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Abstract: Preventive maintenance (PM) can slow the deterioration process of a repairable system and restore the 
system to a younger state. The proposed PM model of this paper focuses on the restoration effect of 
degradation rate reduction which can only relieve stress temporarily and slow the rate of system degradation 
while the hazard rate is still monotonically increased. This PM model considers a deteriorating but 
repairable system (or equipment) with a finite life time period. This PM model is modified based on an 
original degradation-rate-reduction PM model over a finite time span of which the searching range for the 
optimal solution of the time interval between each PM is limited. It is demonstrated that the proposed 
degradation-rate-reduction PM model over a finite time period can have a better optimal solution than the 
original PM model. The algorithm of finding the optimal solution for the modified PM model is developed. 
Examples are provided and are compared with the corresponding original PM model. 

1 INTRODUCTION 

For a deteriorating and repairable system, the 
preventive maintenance (PM) can slow down the 
aging process and restore the system to a younger 
state (Pham and Wang 1996). Many PM models 
shown in the literature assume the PM can restore 
the system to a younger age or a smaller hazard rate, 
such as Nakagawa (1986) and Chan and Shaw 
(1993). However, the PM tasks, such as cleaning, 
adjustment, alignment, and lubrication work, may 
not always reduce system’s age or hazard rate. 
Instead, this type of PM tasks may only reduce the 
degradation rate of the system to a certain level. It 
can be seen from the literature of the reliability-
centered maintenance (RCM) and the total 
productive maintenance (TPM) (Bertling, Allan and 
Eriksson 2005, Zhou, Xi, and Lee 2007, McKone, 
Schroeder and Cua 2001, and Talib, Bon and Karim 
2011) that this type of PM tasks is important for 
keeping a system or equipment in the state of high 
reliability. Canfield (1986) proposed an infinite-
time-span model for the above PM tasks which 
assumes that the PM can only relieve stress 
temporarily and slow the rate of system degradation 
while the hazard rate is still monotonically increased. 
Based on Canfield’s model, Park, Jung and Yum 
(2000) and Cheng and Chen (2008) developed the 

optimal periodic PM policy for the deteriorating 
systems over an infinite time span. 

In real world, a system’s useful life is normally 
finite. When an aged system is replaced by a new 
one, the new system seldom has exactly the same 
conditions (such as characteristics, investment cost, 
and maintenance expenses) as those of the system of 
the previous replacement cycle. However, not many 
PM models consider the conditon of finite time span. 
Only some examples are found, such as Pongpech 
and Murthy (2006), Yeh and Chen (2006) and 
Ponchet, Fouladirad and Grall (2011). Hence, it is 
worthwhile to study the PM problem with a finite 
time span. 

Furthermore, it is found from the PM models 
developed by Pongpech and Murthy (2006) and 
Cheng and Liu (2010) that a shorter time interval 
between each PM can result in a better expected 
total maintenance cost. However, these PM models 
do limit the possibility of finding a smaller total 
maintenance cost since the searching range of the 
time interval between each PM is limited. 

In this paper, a new degradation-rate-reduction 
PM model over a finite time span is proposed by 
releasing the restriction of the searching range for 
the time interval between each PM. The algorithm of 
finding the optimal solution for the proposed new 
PM model is provided. Examples of Weibull failure 
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case are constructed for this new PM model to 
examine the assumption and to analyze the 
sensitivity of the optimal solution. 

2 MODEL DEVELOPMENT 

2.1 Nomenclature 

L 
The useful life time (finite time span) for 
the system or equipment 

T The time interval of each periodic PM 

N 
The number of PM performed in the finite 
life time span (L) 

 

The restoration ratio of the degradation 
rate corresponding to age in each PM and 
01 where =0 represents minimal 
repair and =1 represents perfect 
maintenance. where  is the restored ratio 

δ() 

The level of degradation rate reduction 
after each PM, which is measured by the 
corresponding age reduction and is 
function of the restoration ratio . 

 
The time interval between the Nth PM and 
L, i.e., π = L  NT 

λ(t) 
The original hazard rate function (before 
performing the 1st PM) 

λi(t) 
The hazard rate function at time t where t 
is in the ith PM cycle and λ0(t)=λ(t) 

i(t) 
The expected number of failure at time t 
of the ith PM cycle and Λ0(t)=Λ(t) 

( , )pmC i   Cost of the ith PM which is function of i 
and δ() 

Cmr The minimal repair cost of each failure 

( , , )TC N T   The expected total maintenance cost 
function over the finite life time interval L 

2.2 The Assumptions 

The following are the assumptions for the proposed 
PM model. 
 The system is deteriorating over time with 

increasing failure rate (IFR) in which Weibull 
failure distribution is assumed in this paper, i.e. 

1( ) ( )
t

t 
 

  (1)

where  is the scale parameter and  is the shape 
parameter with  > 1. 

 The PM can reduce the system’s degradation 
rate to a younger level. 

 The reduced degradation rate of each PM is 
assumed to be constant and is measured by the 

restored ratio () of the corresponding age of 
the degradation rate. 

 The time interval of each PM (T) is limited in 
the range of (0, L]. 

 Minimal repair is performed when a failure 
occurs between each PM where the system is 
restored to its condition just prior to the failure. 

 The system is disposed at the specified finite 
time L without replacing a new one. 

 The total maintenance cost (TC) is considered 
as the objective function which includes the 
minimal repair cost and the PM cost in this new 
model. 

 The minimal repair cost (Cmr) is assumed to be 
constant. 

 The cost of the ith PM (Cpm) is assumed to be 
variable, which is affected by the age (expressed 
by the number of PM already performed) and 
the reduced level of degradation rate, and is 
defined in the following equation. 

( , ) ( )pmC i a bi c     , (2)

where coefficient a represents the constant part 
of the PM cost, b and c represent the unit 
incremental PM cost of aging and the restored 
level of degradation rate, respectively. 

 The times to perform PM and minimal repair 
are negligible. 

2.3 The Idea of the Modified Model 

It is found that the time interval between each PM 
(T) of the failure-rate-reduction PM models 
developed by Pongpech and Murthy (2006) and 
Cheng and Liu (2010) is constrained in the range of 

min max[ , )T T  where min /( 1)T L N   and 

max /T L N for a specified number of PM (N) in the 
finite time span (L). It is also known that the optimal 
value of T be the smallest possible value (i.e., minT ) 
when given a specified N. This result is also seen in 
the degradation-rate-reduction PM model (no 
warranty case) proposed by Cheng et al. (2009). 
Thus, the constraint do limit the possibility of 
finding the optimal value of T being smaller than 

minT . 
In this paper, the degradation-rate-reduction PM 

model of no warranty case proposed by Cheng et al. 
(2009) is called the original PM model. Figure 1 
illustrates the hazard rate function of the original PM 
model where  is the time interval between L and 
the time of the last PM (NT), i.e.,  = LNT. It can 
be seen that  < T when T is restricted in the range 
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of min max[ , )T T . Next, the modified degradation-rate-
reduction PM model over a finite time span is 
proposed by releasing the restriction of T which is 
illustrated in Figure 2. Under a specified finite time 
span (L) and a given number of PM (N), it can be 
observed that the interval of  shown in Figure 2 be 
greater than the PM interval 'T (i.e.,  > 'T ) and 

'T has smaller value than T of the original PM 
model (as shown in Figure 1). Then, it is desired to 
presume and verify the modified PM model can 
provide a better optimal solution. 

 

Figure 1: The illustration of the original degradation-rate-
reduction PM model. 

 

Figure 2: The illustration of the modified degradation-rate-
reduction PM model. 

2.4 The Modified PM Model 

First, we have to obtain the total expected number of 
failures over the entire finite time interval L, denoted 
as (L), which is shown in Equation (4).  

   
1 ( 1)

0

( ) .
N i T L

i NiT NT
i

L t dt t dt 
 



     (3)

Based on Canfied (1986), the hazard rate function of 
the ith PM (i(t)) of the degradation-rate-reduction 
PM model can be presented as 

    
1

( ),            0      for  0,

( 1)(1 ) (1 )
( )

( ),   ( 1) ,  

                           for 1,2, , .

i

ki

t t T i

T k T k T
t

t i T iT t i T

i N



   


 


  

      
    








 
(4)

For a Weibull failure distribution, (L) can be 
obtained as the following equation. 

     

   

   

   

1
1 1

1 1

1

1

1 1

1

( )

 ,  =0

1
( 1)

   ( 1)

   ( ) ( 1)

   ,   0
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N i

i k

N

i

N

k

L
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N
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L NT kT k T kT kT

L N T NT N T N




  

 

 

 



  


 
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
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



 


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 
            
        


        
        








(5)

Next, the expected total maintenance cost (TC) of 
the modified PM model is shown as follows. 

 
1

( ),  =0

( , , )
( ) , , ,  0  

mr

N

mr pm
i

C L N

TC N T
C L C i T N







    


 

(6)

By substituting Equations (4) and (5) into Equation 
(6), we can obtain the expected TC cost in Equation 
(7). Note that the equation of TC cost of the 
modified PM model is same as the original PM 
model. The difference of the two PM models is the 
searching range of T. 

   

   

   

   

0

0

1

1 1

1

1

1

( , , )

( ) ,  =0

( )

   ( 1)

   ( 1)

   ( ) ( 1)

   

1
( ),  0

2

{

}

L

mr

T

mr

N i

i k

N

i

N

k

TC N T

C t dt N

C t dt

T kT k T kT kT

i T i T iT i T

L NT kT k T kT kT

L N T NT N T

N
N a b c T N







   

 

   

 





 

















       

        

       

   


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






















(7)

For a Weibull failure distribution, the expected total 
maintenance cost becomes 
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(8)

3 THE OPTIMAL PM POLICY 

The optimal solution for the modified PM model can 
be obtained by minimizing the expected total 
maintenance cost (TC). The decision variables are 
the number of PM (N) over the finite time span (L), 
the time interval of each PM (TN), and the 
restoration ratio (N). It requires an algorithm with 
numerical method to search for the optimal solution. 
In this paper, we modify the algorithm provided by 
Cheng and Liu (2010) with the Nelder-Mead 
searching method which is a commonly used 
nonlinear optimization technique for minimizing the 
objective function in a multi-dimensional space. The 
modified algorithm is presented as follows. 
1. Let N = 0, TN = L, N = 0. 
2. Calculate Cmin = TC(N, TN, N) using Equation 

(7) or (8). (Note: Cmin equals to the expected total 
maintenance cost of no PM.) 

3. Let N = 1. 
4. Calculate TU  = L/N. 
5. Use Nelder-Mead method to search the values of 

TN in the range of (0, TU] and N in the range of 
[0, 1] such that TC(N, TN, N) shown in (7) or (8) 
is minimized; let C0 = minimal value of  
TC (N, TN, N). 

6. If C0  Cmin then obtain the optimal solution: 
N*=N-1, T*=TN*, * = N*, TC(N*,T*,*), and stop; 
else let N = N+1 and Cmin = C0; go to Step 4. 

4 NUMERICAL EXAMPLES 

Numerical examples are performed and the optimal 
solutions of the modified PM model are compared 
with those of the original PM model proposed by 
Cheng et al. (2009). The system’s life is assumed to 
follow Weibull distribution with scale parameter  
=1 and shape parameter  = 2.5, and 3. Let L=5, 

Cmr=1 and the coefficients a, b, and c of Cpm are 
assigned with different values which satisfy Cpm  
Cmr as shown in Table 1.  

Table 1: The comparison of the optimal solutions of the 
modified and the original models. 

a b c Model*  = 2.5  = 3 

N T   TC Type** N T   TC Type**

1 0.1 0.1
M 6 0.52 1.88 1 32.31 P 8 0.45 1.4 1 29.89 P
O 6 0.71 0.74 1 34.19 F 9 0.5 0.5 1 32.08 F

1 0.8 0.1
M 3 0.85 2.45 1 38.84 P 4 0.76 1.96 1 43.08 P
O 3 1.25 1.25 1 41.37 F 5 0.83 0.85 1 46.93 F

1 1.5 0.1
M 2 1.09 2.82 1 41.7 P 3 0.92 2.24 1 49.92 P
O 2 1.67 1.66 1 44.49 F 4 1 1 1 54.4 F

1 0.1 0.8
M 6 0.49 2.06 1 34.45 P 8 0.44 1.48 1 32.37 P
O 6 0.71 0.74 1 37.19 F 8 0.56 0.52 1 35.22 F

1 0.8 0.8
M 3 0.8 2.6 1 40.58 P 4 0.74 2.04 1 45.18 P
O 3 1.25 1.25 1 43.99 F 5 0.83 0.85 1 49.85 F

1 1.5 0.8
M 2 1.03 2.94 1 43.18 P 3 0.91 2.27 1 51.84 P
O 2 1.67 1.66 1 46.82 F 4 1 1 1 57.2 F

1 0.1 1.5
M 5 0.54 2.3 1 36.4 P 8 0.43 1.56 1 34.79 P
O 6 0.71 0.74 1 40.19 F 8 0.56 0.52 1 38.33 F

1 0.8 1.5
M 3 0.76 2.72 1 42.23 P 4 0.73 2.08 1 47.24 P
O 3 1.25 1.25 1 46.62 F 5 0.83 0.85 1 52.76 F

1 1.5 1.5
M 2 0.97 3.06 1 44.58 P 3 0.89 2.33 1 53.72 P
O 2 1.67 1.66 1 49.15 F 4 1 1 1 60 F

1.5 0.1 0.1
M 5 0.6 2 1 34.94 P 7 0.5 1.5 1 33.65 P
O 5 0.83 0.85 1 36.99 F 8 0.56 0.52 1 36.11 F

1.5 0.8 0.1
M 3 0.85 2.45 1 40.34 P 4 0.76 1.96 1 45.08 P
O 3 1.25 1.25 1 42.87 F 4 1 1 1 49.4 F

1.5 1.5 0.1
M 2 1.09 2.82 1 42.7 P 3 0.92 2.24 1 51.42 P
O 2 1.67 1.66 1 45.49 F 4 1 1 1 56.4 F

1.5 0.1 0.8
M 5 0.57 2.15 1 36.98 P 7 0.49 1.57 1 36.06 P
O 5 0.83 0.85 1 39.91 F 8 0.56 0.52 1 39.22 F

1.5 0.8 0.8
M 2 1.03 2.94 1 42.08 P 4 0.74 2.04 1 47.18 P
O 3 1.25 1.25 1 45.5 F 4 1 1 1 52.2 F

1.5 1.5 0.8 M 2 1.03 2.94 1 44.18 P 3 0.91 2.27 1 53.34 P
O 2 1.67 1.66 1 47.82 F 4 1 1 1 59.2 F

1.5 0.1 1.5 M 4 0.63 2.48 1 38.85 P 7 0.48 1.64 1 38.42 P
O 5 0.83 0.85 1 42.83 F 7 0.63 0.59 1 42.32 F

1.5 0.8 1.5 M 2 1.09 2.82 1 43.48 P 4 0.73 2.08 1 49.24 P
O 2 1.67 1.66 1 48.05 F 4 1 1 1 55 F

1.5 1.5 1.5 M 2 0.97 3.06 1 45.58 P 3 0.89 2.33 1 55.22 P
O 2 1.67 1.66 1 50.15 F 4 1 1 1 62 F

*:    In the 4th column, M represents the modified PM model while O 
represents the original PM model. 

**:  In the 10th and 16th  columns, P represents the partially-periodic PM 
interval while F represents the fully-periodic PM interval.  

 

Table 1 shows the optimal solutions for the 
examples. It can be found that the * = 1 for each 
example. It can also be seen from these examples 
that the new (modified) PM model has smaller PM 
interval (T) and better optimal total maintenance cost 
(TC) than the original PM model where the original 
PM model has the fact: T* = minT = L/(N*+1). When 

further examining the optimal policies of the 
examples, it can be noticed that the modified PM 
model has partially-periodic PM interval while the 
original PM model has fully-periodic PM interval. It 
can also be seen that a PM model with a shorter PM 
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interval does provide a better optimal solution. This 
makes the presumption of this research acceptable. 

We also analyze the sensitivity of each parameter 
to the optimal solution for the modified PM model 
by using the ANOVA method as shown in Table 2. 
It can be found that  and c are significantly 
sensitive to the optimal total maintenance cost TC. 
The results indicate that the optimal TC is 
significantly affected by a system’s failure rate (or 
aging process) and the unit incremental PM cost of 
the restored level of degradation rate. 

Table 2: The Sensitivity Analysis for the Optimal Solution 
of the New PM Model. 

Response: TC α=0.05
Source Sum of Square DF Mean Square F Value Prob>F
Model 18730.60  9 2081.18  122.56 < 0.0001
β 16656.19  2 8328.09  490.43 < 0.0001
a 70.26  1 70.26  4.14  0.0450 
b 1873.76  3 624.59  36.78  < 0.0001
c 130.39  3 43.46  2.56  0.0603 

Residual 1460.39  86 16.98    

Cor Total 20190.99  95    

5 CONCLUSIONS 

For the PM problem in a finite time span, based on 
the fact that a shorter time interval of PM can result 
in a better expected total maintenance cost, a 
modified degradation-rate-reduction PM model is 
developed with no constraint on the PM interval (T). 
The algorithm of finding the optimal solution for the 
new PM model is also constructed in this paper. It is 
shown from the examples that the modified PM 
model can provide better optimal solution than the 
original PM model. This indicates that the modified 
PM model is more suitable for the deteriorating and 
repairable systems. For the future work, the 
theoretical proof of the existence of the optimal 
solution for the modified PM model needs to be 
explored. 
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