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Abstract: One of the main concerns in the area of arbitrary shape clustering is how to summarize clusters. An accurate 
representation of clusters with arbitrary shapes is to characterize a cluster with all its members. However, 
this approach is neither practical nor efficient. In many applications such as stream data mining, preserving 
all samples for a long period of time in presence of thousands of incoming samples is not practical. 
Moreover, in the absence of labelled data, clusters are representative of each class, and in case of arbitrary 
shape clusters, finding the closest cluster to a new incoming sample using all objects of clusters is not 
accurate and efficient. In this paper, we present a new algorithm to summarize arbitrary shape clusters. Our 
proposed method, called SGMM, summarizes a cluster using a set of objects as core objects, then represents 
each cluster with corresponding Gaussian Mixture Model (GMM). Using GMM, the closest cluster to the 
new test sample is identified with low computational cost. We compared the proposed method with 
ABACUS, a well-known algorithm, in terms of time, space and accuracy for both categorization and 
summarization purposes. The experimental results confirm that the proposed method outperforms ABACUS 
on various datasets including syntactic and real datasets.   

1 INTRODUCTION 

Nowadays, a large volume of data is being generated 
which is even difficult to be captured and labelled. A 
large volume of data is mainly generated in stream 
and real time applications, in which, data is 
generated rapidly, and cannot be stored bit by bit. As 
a result, analysing and labelling such kind of data is 
a main challenge (Guha et al.,  2003)(Bifet et al., 
2009) (Charu et al., 2003). Lack of labelled data 
draws attention to the application of clustering to 
produce labelled data. The choice of clustering 
algorithm strongly depends on data characteristic. In 
small and noise free environment classical clustering 
method like k-mean and k-median are commonly 
used. However, in most of applications, there is no 
knowledge about the number of clusters while the 
shapes of clusters are non-convex and arbitrary. In 
this case, density-based and grid-based clustering 
methods are used. Using a clustering method that 
generates arbitrary shape clusters is theoretically 
ideal but the representation and analysis of each 

cluster still causes many problems. For full 
representation of arbitrary shape clusters, all the 
samples of clusters should be preserved which is 
impractical in many applications. In case of using 
clustering in online applications, each cluster can be 
representative of a specific pattern. These patterns 
need to be kept for a long time and keeping the full 
representation of the complex patterns tend to be 
impractical. In this case, summarization and 
extracting the key features of clusters are necessary. 
 Another application of clustering is categorizing the 
unlabelled data. In this case, a set of clusters is 
created and each cluster receives a label according to 
its own samples. Each new sample is compared to 
the clusters and the closest one is chosen as a cluster 
that the new sample belongs to.  In case of k-means, 
the distance of a new sample to the centre of the 
cluster is calculated, then, if the distance is less than 
the radius of a cluster, new sample is attached to that 
cluster. K-means and partition-based clustering 
methods are sensitive to noise and cannot detect 
clusters with arbitrary shape. This approach has been 
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studied in different applications but most of the 
attention was towards non-arbitrary shape clustering 
like k-means (Mohammadi et al., 2014)(Gaddam et 
al., 2007). Arbitrary shape clustering methods 
preserve all samples for each cluster and to find the 
closet cluster to the new sample, distance of new 
samples to all cluster members is calculated. It is 
obvious that using such an approach is time 
consuming. The other way to find the closet cluster 
is to create a boundary for each cluster. If the new 
sample is inside the boundary of a cluster then the 
new sample belongs to that cluster. Finding the 
boundary of arbitrary shape clusters, especially in 
high dimensional problems, is a complex and time 
consuming process. Moreover, it is necessary to save 
too many faces to just keep borders of cluster 
created by convex in higher dimension, which grows 
exponentially with dimension (Kersting et al., 
2010)(Hershberger, 2009). 
In this paper, we propose a new approach that fulfils 
the mentioned requirements. We propose a 
summarization approach to summarize arbitrary 
shape clusters using Gaussian Mixture Model 
(GMM). In our approach, we first find the core 
objects of clusters and then we consider these core 
objects as centres of GMM and represent a cluster 
with a GMM. Since, GMM-based method keep all 
statistical information of each cluster, it summarizes 
each cluster in a way that we can use it for pattern 
extraction, pattern matching, and pattern merging. 
Moreover, this model is able to classify new objects. 
Using GMM, each new test sample is fed into the 
GMM of a cluster, and if the membership 
probability to a cluster is more than a threshold, the 
object is attached to that cluster.  
The structure of the paper is as follows: In Section 2, 
we review related work on arbitrary shape clusters 
and summarization approaches.  In Section 3, we 
explain the general structure of the proposed 
algorithm for summarization. In Section 4, we 
present some discussions about the features of the 
proposed method. In Section 5, we explain the 
complexity of algorithm in more detail. Section 6 
presents the experimental results of the proposed 
algorithm in comparison with well-known 
summarization algorithms. Finally, the conclusion 
and future work are presented in Section 7. 

2 RELATED WORK 

There are various algorithms available for clustering, 
which are categorized into four groups; partition-
based, hierarchical, density-based and spectral-based 

clustering (Han, 2006). K-means is one of the 
famous algorithms in the area of partition-based 
clustering. However, using a centre and radius 
makes the shape of clusters spherical which is 
undesirable in many applications. In hierarchical 
clustering methods such as Chameleon data is 
clustered in hierarchical form but still with spherical 
shape that is undesirable. Moreover, tuning the 
parameters for methods like Chameleon is still 
difficult (Karypis et al., 1999). Spectral clustering; 
STING (Wang et al., 1997) and CLUIQE (Agrawal 
et al. 1998) are able to create arbitrary shape clusters 
but the major drawback of these methods is the 
complexity of creating an efficient grid. The size of 
grid varies for different dimensions and setting 
different grid sizes and merging the grids to find 
clusters are difficult. These difficulties make the 
algorithm inaccurate in many cases. In the area of 
arbitrary shape clustering, density-based methods 
are more interesting and DBSCAN (Ester et al., 
1996) and DENCLUE (Hinneburg et al., 1998) are 
the most famous ones. In density-based methods, 
clusters are created using the concept of connecting 
dense regions to find arbitrary shape clusters. Based 
on prevalence of real time applications, there is more 
interest to make these algorithms fast for streaming 
applications (Guha et al., 2003)(Bifet et al., 
2009)(Charu et al., 2003). 
Summarization is the solution to ease the complexity 
of arbitrary shape clustering methods. The naïve 
way to represent an arbitrary shape cluster is to 
represent each cluster with all cluster members.  
Obviously, this approach is neither practical nor 
does it reflect the cluster properties. In k-means a 
simple representation using a centre and radius 
summarize the cluster. It is clear that this 
summarization does not capture how data is 
distributed in the cluster.  
There are different ways to summarize arbitrary 
shape clusters (Yang et al., 2011)(Cao et al., 
2006)(Chaoji et al., 2011). These algorithms use the 
general idea behind the clustering methods for 
arbitrary shape clusters. In the area of 
summarization, the idea is to detect dense regions 
and summarize the regions using core objects. Then, 
a set of proper features is considered to summarize 
the dense regions and their connectivity.  In (Yang et 
al., 2011) a grid is created for each cluster and based 
on the idea of connecting dense regions, the core or 
dense cells with their connections and their related 
features are kept. In all summarization approaches, 
these features play crucial role. In (Yang et al., 
2011) location and range of values and status 
connection vector are kept however, it has some 
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draw backs. First, creating grids on each cluster is 
time consuming. Second, considering all grids needs 
spending a lot of time and space which is impractical 
in many cases. Cao et al. (Cao et al., 2006) use the 
idea of finding core objects to generate the cluster 
summery. The most significant drawback of this 
work is that the number of core objects is large and 
in some cases, it is equal to the number of input 
samples. Moreover, a fixed radius specifies the 
neighbourhood that does not represent the 
distribution of objects in each cluster (Cao et al., 
2006). Chaoji et al. represent a density-based 
clustering algorithm named ABACUS for creating 
arbitrary shape clusters (Chaoji et al., 2011). The 
summarization part in their approach is based on 
finding the core objects and the relative variance 
around the objects. In most of arbitrary shape 
clustering methods, we need two parameters; 
number of neighbours and a radius. The most 
interesting and noticeable part in Chaoji et al. work 
is that the number of neighbours is the only 
parameter for their algorithm and they generate 
radius using data distribution. The significant 
drawback in their work is that the algorithm may 
generate many core points.  
In all above mentioned summarization approach, 
focus is on preserving the cluster members and they 
don’t consider any usage of clustering for 
classification purpose. Clustering approaches are 
created to summarize data and categorized the input 
data into some groups, but it can also be used as a 
pre-processing phase of classification task (Ester, 
1996)(Hinneburg, 1998). Each cluster has a label 
and for each new object the closest cluster is found 
and the object gets the label of that cluster. The 
mentioned approaches like k-means summarize the 
clusters, but they still consider the concept of circles 

around the core objects to find the closest cluster 
which is inaccurate. Graph-based structures are more 
accurate but they are time consuming. Anomaly 
detection is one of the applications of clustering in 
classification (HE, 2003)(Borah and Bhattacharyya, 
2008)(Gaddam, 2007)(Mohammadi, 2014). In this 
area, those objects which are outside of cluster 
boundaries are considered as anomaly. In previous 
works, clusters are generated using k-means and 
summarized with a centre and a radius which is 
inaccurate.  
In this paper, we present an approach to summarize 
clusters using Gaussian Mixture Models. Our 
approach covers both areas; it is a good 
representative of a cluster and it can be used for 
classification purpose. 

3 GENERAL STRUCTURE OF 
THE SGMM ALGORITHM 

The main idea behind the density-based clustering 
algorithms is to connect dense regions to create a 
cluster. With this idea, a set of core objects are 
detected and they are connected to each other using 
the shared neighbourhood. 
  
DEFINITION 3.1. In dataset D for a given k and 
radius r, an object ݋௜ is a core object if  
 

൛∀x ∈ D, o୨ ∈ Cห	ฮሼd൫o୧,, x൯ ൏ ሽฮݎ ൒ kሽ 
 

Where C is set of core objects and (‖	‖ሻ	shows the 
number of objects with distance less than r from the 
core object. Detection of k and r is critical in 
identifying good clusters.  

 

 

Figure 1: Structure of the SGMM method for cluster summarization. 
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The concept of core objects has been used to 
generate the backbone of a cluster and generate 
summery of the cluster. In some recent works 
(Chaoji, 2011) using a given k and core objects idea, 
they detect the backbone of cluster. In this paper, we 
use the same idea but with more concentration on 
decreasing the number of core objects and the time 
of detection of these core objects. The general idea 
for summarization of each cluster in this paper is 
based on Gaussian Mixture Model. Since Gaussian 
Mixture Model preserves the distribution of data 
using a set of Normal Distributions, it is a good 
candidate for summarizing any cluster. Therefore, 
we can apply simply EM algorithm on each cluster 
to find its GMM representative, but the main 
concern is to find the number of GMM components. 
In our proposed approach, we first find the number 
of GMM components, and then we find appropriate 
GMM for each cluster. Our method, Summarization 
Based on Gaussian Mixture Model (SGMM), has 
four main steps that are depicted in Figure 1. First, a 
set of objects called core objects are detected. These 
objects are representative of a cluster and can 
generate the original cluster as needed. After 
detection of backbone objects, there comes the 
absorption step, where the objects attached to the 
core object are absorbed and represented by core 
objects.  Then by introducing a new feature set for 
each object, cluster is summarized while its original 
distribution is preserved. Finally, each cluster is 
presented as a GMM. In the following sections, we 
describe each step in more detail. 

3.1 Finding Core Objects 

In this step, we find the core objects that create the 
backbone of each cluster. There are different ways to 
find the core objects in each cluster, but time is the 
main concern in this case. In this step, we consider a 
radius based on which we find the neighbours for all 
objects for each cluster. Then we sort all objects 
based on the number of neighbours. The first core 
object is the one with the maximum number of 
neighbours. All the neighbours of this object are 
removed from the list of possible core objects. With 
this approach, we reduce the overlap of core objects 
as much as possible. Among the remaining objects, 
we find the next objects with maximum number of 
neighbours. We label this object as a core object and 
remove neighbours of this object from further 
consideration. In this way with a heuristic approach, 
we find the core objects located in dense regions and 
all parts of cluster are covered using them. The new 

definition of the core objects with our methodology 
is presented as follow.  
 
DEFINITION 3.1.1. (Core Object) A core object is 
the object that has the maximum number of 
neighbours in comparison with other objects in its 
neighbourhood. The core object is not in the 
neighbourhood of another core object. 
 

൛∀c୧ ∈ Cหi ് j	, d൫c୧, c୨൯ ൐ rൟ 
 

Where i and j are the index for different core points 
and d refers to the distance of two objects. 

3.2 Absorption and Cluster Feature 
Extraction 

The goal of summarization is to find a good 
representative of each cluster and core objects are 
the only objects that we preserve in each cluster 
while the rest of the objects in the cluster are 
removed. After finding all core objects in each 
cluster, the next step is to define a cluster using core 
objects. It is obvious that considering only core 
objects cannot be a good representative of each 
cluster. The core objects have to be accompanied 
with a set of features related to the cluster to 
represent a cluster. This is why we define a set of 
features for each core object which are good 
representative for distribution around each core 
object.  

 
DEFINITION 3.2.1: (Core Object Feature) (CF) 
Each core object is represented by a triple 
〈ܿ௜, ,௜ߑ ߱௜〉 . 
 
In this definition ܿ௜ is the core object and Σ୧ is the 
covariance calculated using the core object and all 
objects in its neighbourhood. ߱௜ ൌ  is the ܵܥ/݊
weight of core object, n is the number of objects in 
the neighbourhood of core object ܿ௜	, and CS is 
cluster  size. ߱௜ shows the proportion of objects 
which are in the neighbourhood of the core object. 
Using the features for each core object, we estimate 
samples scattering around each core object without 
keeping the entire samples in the neighbourhood. 

3.3 GMM Representation of Clusters 

After finding the core objects and all necessary 
features for each cluster, we generate a Gaussian 
Mixture Model for each cluster.  
 
DEFINITION 3.3.1.  A Gaussian Mixture Model is a 
combination of a set of normal distributions. Given 

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

46



 

feature space ݂ ⊂ ܴௗ,  a Gaussian Mixture Model 
݃: ݂ → ܴ with n component is defined as:  
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Based on all  ܨܥ௜	, ݅ ൌ 1⋯݉ , a GMM is defined 
over a cluster. Each component for GMM is created 
using a core object, its covariance and the weights. 
In the formula in equation (1), μ୧ is the centre of the 
ith GMM component, which is set to the coordination 
of core object and therefore, μ୧ ൌ c୧. The covariance 
is set to covariance of ith core object covariance, that 
is Σ୧. The weight for each component is the weight 
of core object and as a result w୧	in the equation (1) is 
set to the weight of core object c୧ which is ω୧. 
The main goal of cluster summarization is to present 
a cluster in a way that it keeps the overall 
distribution of the cluster while reducing the number 
of objects in the cluster which is critical in stream 
data mining and online environment. To use a 
cluster as a class in classification, we need to find 
the closest cluster to a new incoming sample. In an 
arbitrary shape cluster, all objects represent a cluster 
and to find a right cluster for a new sample, it has to 
be compared with all objects in a cluster.  GMM-
based summarization fulfils both requirements for 
both applications; summarize data for the real time 
applications; generate a proper representation for 
each cluster to use them in classification approach.   

4 GAUSSIAN MIXTURE 
SUMMARIZATION  

As each GMM consists of a set of Gaussian 
distributions, finding the number of GMM 
components is a challenging issue. In this paper, we 
proposed a solution to calculate number of 
components for each cluster by finding the core 
points. In our approach, number of components for 
GMM is set to the number of core objects in a 
cluster.  
There are two essential features that should be 
considered. Each summarization technique has to 
preserve the original shape and the distribution of 
the data. Summarization of data using GMM has 
both characteristics. In SGMM some objects are 
selected in a way that they follow the general 
structure of data. Not only finding the core object is 
easy and fast but also it still follows the shape of the 
cluster. The algorithm starts from dense regions in 

the cluster and then goes to the most scattered part 
with consideration of covering all data objects in the 
cluster. In the SGMM method, the core objects are 
the ones which are in the center of dense regions and 
they cover all data. Therefore, for each region a 
representative object is chosen and then collection of 
these representative objects presents the entire 
cluster. Figure 2, shows the core objects generated 
for a cluster. This figure shows that the generated 
core objects follow the general structure of the 
cluster.  
 

 

Figure 2: Cluster with the core objects. 

Finding the general structure of a cluster using a set 
of objects is not enough for achieving high accuracy 
in classification applications. In many applications, 
we would like to keep the original or summery of 
data for more detail investigation. Saving the core 
objects cannot reveal any information about the 
distribution of data. Therefore, we need to find 
distribution information around the core objects and 
as we mentioned above, we capture such 
information using the covariance around core 
objects. Using such information, we are able to 
regenerate the original data.  
Finally, we need to know the contribution of each 
core object in generation of data. We find out the 
weight of each core object based on the number of 
neighbours that each object has. With knowing the 
location of core objects, related covariance and the 
weights, we summarize data using a GMM with the 
minimum loss of information. The relative GMM for 
a cluster is depicted using contour plots in Figure 2. 

5 COMPUTATIONAL 
COMPLEXITY 

In stream data mining application, using a fast 
algorithm is a critical requirement. In this section, 
we examine the computational complexity of the 
proposed algorithm. 
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In the first step of algorithm, we find the neighbours 
of each object; with N as the number of objects it 
takes O(ܰଶ) to find neighbours. Then, we need to 
sort the objects and absorb neighbours of the core 
objects that takes O(NlogN). In absorbing step, we 
find the number of neighbours for each core object 
and its related variance. We consider O(NlogN) for 
the second part of the proposed method which is the 
worst case. 
So, the final complexity of the proposed algorithm is  
O(ܰଶ ൅  In the grid-based method a .(ܰ݃݋݈ܰ
considerable amount of time is spent to create the 
grid and further investigation to find core grids and 
connecting them. In some other density-based 
methods such as ABACUS there are iterations to 
find core objects and to reallocate them which are 
time consuming. The output of SGMM is almost the 
same as that of ABACUS but the proposed method 
is not time consuming in comparison to ABACUS. 
The experiment results show that our heuristic leads 
to the same result with one step. In the next section, 
we develop a comparison between the required time 
of our method and the one for ABACUS. The results 
illustrate that the proposed method outperforms 
ABACUS in term of time. 

6 EXPERIMENTAL RESULTS 

We use both synthetic data set and the real data set 
in our experiments. Time and space complexity and 
the goodness of clustering are three different criteria 
that we evaluate our algorithm based on. Moreover, 
we set up different experiments to see the efficiency 
of our algorithm for categorizing new samples. We 
compared our algorithms with ABACUS (Chaoji, 
2011) which is one of the well-known 
summarization methods in literatures. All 
experimental results are generated in Matlab running 
on a machine with Intel CPU 3.4 GHz and 4GB 
memory. 
The first data set is a synthetic dataset as shown in 
Figure (3). We use this dataset to visualize the 
effectiveness of the proposed algorithm.  
 

 
Figure 3: Synthetic data with related GMMs. 

This figure shows 4 clusters and set of objects used 
in testing phase. In this Figure we see each cluster is 
represented by a GMM depicted with a contour plot. 
KDD dataset and some other UCI datasets are 
considered in our experiments to evaluate the 
accuracy of our algorithm on some real datasets.   

6.1 Clustering Goodness 

To show the efficiency of SGMM method, we set up 
experiments in which we summarize the dataset 
using core objects then we used these core objects 
and their related variance and weights to regenerate 
the dataset. The difference between the first dataset 
and regenerated dataset by core objects shows the 
strength of summarization algorithm. Experimental 
results show that SGMM method summarize dataset 
better than ABACUS method. To visualize the 
results, we generated a synthetic data with four 
clusters. Figure 4 from left to right shows the 
original dataset, core objects of each cluster and the 
dataset set regenerated using core objects using 
ABACUS and SGMM method. This figure shows 
that the core objects follow the original structure of 
the clusters and the regenerated clusters are similar 
to the original ones. This figure depicts the ability of 
SGMM method, and it shows that the summery 
generated by SGMM regenerates the original dataset 
better in comparison to ABACUS method. The 
difference between the accuracy of summarization 
of ABACUS and SGMM is clearer in the cluster 
with star shape. SGMM summery regenerate the 
data with star shape, but ABACUS method could not 
regenerate the same shape. These figures are just for 
visualization the result and to show the efficiency of 
the algorithm, we use Dunn and DB index. 
The Dunn index (Dunn, 1979) is a validity index 
which identifies compact and well-separated classes 
defined by equation (2) for a specific number of 
classes: 
 

1,..., 1,...,

1,...,

( , )
min min

max ( )
i j

nc i nc j i nc
k

k nc

dist c c
D

diam c  


            
 

Where nc is the number of classes, and dist(ci,cj) is 
the dissimilarity function between two classes Ci and 
Cj. The large values of the index indicate the 
presence of compact and well-separated classes. In 
our experiments, we first calculate the Dunn index 
for the original datasets. Then, summarize the 
dataset and re-generate the data again using the final 
core objects of GMMs and we find out the Dunn 
index for regenerated data. Finally, we get the 
difference between Dunn  index of original dataset  

(2)
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Figure 4: The first dataset is the original dataset, the second one is the core points and the third one is regenerated dataset 
using the core points based on ABACUS and SGMM methods.  

and the one which is regenerated. Using this 
experiment, we want to evaluate the regeneration 
ability of the SGMM method. In other words, we 
want to show how the SGMM method regenerates 
the data which follows the shape and distribution of 
the original data. Table 1 shows the results of this 
experiment. Each value in this table is the average of 
30 independent runs.  

Table 1: Difference of Dunn Index for original and 
regenerated dataset. 

Dataset\Index SGMM ABACUS 
Synthetic Data 0.02358 0.076932 

KDD 0.027701 0.034321 
Segment 0.008841 0.014636 

 

The closer the value to zero, the better the result we 
get. Based on the difference of Dunn index table, 
SGMM always outperforms ABACUS by far. For 
example in case of Segment dataset, the difference 
between the dataset generated by SGMM and the 
original dataset is almost zero while this value for  
ABCUS is around 0.01. This experiment illustrated 
that SGMM follow the sample distribution of the 
original dataset better than ABACUS. The next step 
is to repeat the experiment using DB cluster index. 
 
The second measurement we used is DB index 
(Davies and Bouldin, 1979) which is a function of 
the ratio of the sum of within cluster scatter to 

between-cluster separation. DB index is defined as 
in equation (3). 
 


  










 


n

i jin

jnin

ji QQS

QSQS

n
DB

1 ),(

)()(
max

1
                 (3) 

 

n is the number of clusters, ܵ௡ is the average 
distance of all objects of the cluster to their cluster 
centre, and ܵ௡൫ܳ௜, ܳ௝൯	is the distance between clusters 
centres. Hence, the ratio is small if the clusters are 
compact and far from each other. Consequently, 
Davies-Bouldin index will have a small value for a 
good clustering. As what we did for Dunn index, we 
find the distance of the original and regenerated 
data. Table 2 shows the experimental results of DB 
index on different datasets.  

Table 2: Difference of DB Index for original and 
regenerated dataset. 

Dataset\Index SGMM ABACUS 
Synthetic Data 0.006638 0.017609 

KDD 0.195763 0.232498 
Segment 0.0429764 0.0546819 

 

Result based on Dunn and DB index shows that the 
SGMM method generates more accurate summery 
of dataset and in case of regenerating the original 
dataset SGMM follows the original pattern better. 
  

Original Dataset Core points Regenerated Dataset 

SGMM 

ABACUS 
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6.2 Clustering Accuracy 

As mentioned above, clustering is used in 
classification as a preprocessing step. The 
application we focused on, in this part, is anomaly 
detection. We first cluster the normal data into some 
clusters then we consider these clusters as normal 
behaviours. The membership probability for each 
new sample is calculated. If the sample belongs to a 
cluster, it is normal otherwise it is an attack. For this 
purpose, we consider KDD dataset and we find out 
the accuracy of attack detection. Using GMM in 
classification is our proposed method and to the 
knowledge of author there is no other work similar 
to our approach. The only approach that has been 
used in an arbitrary shape cluster to label new 
sample is to consider all member of clusters which is 
the Naïve approach. In our experiment, we created 
GMM using our set of core objects and ABACUS 
core objects.  As we mentioned, we created the core 
objects using a simple method that spends less time 
and space. Therefore, there can be a doubt about the 
accuracy of categorizing using the clusters using our 
method?  The experiment shows that our approach 
does not decrease the accuracy.  
 
The ROC curve based on detection rate and false 
alarm rate for KDD dataset depicted in Figure 5. It 
shows while the ABACUS is more time consuming 
and find out too many core objects our method has 
the same and sometimes better accuracy. Figure 6 
shows the result for synthetic dataset. It shows that 
the accuracy of our approach is better than Naïve 
and ABACUS method. The result for synthetic 
dataset set shows that in spite of using clustering in 
categorizing new objects the accuracy is still good 
and comparable to the accuracy of classification 
methods.   

 
Figure 5: ROC curve for KDD dataset. 

Figure 6: ROC curve for Synthetic dataset. 

Table 3 shows more results on some other datasets, 
which confirms that summarizing and clustering 
data using SGMM method outperforms ABACUS 
method. The first value in Table 4 is the false alarm 
rate and the second one is the detection rate.  

Table 3: Accuracy of SGMM and ABACUS method in 
anomaly detection. 

Dataset\Index SGMM ABACUS 
Synthetic Data (2,94) (1.9,87) 

KDD (6.301, 100) (9.041, 100) 
Segment (33.83,94.39) (32.82,94.54) 

6.3 Algorithm Complexity 

Two main concerns in the area of summarization are 
the time spent to find the summery of a cluster and 
the number of objects preserved for it. Table (4) 
shows the space and the time spent to find the 
summery of a cluster for different datasets. This 
table shows that SGMM decreases time and space to 
summarize each cluster. It is clear that SGMM 
method uses only one iteration to find core objects 
while ABACUS method runs many iterations to find 
out the core objects and therefore, SGMM is faster. 
On the other side, SGMM summarizes cluster with 
less number of core objects. The reason lies in the 
SGMM algorithm in finding core objects. If an 
object is core object, all objects in its neighborhood 
are removed from possible set of core objects and 
we do not consider them. In this case, we are able to 
decrease the time and space complexity both. Table 
4 and 5 shows the time and space used by SGMM 
and ABACUS and it shows that using SGMM we 
decrease time and space considerably. 
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Table 4: Number of core objects for ABACUS and 
SGMM methods. 

Dataset\Space 
complexity 

SGMM ABACUS 

Synthetic Data 51 120 
KDD 46 272 

Segment 52 55 

Table 5: The time complexity for ABACUS and SGMM 
methods. 

Dataset\Time 
complexity 

SGMM ABACUS 

Synthetic Data 388 sec 1261 sec 
KDD 222 sec 836 sec 

Segment 7 sec 19 sec 

7 CONCLUSIONS 

In this paper, we presented a new approach for 
summarizing the arbitrary shape clusters. Our 
proposed algorithm, named SGMM, represents each 
cluster by a Gaussian Mixture Model (GMM) using 
sets of core objects. Each GMM is a representative 
of the distribution of whole members in a cluster. 
Moreover, SGMM is able to find the closest cluster 
for each new incoming sample. The experimental 
results based on Dunn and DB index confirms that 
the distribution of clusters is preserved after 
summarization. Additionally, in case of 
classification, the accuracy using SGMM is 
acceptable. Our proposed algorithm also exhibits a 
low computational cost which makes it a suitable 
approach for clustering stream data.  Extending the 
density based clustering to make it faster is a part of 
our future work.  

REFERENCES 

Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, 
1998, “Automatic sub-space clustering of high 
dimensional data for data mining applications,” 
SIGMOD Rec, vol. 27, pp.94–105. 

Bifet, A, Holmes G, Pfahringer B 2009. New ensemble 
methods for evolving data streams. In: Proceedings 
ofthe 15th ACM SIGKDD international conference on 
knowledge discovery and data mining. pp 139–148. 

Borah B., Bhattacharyya D., 2008. Catsub: a technique for 
clustering categorical data based on subspace. J 
Comput Sci2:7–20. 

Charu C. Aggarwal , T. J. Watson , Resch Ctr , Jiawei Han 
, Jianyong Wang , Philip S. Yu, 2003, A framework 

for clustering evolving data streams. Proceedings of 
the 29th VLDB Conference, Berlin, German. 

Davies D.L.,. Bouldin D.W. A cluster separation measure. 
1979. IEEE Trans. Pattern Anal. Machine Intell. 1 (4). 
Pp. 224-227. 

Yang D, Elke A, , Matthew O. Ward. 2011, 
Summarization and Matching of Density-Based 
Clusters in Streaming Environments. Proceedings of 
the VLDB Endowment (PVLDB), Vol. 5, No. 2, pp. 
121-132. 

Ester. M., Kriegel. H., Sander. J., and Xu. X. 1996, A 
density-based algorithm for discovering clusters in 
large spatial databases with noise. In KDD, pages 
226–231. 

Cao F, Ester M, Qian W, Zhou A, Density-based, 2006, 
clustering over an evolving data stream with noise. In 
2006 SIAM Conference on Data Mining. 328—339. 

G. Karypis, E.-H. Han and V. Kumar, 1999, Chameleon: 
Hierarchical Clustering Using Dynamic Modeling, 
Computer, 32:8, pp. 68–75. 

Gaddam S, Phoha V, Balagani K., 2007, K-means+id3: a 
novel method for supervised anomaly detection by 
cascading k-means clustering and id3 decision tree 
learning methods. IEEE Trans Knowl Data Eng 
19(3):345–354. 

Guha S, Meyerson A, Mishra N et al, 2003, Clustering 
data streams: theory and practice. IEEE Trans Knowl 
Data Eng 15(3):505–528. 

Han. J,  Kamber. M, J. Pei. 2006. Data Mining: Concepts 
and Techniques, Third Edition (The Morgan 
Kaufmann Series in Data Management Systems). 

HE, Z., XU, X., AND DENG, S. 2003. Discovering 
cluster-based local outliers. Pattern Recog. Lett. 24, 9–
10,1641–1650. 

Hinneburg. A. and Keim. D. A. 1998. An efficient 
approach to clustering in large multimedia databases 
with noise,” in KDD , , pp. 58–65. 

John Hershberger, Nisheeth Shrivastava, Subhash Suri, 
2009. Summarizing Spatial Data Streams Using 
ClusterHulls, Journal of Experimental Algorithmics 
(JEA), Volume 13,. Article No. 4 ACM New York, 
NY, USA. 

K. Dunn, j. Dunn. Well separated clusters and optimal 
fuzzy partitions. Journal of Cybernetics ,(4), (1974), 
pp. 95-104. 

Kristian Kersting, Mirwaes Wahabzada, Christian 
Thurau, Christian Bauckhage., 2010. Hierarchical 
Convex NMF for Clustering Massive Data. ACML: 
253-268. 

Mohammadi M, Akbari A, Raahemi B, Nasersharif B, 
Asgharian H. 2014. A fast anomaly detection system 
using probabilistic artificial immune algorithm capable 
of learning new attacks. Evolutionary Intelligence 
6(3): 135-156. 

Chaoji V, Li W, Yildirim H,  Zaki M, 2011. ABACUS: 
Mining Arbitrary Shaped Clusters from Large 
Datasets based on Backbone Identification. SDM, 
page 295-306. SIAM / Omnipress,. 

Wang. W., Yang. J., and Muntz. R. R., 1997. Sting: A 
statistical information grid approach to spatial data 

Arbitrary�Shape�Cluster�Summarization�with�Gaussian�Mixture�Model

51



 

mining.  In Proceedings of the 23rd International 
Conference on Very Large Data Bases ,ser.VLDB’97. 
San Francisco, CA, USA:Morgan Kaufmann 
Publishers Inc., pp. 

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

52


