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Abstract: Implementing new, high-performance MAC protocols requires real-time features, to be able to synchronize
correctly between different unrelated devices. Such features are highly desirable for operating wireless sensor
networks (WSN) that are designed to be part of the Internet of Things (IoT). Unfortunately, the operating
systems commonly used in this domain cannot provide such features. On the other hand, “bare-metal” devel-
opment sacrifices portability, as well as the multitasking abilities needed to develop the rich applications that
are useful in the domain of the Internet of Things.
We describe in this paper how we helped solving these issues by contributing to the development of a port
of RIOT OS on the MSP430 microcontroller, an architecture widely used in IoT-enabled motes. RIOT OS
offers rich and advanced real-time features, especially the simultaneous use of as many hardware timers as the
underlying platform (microcontroller) can offer. We then demonstrate the effectiveness of these features by
presenting a new implementation, on RIOT OS, of S-CoSenS, an efficient MAC protocol that uses very low
processing power and energy.

1 INTRODUCTION

When programming the small devices that constitutes
the nodes of the Internet of Things (IoT), one has to
adapt to the limitations of these devices.

Apart from their very limited processing power
(especially compared to the current personal comput-
ers, and even mobile devices like smartphones and
tablets), the main specificity of the devices is that they
are operated on small batteries (e.g.: AAA or button
cells).

Thus, one of the main challenges with these motes
is the need to reduce as much as possible their energy
consumption. We want their batteries to last as long as
possible, for economical but also practical reasons: it
may be difficult—even almost impossible—to change
the batteries of some of these motes, because of their
locations (e.g.: on top of buildings, under roads, etc.)

IoT motes are usually very compact devices: they
are usually built around a central integrated chip that
contains the main processing unit and several basic
peripherals (such as timers, A/D and D/A convert-
ers, I/O controllers. . . ) called microcontroller units or
MCUs. Apart from the MCU, a mote generally only
contains some “physical-world” sensors and a radio
transceiver for networking. The main radio commu-

nication protocol currently used in the IoT field is
IEEE 802.15.4. Some MCUs do integrate a 802.15.4
transceiver on-chip.

Among the various components that constitute a
mote, the most power-consuming block is the radio
transceiver. Consequently, to reduce the power con-
sumption of IoT motes, a first key point is to use
the radio transceiver only when needed, keeping it
powered-off as much as possible. The software ele-
ment responsible to control the radio transceiver in an
adequate manner is the MAC / RDC (Media Access
Control & Radio Duty Cycle) layer of the network
stack.

A efficient power-saving strategy for IoT motes
thus relies on finding the better trade-off between
minimizing the radio duty cycle while keeping net-
working efficiency at the highest possible level. This
is achieved by developing new, “intelligent” MAC /
RDC protocols.

To implement new, high-performance MAC /
RDC protocols, one needs to be able to react to events
with good reactivity (lowest latency possible) and
flexibility. These protocols rely on precise timing to
ensure efficient synchronization between the different
motes and other radio-networked devices of a Per-
sonal Area Network (PAN), thus allowing to turn on
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the radio transceivers only when needed.
At the system level, being able to follow such ac-

curate timings means having very efficient interrup-
tion management, and the extensive use of hardware
timers, that are the most precise timing source avail-
able.

The second most power-consuming element in a
mote, after the radio transceiver, is the MCU itself:
every current MCU offers “low-power modes”, that
consist in disabling the various hardware blocks, be-
ginning with the CPU core. The main way to min-
imize energy consumption with a MCU is thus to
disable its features as much as possible, only using
them when needed: that effectively means putting the
whole MCU to sleep as much as possible.

Like for the radio transceiver, using the MCU ef-
ficiently while keeping the system efficient and reac-
tive means optimal use of interruptions, and hardware
timers for synchronization.

Thus, in both cases, we need to optimally use in-
terruptions as well as hardware timers. Being able to
use them both efficiently without too much hassle im-
plies the use of a specialized operating system (OS),
especially to easily benefit from multitasking abilities.
That is what we will discuss in this paper.

2 PREVIOUS WORK AND
PROBLEM STATEMENT

Specialized OSes for the resource-constrained de-
vices that constitute wireless sensor networks have
been designed, published, and made available for
quite a long time.

2.1 TinyOS

The first widely used system in this domain was
TinyOS (Levis et al., 2005). It is an open-source
OS, whose first stable release (1.0) was published in
september 2002. It is very lightweight, and as such
well adapted to limited devices like WSN motes. It
has brought many advances in this domain, like the
ability to use Internet Protocol (IP) and routing (RPL)
on 802.15.4 networks, including the latest IPv6 ver-
sion, and to simulate networks of TinyOS motes via
TOSSIM (Levis et al., 2003).

Its main drawback is that one needs to learn a spe-
cific language—named nesC—to be able to efficiently
work within it. This language is quite different from
standard C and other common imperative program-
ming languages, and as such can be difficult to mas-
ter.

The presence of that specific language is no
coincidence: TinyOS is built on its own specific
paradigms: it has an unique stack, from which the
different components of the OS are called as stati-
cally linked callbacks. This makes the programming
of applications complex, especially for decomposing
into various “tasks”. The multitasking part is also
quite limited: tasks are run in a fixed, queue-like or-
der. Finally, TinyOS requires a custom GNU-based
toolchain to be built.

All of these limitations, plus a relatively slow de-
velopment pace (last stable version dates back to au-
gust 2012) have harmed its adoption, and it is not the
mainly used OS of the domain anymore.

2.2 Contiki

The current reference OS in the domain of WSN and
IoT is Contiki (Dunkels et al., 2004). It’s also an
open-source OS, which was first released in 2002.
It is also at the origin of many assets: we can men-
tion, among others, the uIP Embedded TCP/IP Stack
(Dunkels, 2003), that has been extended to uIPv6,
the low-power Rime network stack (Dunkels, 2007),
or the Cooja advanced network simulator (Österlind
et al., 2006).

While a bit more resource-demanding than
TinyOS, Contiki is also very lightweight and well
adapted to motes. Its greatest advantage over TinyOS
is that it is based on standard, well-known OS
paradigms, and coded in standard C language, which
makes it relatively easy to learn and program. It of-
fers an event-based kernel, implemented using coop-
erative multithreading, and a complete network stack.
All of these features and advantages have made Con-
tiki widespread, making it the reference OS when it
comes to WSN.

Contiki developers also have made advances in the
MAC/RDC domain: many of them have been imple-
mented as part of the Contiki network stack, and a
specifically developed, ContikiMAC, has been pub-
lished in 2011 (Dunkels, 2011) and implemented into
Contiki as the default RDC protocol (designed to be
used with standard CSMA/CA as MAC layer).

However, Contiki’s extremely compact footprint
and high optimization comes at the cost of some limi-
tations that prevented us from using it as our software
platform.

Contiki OS is indeed not a real-time OS: the pro-
cessing of “events”—using Contiki’s terminology—
is made by using the kernel’s scheduler, which is
based on cooperative multitasking. This scheduler
only triggers at a specific, pre-determined rate; on
the platforms we’re interested in, this rate is fixed
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to 128 Hz: this corresponds to a time skew of up
to 8 milliseconds (8000 microseconds) to process an
event, interruption management being one of the pos-
sible events. Such a large granularity is clearly a
huge problem when implementing high-performance
MAC/RDC protocols, knowing that the transmission
of a full-length 802.15.4 packet takes bout 4 mil-
liseconds (4000 microseconds), a time granularity of
320 microseconds is needed, corresponding to one
backoff period (BP).

To address this problem, Contiki provides a real-
time feature, rtimer, which allows to bypass the ker-
nel scheduler and use a hardware timer to trigger exe-
cution of user-defined functions. However, it has very
severe limitations:

� only one instance of rtimer is available, thus
only one real-time event can be scheduled or exe-
cuted at any time; this limitation forbids develop-
ment of advanced real-time software—like high-
performance MAC / RDC protocols—or at least
makes it very hard;

� moreover, it is unsafe to execute from rtimer,
even indirectly, most of the Contiki basic func-
tions (i.e.: kernel, network stack, etc.), because
these functions are not designed to handle pre-
emption. Contiki is indeed based on cooperative
multithreading, whereas the rtimer mechanism
seems like a “independent feature”, coming with
its own paradigm. Only a precise set of functions
known as “interrupt-safe” (like process poll())
can be safely invoked from rtimer, using other
parts of Contiki’s meaning almost certainly crash
or unpredictable behaviour. This restriction prac-
tically makes it very difficult to write Contiki ex-
tensions (like network stack layer drivers) using
rtimer.

Also note that this cooperative scheduler is de-
signed to manage a specific kind of tasks: the pro-
tothreads. This solution allows to manage different
threads of execution, without needing each of them
to have its own separate stack (Dunkels et al., 2006).
The great advantage of this mechanism is the abil-
ity to use an unique stack, thus greatly reducing the
needed amount of RAM for the system. The trade-
off is that one must be careful when using certain C
constructs (i.e.: it is impossible to use the switch
statement in some parts of programs that use pro-
tothreads).

For all these reasons, we were unable to use
Contiki OS to develop and implement our high-
performance MAC/RDC protocols. We definitely
needed an OS with efficient real-time features and
event handling mechanism.

2.3 Other Options

There are other, less used OSes designed for the
WSN/IoT domain, but none of them fulfilled our re-
quirements, for the following reasons:

SOS (Han et al., 2005). This system’s development
has been cancelled since november 2008; its au-
thors explicitly recommend on their website to
“consider one of the more actively supported al-
ternatives”.

Lorien (Porter and Coulson, 2009). While its
component-oriented approach is interesting, this
system seems does not seem very widespread.
It is currently available for only one hardware
platform (TelosB/SkyMote) which seriously lim-
its the portability we can expect from using an OS.
Moreover, its development seems to have slowed
down quite a bit, since the latest available Lorien
release was published in july 2011, while the lat-
est commit in the project’s SourceForge reposi-
tory (r46) dates back to january 2013.

Mantis (Abrach et al., 2003). While this project
claims to be Open Source, the project has made,
on its SourceForge web site, no public re-
lease, and the access to the source repository
(http://mantis.cs.colorado.edu/viewcvs/) seems to
stall. Moreover, reading the project’s main web
page shows us that the last posted news item men-
tions a first beta to be released in 2007. The last
publications about Mantis OS also seems to be in
2007. All of these elements tend to indicate that
this project is abandoned. . .

LiteOS (Cao et al., 2008). This system offers
very interesting features, especially the ability
to update the nodes firmwares over the wireless,
as well as the built-in hierarchical file system.
Unfortunately, it is currently only available on
IRIS/MicaZ platforms, and requires AVR Stu-
dio for programming (which imposes Microsoft
Windows as a development platform). This
greatly hinders portability, since LiteOS is clearly
strongly tied to the AVR microcontroller architec-
ture.

MansOS (Strazdins et al., 2010). This system is
very recent and offers many interesting features,
like optional preemptive multitasking, a network
stack, runtime reprogramming, and a scripting
language. It is available on two MCU architec-
tures: AVR and MSP430 (but not ARM). How-
ever, none of the real-time features we wanted
seems to be available: e.g. only software timers
with a 1 millisecond resolution are available.
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In any case, none of the alternative OSes cited here-
above offer the real-time features we were looking for.

On the other hand, “bare-metal” programming is
also unacceptable for us: it would mean sacrificing
portability and multitasking; and we would also need
to redevelop many tools and APIs to make applica-
tion programming even remotely practical enough for
third-party developers who would want to use our
protocols.

We also envisioned to use an established real-time
OS (RTOS) as a base for our works. The current ref-
erence when it comes to open-source RTOS is FreeR-
TOS (http://www.freertos.org/). It is a robust, mature
and widely used OS. Its codebase consists in clean
and well-documented standard C language. However,
it offers only core features, and doesn’t provide any
network subsystem at all. Redeveloping a whole net-
work stack from scratch would have been too time-
consuming. (Network extensions exist for FreeRTOS,
but they are either immature, or very limited, or pro-
prietary and commercial software; and most of them
are tied to a peculiar piece of hardware, thus ruining
the portability advantage offered by the OS.)

2.4 Summary: Wanted Features

To summarize the issue, what we required is an OS
that:

� is adapted to the limitations of the deeply-
embedded MCUs that constitute the core of
WSN/IoT motes;

� provides real-time features powerful enough to
support the development of advanced, high-
performance MAC / RDC protocols;

� includes a network stack (even a basic one)
adapted to wireless communication on 802.15.4
radio medium.

However, none of the established OSes commonly
used either in the IoT domain (TinyOS, Contiki) nor
in the larger spectrum of RTOS (FreeRTOS) could
match our needs.

3 THE RIOT OPERATING
SYSTEM

Consequently, we focused our interest on RIOT OS
(Hahm et al., 2013).

This new system—first released in 2013—is also

open-source and specialized in the domain of low-
power, embedded wireless sensors. It offers many in-
teresting features, that we will now describe.

It provides the basic benefits of an OS: portabil-
ity (it has been ported to many devices powered by
ARM, MSP430, and—more recently—AVR micro-
controllers) and a comprehensive set of features, in-
cluding a network stack.

Moreover, it offers key features that are otherwise
yet unknown in the WSN/IoT domain:
� an efficient, interrupt-driven, tickless micro-

kernel;
� that kernel includes a priority-aware task sched-

uler, providing pre-emptive multitasking;
� a highly efficient use of hardware timers: all

of them can be used concurrently (especially
since the kernel is tickless), offering the abil-
ity to schedule actions with high granularity; on
low-end devices, based on MSP430 architecture,
events can be scheduled with a resolution of
32 microseconds;

� RIOT is entirely written in standard C language;
but unlike Contiki, there are no restrictions on us-
able constructs (i.e.: like those introduced by the
protothreads mechanism);

� a clean and modular design, that makes develop-
ment with and into the system itself easier and
more productive.
The first three features listed hereabove make

RIOT a full-fledged real-time operating system.
We also believe that the tickless kernel and the op-

timal use of hardware timers should make RIOT OS a
very suited software platform to optimize energy con-
sumption on battery-powered, MCU-based devices.

A drawback of RIOT, compared to TinyOS or
Contiki, is its higher memory footprint: the full
network stack (from PHY driver up to RPL rout-
ing with 6LoWPAN and MAC / RDC layers) cannot
be compiled for Sky/TelosB because of overflowing
memory space. Right now, constrained devices like
MSP430-based motes are limited to the role of what
the 802.15.4 standard calls Reduced Function Devices
(RFD), the role of Full Function Devices (FFD) be-
ing reserved to more powerful motes (i.e.: based on
ARM microcontrollers).

However, we also note that, thanks to its modu-
lar architecture, the RIOT kernel, compiled with only
PHY and MAC / RDC layers, is actually lightweight
and consumes little memory. We consequently be-
lieve that the current situation will improve with the
maturation of higher layers of RIOT network stack,
and that in the future more constrained devices could
also be used as FFD with RIOT OS.
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When we began to work with RIOT, it also had
two other issues: the MSP430 versions were not sta-
ble enough to make real use of the platform; and be-
yond basic CSMA/CA, no work related to the MAC /
RDC layer had been done on that system. This is
where our contributions fit in.

4 OUR CONTRIBUTIONS

For our work, we use—as our main hardware
platform—IoT motes built around MSP430 micro-
controllers.

MSP430 is a microcontroller (MCU) architec-
ture from Texas Instruments, offering very low-power
consumption, cheap price, and good performance
thanks to a custom 16-bit RISC design. This archi-
tecture is very common in IoT motes. It is also very
well supported, especially by the Cooja simulator
(Österlind et al., 2006), which makes simulations of
network scenarios—especially with many devices—
much easier to design and test.

RIOT OS has historically been developed first on
legacy ARM devices (ARM7TDMI-based MCUs),
then ported on more recent microcontrollers (ARM
Cortex-M) and other architectures (MSP430 then
AVR). However, the MSP430 port was, before we im-
proved it, still not as “polished” as ARM code and
thus prone to crash.

Our contribution can be summarized in the follow-
ing points:

1. analysis of current OSes (TinyOS, Contiki, etc.)
limitations, and why they are incompatible with
development of real-time extensions like ad-
vanced MAC / RDC protocols;

2. add debugging features to the RIOT OS kernel,
more precisely a mechanism to handle fatal er-
rors: crashed systems can be “frozen” to facilitate
debugging during development; or, in production,
can be made to reboot immediately, thus reduc-
ing unavailability of a RIOT-running device to a
minimum;

3. port RIOT OS to a production-ready, MSP430-
based device: the Zolertia Z1 mote (already
supoorted by Contiki, and used in real-world sce-
narios running that OS);

4. debug the MSP430-specific portion of RIOT
OS—more specifically: the hardware abstraction
layer (HAL) of the task scheduler—making RIOT
OS robust and production-ready on MSP430-
based devices.
Note that all of these contributions have been

reviewed by RIOT’s development team and in-
tegrated into the “master” branch of RIOT OS’
Github repository (i.e.: they are now part of the
standard code base of the system).

5. running on MSP430-based devices also allows
RIOT OS applications to be simulated with the
Cooja simulator; this greatly improves speed and
ease of development.

6. thanks to these achievements, we now have a
robust and full-featured software platform of-
fering all the features needed to develop high-
performance MAC/RDC protocols—such as all of
the time-slotted protocols.

As a proof of concept of this last statement, we
have implemented one of our own designs, and ob-
tained very promising results, shown in the next sec-
tion.

5 USE CASE: IMPLEMENTING
THE S-CoSenS RDC PROTOCOL

5.1 The S-CoSenS Protocol

The first protocol we wanted to implement is S-
CoSenS (Nefzi, 2011), which is designed to work
on top of the IEEE 802.15.4 physical and MAC (i.e.:
CSMA/CA) layers.

It is an evolution of the already published CoSenS
protocol (Nefzi and Song, 2010): it adds to the latter
a sleeping period for energy saving. Thus, the ba-
sic principle of S-CoSenS is to delay the forwarding
(routing) of received packets, by dividing the radio
duty cycle in three periods: a sleeping period (SP),
a waiting period (WP) where the radio medium is
listened by routers for collecting incoming 802.15.4
packets, and finally a burst transmission period (TP)
for emitting adequately the packets enqueued during
WP.

The main advantage of S-CoSenS is its ability to
adapt dynamically to the wireless network throughput
at runtime, by calculating for each radio duty cycle
the length of SP and WP, according to the number of
relayed packets during previous cycles. Note that the
set of the SP and the WP of a same cycle is named
subframe; it is the part of a S-CoSenS cycle whose
length is computed and known a priori; on the con-
trary, TP duration is always unknown up to its very
beginning, because it depends on the amount of data
successfully received during the WP that precedes it.

The computation of WP duration follows a “slid-
ing average” algorithm, where WP duration for each
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duty cycle is computed from the average of previous
cycles as:

WPn = a �WPn�1 +(1�a) �WPn�1

WPn = max(WPmin;min(WPn;WPmax))

where WPn and WPn�1 are respectively the average
WP length at nth and (n� 1)th cycle, while WPn and
WPn�1 are the actual length of respectively the nth

and (n� 1)th cycles; a is a parameter between 0 and
1 representing the relative weight of the history in the
computation, and WPmin and WPmax are high and low
limits imposed by the programmer to the WP dura-
tion.

The length of the whole subframe being a param-
eter given at compilation time, SP duration is sim-
ply computed by subtracting the calculated duration
of WP from the subframe duration for every cycle.

The local synchronization between a S-CoSenS
router and its leaf nodes is done thanks to a beacon
packet, that is broadcasted by the router at the begin-
ning of each cycle. This beacon contains the duration
(in microseconds) of the SP and WP for the currently
beginning cycle.

The whole S-CoSenS cycle workflow for a router
is summarized in figure 1 hereafter.

Beacon
(broadcasted)

SP WP TP

P1 P2 P3 P1 P2 P3

Subframe

Figure 1: A typical S-CoSenS router cycle.
The gray strips in the SP represents the short wake-up-and-
listen periods used for inter-router communication.

An interesting property of S-CoSenS is that leaf
(i.e.: non-router) nodes always have their radio
transceiver offline, except when they have packets
to send. When a data packet is generated on a leaf
node, the latter wakes up its radio transceiver, listens
and waits to the first beacon emitted by an S-CoSenS
router, then sends its packet using CSMA/CA at the
beginning of the WP described in the beacon it re-
ceived. A leaf node will put its transceiver offline dur-
ing the delay between the beacon and that WP (that
is: the SP of the router that emitted the received bea-
con), and will go back to sleep mode once its packet
is transmitted. All of this procedure is shown in figure
2.

We thus need to synchronize with enough accu-
racy different devices (that can be based on different

R SP WP
TP

LN

Beacon

packet arrival

P1

P1

Figure 2: A typical transmission of a data packet with the
S-CoSenS protocol between a leaf node and a router.

hardware platforms) on cycles whose periods are dy-
namically calculated at runtime, with resolution that
needs to be in the sub-millisecond range. This is
where RIOT OS advanced real-time features really
shine, while the other comparable OSes are for that
purpose definitely lacking.

5.2 Simulations and Synchronization
Accuracy

We have implemented S-CoSenS under RIOT, and
made first tests by performing simulations—with
Cooja—of a 802.15.4 PAN (Personal Area Network)
constituted of a router, and ten motes acting as “leaf
nodes”. The ten nodes regularly send data packets
to the router, that retransmits these data packets to
a nearby “sink” device. Both the router and the ten
nodes use exclusively the S-CoSenS RDC/MAC pro-
tocol. This is summarized in figure 3.

S

R

6 7 8 9 10

1 2 3 4 5

Figure 3: Functional schema of our virtual test PAN.

Our first tests clearly show an excellent synchro-
nization between the leaf nodes and the router, thanks
to the time resolution offered by RIOT OS event man-
agement system (especially the availability of many
hardware timers for direct use). This can be seen in
the screenshot of our simulation in Cooja, shown in
figure 4. For readability, the central portion of the
timeline window of that screenshot (delimited by a
thick yellow rectangle) is zoomed on in figure 5.

On figure 5, the numbers on the left side are
motes’ numerical IDs: the router has ID number 1,
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Figure 4: Screenshot of our test simulation in Cooja. (Despite the window title mentioning Contiki, the simulated application
is indeed running on RIOT OS.)

Figure 5: Zoom on the central part of the timeline of our simulation.

while the leaf nodes have IDs 2 to 11. Grey bars
represent radio transceiver being online for a given
mote; blue bars represent packet emission, and green
bars correct packet reception, while red bars represent

collision (when two or more devices emit data con-
currently) and thus reception of undecipherable radio
signals.

Figure 5 represents a short amount of time (around
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100 milliseconds), representing the end of a duty cy-
cle of the router: the first 20 milliseconds are the end
of SP, and 80 remaining milliseconds the WP, then the
beginning of a new duty cycle (the TP has been dis-
abled in our simulation).

In our example, four nodes have data to transmit
to the router: the motes number 3, 5, 9, and 10; the
other nodes (2, 4, 6, 7, 8, and 11) are preparing to
transmit a packet in the next duty cycle.

At the instant marked by the first yellow arrow (in
the top left of figure 5), the SP ends and the router
activates its radio transceiver to enter WP. Note how
the four nodes that are to send packets (3, 5, 9, and
10) do also activate their radio transceivers precisely
at the same instant: this is thanks to RIOT OS precise
real-time mechanism (based on hardware timers), that
allows to the different nodes to precisely synchronize
on the timing values transmitted in the previous bea-
con packet. Thanks also to that mechanism, the nodes
are able to keep both their radio transceiver and their
MCU in low-power mode, since RIOT OS kernel is
interrupt-driven.

During the waiting period, we also see that several
collisions occur; they are resolved by the S-CoSenS
protocol by forcing motes to wait a random duration
before re-emitting a packet in case of conflict. In
our example, our four motes can finally transmit their
packet to the router in that order: 3 (after a first col-
lision), 5, 10 (after two other collisions), and finally
9. Note that every time the router (device number 1)
successfully receives a packet, an acknowledgement
is sent back to emitter: see the very thin blue bars that
follow each green bar on the first line.

Finally, at the instant marked by the second yellow
arrow (in the top right of figure 5), WP ends and a new
duty cycle begins. Consequently, the router broad-
casts a beacon packet containing PAN timing and syn-
chronization data to all of the ten nodes. We can see
that all of the six nodes waiting to transmit (2, 4, 6, 7,
8, and 11) go idle after receiving this beacon (beacon
packets are broadcasted and thus not to be acknowl-
edged): they go into low-power mode (both at radio
transceiver and MCU level), and will take advantage
of RIOT real-time features to wake up precisely when
the router goes back into WP mode and is ready to
receive their packets.

5.3 Performance Evaluation:
Preliminary Results

We will now present the first, preliminary results we
obtained through the simulations we described here-
above.

Important: note that we evaluate here the imple-

Figure 6: PRR results for both ContikiMAC and S-CoSenS
RDC protocols, using default values for parameters.

Table 1: PRR results for both ContikiMAC and S-CoSenS
RDC protocols, using default values for parameters.

PAI n Protocol ContikiMAC S-CoSenS
1500 ms 49.70% 98.10%
1000 ms 32.82% 96.90%

500 ms 14.44% 89.44%
100 ms 0.64% 25.80%

mentations, and not the intrinsic advantages or weak-
nesses of the protocols themselves.

We have first focused on QoS results, by comput-
ing Packet Reception Rates and end-to-end delays be-
tween the various leaf nodes and the sink of the test
PAN presented earlier in figure 3, to evaluate the qual-
ity of the transmissions allowed by using both of the
protocols.

For these first tests, we used default parameters for
both RDC protocols (ContikiMAC and S-CoSenS),
only pushing the CSMA/CA MAC layer of Contiki to
make up to 8 attempts for transmitting a same packet,
so as to put it on par with our implementation on
RIOT OS. We have otherwise not yet tried to tweak
the various parameters offered by both the RDC pro-
tocols to optimize results. This will be the subject of
our next experiences.

5.3.1 Packet Reception Rates (PRR)

The result obtained for PRR using both protocols are
shown in figure 6 as well as table 1.

The advantage of S-CoSenS as shown on the fig-
ure is clear and significant whatever the packet ar-
rival interval constated. Excepted for the “extreme”
scenario corresponding to an over-saturation of the
radio channel, S-CoSenS achieve an excellent PRR
(’ 90%), while ContikiMAC’s PRR is always / 50%.
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Figure 7: End-to-end delays results for both ContikiMAC
and S-CoSenS RDC protocols, using default values for pa-
rameters; note that vertical axis is drawn with logarithmic
scale.

Table 2: End-to-end delays results for both ContikiMAC
and S-CoSenS RDC protocols, using default values for pa-
rameters.

PAI n Protocol ContikiMAC S-CoSenS
1500 ms 3579 ms 108 ms
1000 ms 4093 ms 108 ms

500 ms 6452 ms 126 ms
100 ms 12913 ms 168 ms

5.3.2 End-To-End Transmission Delays

The result obtained for PRR using both protocols are
shown in figure 7 and table 2.

S-CoSenS has here also clearly the upper hand, so
much that we had to use logarithmic scale for the ver-
tical axis to keep figure 7 easily readable. The advan-
tage of S-CoSenS is valid whatever the packet arrival
interval, our protocol being able to keep delay below
an acceptable limit (in the magnitude of hundreds of
milliseconds), while ContikiMAC delays rocket up to
tens of seconds when network load increases.

5.3.3 Summary: QoS Considerations

While these are only preliminary results, it seems that
being able to leverage real-time features is clearly a
significant advantage when designing and implement-
ing MAC/RDC protocols, at least when it comes to
QoS results.

6 FUTURE WORKS AND
CONCLUSION

We plan, in a near future:

� to bring new contributions to the RIOT project:
we are especially interested in the portability that
the RIOT solution offers us; this OS is indeed ac-
tively ported on many devices based on powerful
microcrontrollers based on ARM Cortex-M archi-
tecture (especially Cortex-M3 and Cortex-M4),
and we intend to help in this porting effort, es-
pecially on high-end IoT motes we seek to use in
our works (e.g.: as advanced FFD nodes with full
network stack, or routers);

� to use the power of this OS to further advance our
work on MAC/RDC protocols; more precisely,
we are implementing other innovative MAC/RDC
protocols—such as iQueue-MAC (Zhuo et al.,
2013)—under RIOT, taking advantage of its high-
resolution real-time features to obtain excellent
performance, optimal energy consumption, and
out-of-the-box portability.

RIOT is a powerful real-time operating sys-
tem, adapted to the limitations of deeply embedded
hardware microcontrollers, while offering state-of-
the-art techniques (preemptive multitasking, tickless
scheduler, optimal use of hardware timers) that—we
believe—makes it one of the most suitable OSes for
the embedded and real-time world.

While we weren’t able to accurately quantize en-
ergy consumption yet, we can reasonably think that
lowering activity of MCU and radio transceiver will
significantly reduce the energy consumption of de-
vices running RIOT OS. This will be the subject of
some of our future research works.

Currently, RIOT OS supports high-level IoT pro-
tocols (6LoWPAN/IPv6, RPL, TCP, UDP, etc.). How-
ever, it still lacks high-performance MAC / RDC layer
protocols.

Through this work, we have shown that RIOT OS
is also suitable for implementing high-performance
MAC / RDC protocols, thanks to its real-time features
(especially hardware timers management).

Moreover, we have improved the robustness of the
existing ports of RIOT OS on MSP430, making it a
suitable software platform for tiny motes and devices.
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Nefzi, B. (2011). Mécanismes auto-adaptatifs pour la ges-
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