ( )tFisher  ; 

if     
0

( ) ( )maxt t

t T
Fisher Fisher  


 , 

0 ( 1)tD D ; 
Compute tG  according to equation (6); 

Compute t
i within Bt according to equation (5); 

Update
t

t

t

F


G

G
G

; 

Update ( 1) ( )t t t
t

  D D G ; 

Update
1

1

1

t
t

t

F







D
D

D
; 

t=t+1; 
If maxt t , continue repeat;  Else stop repeat; 

End 
Compute coefficients αi via       

20

1
arg min

i

i i iF
x


   D ; 

Divide images into blocks; 
Feature grouping on each block according to 
equation (8); 
Compute linear projection P according to 
equation (9). 

5 EXPERIMENTAL RESULTS 

All experiments were carried out on an Intel i7 
3.40GHz processor with 16GB RAM. Our LSL 
method is based on sparse coding using the learned 
discriminative dictionary (DSSCP). The feature-sign 
search algorithm (Lee et al., 2006) was used for 
sparse coding during dictionary learning. The 
performance of DSSCP has been evaluated on two 
representative facial image databases: the CMU PIE 
database, and the ORL database. Three state-of-the-
art existing methods, LDA (Belhumeur et al., 1997), 
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PLDA (Zheng et al., 2009) and SSCP (Zhang et al., 
2011), are used for comparison. Face images with 
32×32 pixels were used in our experiments. Each 
face image was flattened and normalized to a unit 
vector. During dictionary learning, every image was 
partitioned into8x8 patches. Our dictionary has 64 
atoms, each of which has the same size as an image 
patch. In the subgradient-based optimization, the 
initial learning rate 0 was set to 0.02, the parameter 

T was set to 10, and the number of iterations was set 
to 30.The number of blocks in an image, L , was set 
to 4. And 80% atoms in the dictionary were used to 
form the MDP during feature grouping. 
Classification was performed using the simple 
nearest neighbor (NN) classifier. The parameter 
was chosen with10-fold cross-validation on the 
training set based on the recognition rate.  

 

 

Figure 4: Training images of two subjects from the CMU 
PIE database (First five columns are for one subject, last 
five columns for another subject). The average Fisher ratio 
of the MDP of training images by the method in (Zhang et 
al., 2011) is 0.7554, while the corresponding average 
Fisher ratio by our method is 0.8291. 

5.1 CMU PIE Database 

CMU PIE face database (Sim et al., 2003) contains 
41368 face images of 68 people, each person with 
13 different poses, 43 different illumination 
conditions, and 4 different expressions. In our 
experiments, we chose images with one near frontal 
pose (C27) and all different illumination conditions 
and expressions. There are 49 near frontal images 
for every subject. 

We chose 30 individuals from the 68 people for 
our experiments. All the face images were 
preprocessed with histogram equalization and 
normalization. First, the images were split into two 
groups. There are 25 images in group 1 for each 
subject while 24 images in group 2 for each.  We 
randomly chose 5 images per subject from group 1 
images for training, and 5 images per subject from 
group 2 for testing. Figure 4 shows examples of the 

original training images, the extracted MDP images 
and LDP images. PCA was used to reduce the 
number of dimensions of the total covariance matrix 
when learning the projection P in all the four 
methods. The reported recognition rate is the 
average over 50 runs. 

 

Figure 5: Recognition rates achieved by different methods 
on the CMU PIE database versus dimensionality of the 
linear subspace. 

Figure5 summarizes recognition performance of 
various algorithms used in our experiments. From 
this figure, we can see that our DSSCP algorithm 
overall performs better than LDA, PLDA and SSCP. 
The advantage of our algorithm becomes more 
obvious at larger dimensions. This comparison 
indicates image decomposition in general is 
beneficial for linear subspace learning based on 
LDA. Furthermore, if more discriminative 
information is extracted during image decomposition 
as in our algorithm, we can obtain better linear 
projections during subspace learning. 

5.2 Experiments on the ORL Database 

ORL face database contains 400 images of 40 
individuals. There are ten different images for each 
subject. For some subjects, the images were taken at 
different times, varying the lighting, facial 
expressions (open/closed eyes, smiling/not smiling) 
and facial details (glasses/no glasses). The used 
ORL database is available from 
http://www.zjucadcg.cn/dengcai/Data/FaceData.html. 
All the images were taken against a dark 
homogeneous background with the subjects in an 
upright, frontal position (with tolerance for some 
side movement). We selected 3 images per subject 
for training, and 5 images for testing. 
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Figure 6: Face images in the ORL database. 

 
(a) 

 
(b) 

Figure 7: Recognition rates achieved by different methods 
on the ORL database vs. dimensionality of the linear 
subspace. (b) shows an enlarged portion of (a). 

The average recognition rates (over 50 runs) versus 
subspace dimensionality are shown in Fig. 7. Fig.7 
summarizes results from the algorithms tested in our 
experiments. From the above figure, we can see that 
DSSCP is better than LDA, PLDA and SSCP. That 
means the decomposition of image is useful for 
linear subspace learning based on LDA. We can 
obtain a better linear subspace projection, if the 
discriminative information is utilized. 
 

6 CONCLUSIONS 

In this paper, we have presented a linear subspace 
learning algorithm through learning a discriminative 
dictionary. Our main contributions include a new 
objective function based on a Fisher ratio over 
sparse coding coefficients, and its associated 
algorithm for learning an overcomplete 
discriminative dictionary from a set of labeled 
training examples. We further obtain local MDPs 
and LDPs by dividing images into rectangular 
blocks, followed by blockwise feature grouping and 
image decomposition. We learn a global linear 
projection through the local MDPs and LDPs. 
Experiments and comparisons on benchmark face 
recognition datasets have demonstrated the 
effectiveness of our method. Our future work 
includes exploring both theoretically and empirically 
the structure of the learned dictionary with respect to 
different datasets and dictionary size. In addition, we 
plan to investigate kernel subspace learning via 
discriminative dictionaries. 
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APPENDIX 

The differentiation of a sparse coefficient vector α

with respect to D is shown in (Mairal et al., 2008, 
Mairal et al., 2012). Since

   1
α = T T x s


    D D D , where s in  1; 1

 

carries the signs of α
 , its subgradient can be 

computed once α  known. It is

 
     *
α

α αk
jk jki j

ij

x W C

 





  


D

D
, where

  1TW


  D D , TC W  D , and  α
k


 denotes the k-

th nonzero component of α . The subgradient of an 

objective function (α )h  with respect to D is given as 

follows (Mairal et al., 2012),

 *(α ) (α ) α

α
T Th h

x  
  




  
    

 
D D

D D
, 

where     1 ( α )
=

α
T h






  





D D
,   0C


 . 
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