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Abstract: The aim of this study was to show that amino acid sequences have a latent periodicity with insertions and 
deletions of amino acids in unknown positions of the analyzed sequence. Genetic algorithm, dynamic 
programming, and random weight matrices were used to develop the new mathematical algorithm for latent 
periodicity search. The method makes the direct optimization of the position-weight matrix for multiple 
sequence alignment without using pairwise alignments. The developed algorithm was applied to analyze the 
amino acid sequences of a small number of proteins. This study showed the presence of latent periodicity 
with insertions and deletions in the amino acid sequences of such proteins, for which the presence of latent 
periodicity was not previously known. The origin of latent periodicity with insertions and deletions is 
discussed. 

1 INТRODUCTION 

The development and application of mathematical 
methods in the study of symbolic sequences is of 
particular importance to achieve great success in the 
sequencing of various genomes. It also increases the 
accumulation of information about the complete 
genomes of many species (Ekblom and Wolf, 2014). 
If mathematical methods are not applied, a big part 
of the known nucleic and amino acid sequences will 
be stored away in computer data banks, without 
significant usage. This is especially true for 
eukaryotic genomes. The task of developing new 
mathematical methods entails finding new 
mathematical laws to explain sequence organization 
and the relationship of these laws with the biological 
functions of various parts of the genome (Almirantis 
et al., 2014). These studies show the relationship 
between certain mathematical regularities observed 
in sequences with their biological properties. 

Latent periodicity is one of the structural 
regularities of sequences and is widely represented 
in amino and DNA sequences (Korotkov et al., 
2003a, 2003b). A periodicity is considered as latent 
if the similarity between any two periods is not 
statistically significant or if it belongs to the twilight 

zone (Durbin et al., 1998). Perfect periodicity can 
become latent periodicity if it accumulates over 1.0 
mutations per amino acid in the studied sequence 
(Suvorova et al., 2014). The distinctive property of 
latent periodicity is that it cannot be detected by 
pairwise comparisons of amino acid sequences 
(Turutina et al., 2006). However, latent periodicity 
can be found if we apply a mathematical method to 
directly detect the multiple alignment of amino acid 
sequences without constructing pairwise alignments. 
The periods of a sequence with latent periodicity are 
sequences for multiple alignment and the multiple 
alignment can be statistically significant. The goal of 
this study was to find multiple alignments of amino 
acid sequences (periods) in the absence of 
statistically important pairwise alignments. 

There is a significant gap in the mathematical 
approaches presently used to search for latent 
periodicities in symbolic and numeric sequences. 
Spectral approaches enable the discovery of enough 
"fuzzy" periodicity in protein sequences without 
insertion(s) or deletion(s) of amino acids. Fourier 
transform, wavelet transform, information 
decomposition and some other methods can be 
attributed to a number of spectral methods (Tiwari et 
al., 1997; Lobzin and Chechetkin, 2000; 
Kravatskaya et al., 2011; Korotkov et al., 2003a; de 
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Sousa Vieira, 1999; Meng et al., 2013; Suvorova et 
al., 2014; Sosa et al., 2013; Kumar et al., 2006). 
However, these approaches have a significant 
limitation, such as the fact that they do not allow the 
detection of periodicity with insertions and 
deletions. 

On the other hand, methods based on dynamic 
programming can accurately find insertions and 
deletions (Pellegrini, 2015). However, methods 
based on dynamic programming cannot detect latent 
periodicity, in a situation where the statistical 
significance of similarity between any two periodic 
sequences is small (Korotkov et al., 2003; Turutina 
et al., 2006). This is due to the fact that the 
periodicity of amino acid sequences (with the 
number of periods greater than or equal to 4) was 
detected by pairwise alignment between periods. In 
the absence of statistically significant pairwise 
alignments, these approaches are incapable of 
finding latent periodicity. First of all, it concerns 
algorithms and programs such as REP (Andrade et 
al., 2000), Internal Repeat Finder (Marcotte et al., 
1999), Prospero (Mott, 1999), RADAR (Heger & 
Holm, 2000), REPRO (Heringa & Argos, 1993) 
TRUST (Szklarczyk & Heringa, 2004) and 
PTRStalker (Pellegrini et al., 2012). It is also 
difficult to detect latent periodicity by the programs 
XSTREAM (Newman & Cooper, 2007) and T-
REKS (Jorda & Kajava, 2009) because the similarity 
between different periods is very low in the case of 
latent periodicity. This leads to lack of seeds and 
identical short strings. The Markov models and 
neural networks are inefficient for finding latent 
periodicity, since there are no training samples. The 
following programs were used in previous studies 
HHrep (Söding et al., 2006), HHRepID (Biegert & 
Söding, 2008) and the approaches developed in the 
works of Palidwor et al. (2009) and Rubinson & 
Eichman (2012). 

Therefore, in this study a mathematical method 
was proposed that considers this gap and finds the 
latent periodicity of any symbolic sequence in the 
presence of insertions and deletions (in unknown 
positions of the analyzed sequence) and in the 
absence of a known position-weight matrix. 

Any periodicity of the sequence S with length N 
can be characterized by either the frequency matrix 
(Korotkov et al., 2003b) or the position-weight 
matrix M (Shelenkov et al., 2006) calculated from 
frequency matrix. Amino acids are the signs of the 
rows of this matrix while period positions serve as 
the signs of the columns. The element of this matrix 
m(i,j) indicates the weight which has the amino acid 
i in position j of the period. The positions of the 

period changed from 1 to n. The sequence S1 of 
length N, which is an artificial periodic sequence 
1,2,...,n, was introduced. Here, the numbers were 
treated as symbols and columns in the matrix M 
were consistent with them. For a period equal to n, 
the sequence S corresponds to a certain frequency 
matrix and weight matrix M(20,n). The problem was 
formulated as follows. We have a sequence S with 
length N. It is necessary to find such optimal 
weighting matrix M0, where the local alignment of 
sequences S1 and S have the greatest statistical 
significance. Under the statistical significance, the 
probability P is that Fr> Fmax, where Fmax is the 
maximum weight of a local alignment of sequences 
Sr and S1, using the some optimal matrix M0. Here, 
Fr is the maximum weight of a local alignment of 
randomly mixed sequences Sr and S1 using the some 
optimal matrix Mr. We search a matrix M0, which 
have the lowest probability P. It is always possible 
to set the threshold level of the probability P0 and if 
the probability P(Fr>Fmax) is less than P0, then a 
local alignment of sequences S and S1 is found, using 
the some optimum matrix M0 and this alignment can 
be considered as statistically significant. 

It is possible to use the local alignment 
algorithm, for alignment of the amino acid sequence 
S and an artificial periodic sequence S1, relative to 
the known weight matrix (Smith and Waterman, 
1981). It is necessary to find the optimal weight 
matrix M0. The objective of this study was to 
develop a mathematical approach for finding the 
matrix M0, as well as a method for assessing the 
probability P. To find the optimal weight matrix, a 
genetic algorithm was used, as well as a local 
alignment algorithm. The Monte Carlo method was 
used to estimate the probability P.  

A mathematical method was developed in this 
paper to find more than 3 tandem repeats in amino 
acid sequences. The method was used for direct 
optimization of the position-weight matrix for 
multiple sequence alignment without using pairwise 
alignments. This means that for each n, a matrix M0 
is found, the probability P is estimated and we build 
the alignment of the sequences S and S1 using M0 
matrix. It is not the goal of this study to analyze all 
the known amino acid sequences, since the 
developed method requires very large computer 
resources. The developed algorithm was applied to 
search for latent periodicity with insertions and 
deletions in the amino acid sequences of a small 
number of proteins This study showed the presence 
of latent periodicity with insertions and deletions in 
the amino acid sequences of proteins, for which the 
presence of latent periodicity was not previously 
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known. 

2 MATHEMATICAL METHODS 
AND ALGORITHMA 

A genetic algorithm was used to search for the 
optimal weight matrix M0  for period n. A genetic 
algorithm is a heuristic search algorithm for solving 
optimization problems and is a form of direct 
random search (Mitchell, 1998). It is often used to 
optimize the functions of several variables. The 
general view of the algorithm is as shown in Figure 
1. Usually, the problem is formalized, so that a 
solution could be found as a vector, where each 
element can be a bit, a number, or some other object. 
This vector is considered as an "organism." Usually, 
a set of initial organisms are randomly created 
(Gondro and Kinghorn, 2007). Each of these 
organisms was measured using an objective 
function, which is regarded as a "fitness function." 
As a result, every organism is associated a certain 
fitness value, which determines how well the 
organism solves the problem. Organisms are 
selected from this set of organisms (it can be called 
“generation”) for application of the "genetic 
operators" (“crossing” and “mutation”, taking into 
account the value of “fitness”). The new organisms 
were gotten as a result of the application of these 
operators. The value of fitness was also calculated 
for new organisms, and then selection of the best 
organisms to the next generation was done. This set 
of actions was repeated iteratively, and thereby 
simulating the "evolutionary process". This process 
was allowed to continue for several life cycles 
(generations), before executing the stop criterion of 
the algorithm. Such a criterion can be either finding 
the global or suboptimal solutions or exhaustion of 
the number of generations released for evolution. In 
this study, the organisms are the weighting matrix of 
the periodicity. This set was called Qn or population. 
Each matrix has 20 rows and n columns. Matrix 
elements m(i,j) are some numbers that show the 
weight amino acids i to column number j. A larger 
weight of the element m(i,j) corresponds to a high 
probability of the presence of the amino acid i at 
position j of the period. As the assessment of fitness 
(objective function) for the organism (weight matrix 
M), the maximum value of the similarity function 
Fmax was considered for the local alignment 
(Altschul et al., 1990). A local alignment was built 
between the sequences S1 and S, using a weight 
matrix M to calculate the objective function. The 

calculation of Fmax was conducted for each organism 
(weight matrix M). The process was repeated after 
applying genetic operators to the organisms. The 
process was stopped after a stable population was 
achieved, that is, increase in the values of Fmax was 
stopped. As a result, the matrix M0 was defined for 
the period length n with the greatest Fmax. The 
alignment of sequences S1 and S was well built using 
the matrix M0. The algorithm discussed is as shown 
in Figure 1. The algorithm was repeated for n from 2 
to 100. 

 
Figure 1: The main stages of the genetic algorithm used in 
the study. 

2.1 Initialization 

The first step of the algorithm is to provide a zero 
generation of organisms (weight matrix in our case) 
for the local alignment. A random population of 
organisms was selected as zero generation. The zero 
generation of organisms must be maximally diverse 
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in order to more quickly achieve a stable population 
and find matrix M0, maximum of Fmax. Organisms 
(matrix of the size 20×n) can be viewed as points in 
space with a size of 20×n. It is possible to achieve 
the maximum diversity of organisms, if the points 
are selected in space 20×n spaced at a distance 
D>D0. The coordinates of these points are the initial 
matrices (organisms). The distance between both 
matrices (organisms), the Euclidean distance 
between the two points in space 20xn, was taken. 

20
2,0

1 2
1 1

( ( , ) ( , ))
n

i j
D m i j m i j

 

   (1) 

where m1(i,j) and m2(i,j) are elements of the two 
matrices (M1 and M2) compared. The population size 
should be large enough. Organisms having a high 
fitness function are distributed too quickly in 
populations with a small size. The population 
becomes homogeneous and the probability of 
continuation of the evolution becomes very small. 
This means that the algorithm can find the local 
rather than the global maximum of Fmax, in the case 
of a small population size. At the same time, 
descendants produced in large populations are likely 
to be more varied, although an increase in Fmax is 
much slower. A population size equal to 104 was 
used for all the results presented here. These 104 
weight matrices were chosen so as to cover the space 
20×n, as fully as possible. Each matrix M (organism) 
was created by comparing the sequence S1 with a 
random sequence of length N. The random sequence 
Sri was obtained by mixing the original sequence S, 
with i varied from 1 to 104. The frequency matrix 
V(20,n) was completed as follows. To elements of 
the matrix v(sr(k),s1(k)), a value of 1 was added for 
all k from 1 to N, where sr(k) is an element of the 
sequence Sri. Then, based on the matrix V, the 
weighting matrix M(20,n) was calculated as: 

 
( , ) ( , )( , )
( , ) 1 ( , )

v i j Np i jm i j
Np i j p i j





 (2) 

where the partial sums for lines are ( ) ( , )
j

x i v i j  

and for columns are ( ) ( , )
i

y j v i j , 
,

( , )
i j

N v i j  

and probabilities 2( , ) ( ) ( )p i j x i y j N . If this 
matrix is the first in the population, then it is 
automatically included in the initial population. If 
this matrix is not the first matrix, it is compared with 
all the matrices (organisms) already included in the 
population and the distance from each matrix was 
calculated using Formula 1. If the distances are 

greater than the D0, then the matrix is included in the 
initial population. Otherwise, this matrix is rejected 
and a new matrix is created. The level of D0 was 
chosen so that the initial population will have from 
104 to 1.05×104 from 5×105 random matrices. Let us 
call the population of organisms (matrices) as Qn. 

2.2 Calculation of Fitness and 
Statistical Significance of the 
Organism 

After the birth of a new organism (creating a new 
matrix M), the first step is to assess the fitness of the 
organism. This is the determination of Fmax of the 
local alignment (Smith and Waterman, 1981) for 
sequences S1 and S, using a weighting matrix M. The 
higher the value, Fmax corresponds to a better 
alignment and to a lower probability P(Fr>Fmax). 
The fitness of the organism (chapter 2) is higher for 
larger values of Fmax. In more detail, the construction 
of a local alignment is discussed subsequently in 
paragraph 2.6. After completion of the genetic 
algorithm, an argument of the normal distribution 
for the organism Mmax (which have the highest Fmax) 
was calculated using the formula: 

max

max
mk

F M F
Z

D F

   
  



  (3) 

where 1 2
max max max max, , ..., NF F F F


 are the maximum 
weights of the local alignments between random 
sequence Sri and the sequence S1, is determined 
using the best weight matrix Mmax.  

Calculation of the vector maxF was performed 
using random sequences Sri derived from the amino 
acid sequence S by random mixing. In total, 200 
random sequences were created (NR = 200). The 
necessity of using values Zmk instead of Fmax at the 
end of the calculation, is due to the fact that the 
direct calculation of the probability P(Fr>Fmax) is 
difficult, because of the very large amount of 
computations. Furthermore, while reducing the 
probability P(Fr>Fmax), the amount of computations 
grew very quickly and for a good periodicity in the 
sequence S, the calculations could not be performed 
within a reasonable time. Therefore, it is convenient 
to use Zmk as a measure of statistical significance of 
Fmax for the matrix Mmax. A similar calculation was 
performed for all the investigated period of length n 
and the dependence Zmk(n), was obtained. 
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2.3 Completion of the Genetic 
Algorithm 

Proofs that the genetic algorithm necessarily reach 
the global optimum, even for an infinite number of 
iterations, are currently non-existent (Mitchell, 
1998). This necessitated the decision to stop the 
algorithm adopted by the heuristic criteria. 
Therefore, a decision was reached to use a 
combination of the two most common genetic 
algorithm stopping criteria (Banzhaf et al., 1998). 
The evolutionary process was continued as long as 
the best organism (matrix with the highest Fmax) will 
not be repeated for several generations, or will limit 
the number of iterations reached (104). In this paper, 
the resulting solution is considered as the found 
global optimum. Figure 2 shows an example of the 
growth of Fmax for the best organism in the 
population. 

 
Figure 2: The graph of growth of the fitness Fmax for the 
best individual in the population in the process of 
evolution. 

2.4 Choice of Parents in the Genetic 
Algorithm 

The choice of parents was made using a combination 
of approaches: the elite and fitness proportionate 
selection, also known as roulette-wheel selection 
(Bäck, 1996). To do this, firstly, all organisms were 
sorted on the degree of Fmax increase and then, 20% 
of organisms with the highest Fmax, were selected. 
Thereafter, two parents were selected among them 
with a probability that depends on the Fmax. If i

maxF  
is the fitness of the organism i in the population, 
then the probability of the organism selection is as 

follows: 
1

/
K

i i
i max max

k
P F F



  where K is the size of the 

population. It is more likely that more adapted 
organisms will be selected as parents, if this 
approach is used. However, for the less fit 

individuals, there is still a chance of being selected 
for reproduction and survival during evolution. This 
is an advantage over the purely elite strategy, despite 
the impracticality, an organism (weighting matrix) 
can contain successful portions (successful matrix 
elements). Then, these properties of the organism 
can be taken up by evolution and can contribute to 
the global maximum. 

2.5 Reproduction of Organisms 

The recombination operator was used immediately 
after the selection of parents for the creation of 
descendants. The essence of recombination is that 
created descendants should inherit genetic 
information from both parents. Then, the mutation 
operator was applied for each descendant. 

2.5.1 Recombination of Organisms and the 
Creation of Descendants 

A combination of the two-point crossover and 
differential crossing was used to create descendants. 
In this case, the organisms (matrix) were considered 
as a linear vector. This means that the matrix rows 
were built one behind the other in a line. These 
vectors were then closed in a ring formed by a 
compound at the ends of these vectors. Then, the 
random selection of two points on the ring was 
performed and the segment from one ring was used 
to replace the segment of the other ring (Fogel, 
1998; Fogel, 2010). Two-point crossover showed an 
improvement over the single point crossover. 
Further addition of crossover points impairs the 
activity of the genetic algorithm as the increased 
destruction of organisms and evolutionary process 
slows down (Spears and De Jong, 1991; Sywerda, 
1989). 

Afterwards, the intermediate recombination was 
used. The values of "genes" of the organism (weight 
matrix elements) other than the value of the parental 
"genes", occur at an intermediate recombination. 
This leads to the emergence of new organisms with 
fitness that could be better than that of the parents. 
Such recombination operator in the literature is 
sometimes called differential crossing. If x  and y
are two organisms in a population (two weight 
matrix with elements x(i,j) и y(i,j)), then the 
descendant is calculated by the formula (Radcliffe, 
1991):  ij ij ij ijz x x y    where i=1,2,...,20, 

j=1,2,...,n and  0,1   are random values with a 
uniform distribution. Here, the matrix of weights 
(organism) was considered as a vector. To create 
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descendants after the two-point crossover, two 
parents were involved. Then, two descendants (w 
and v) were formed using Formulae 4 and 5: 

 ( , ) ( , ) 1 ( , )w i j x i j y i j     (4) 

 ( , ) 1 ( , ) ( , )v i j x i j y i j     (5) 

2.5.2 Creation of Mutations 

By one of two methods, mutations were introduced 
in the descendants W and V. The initial method of 
introducing mutations (probability for each method 
was 0.5) was randomly chosen. The first method 
replaced the randomly selected element of the 
weight matrix on a random number that is uniformly 
distributed in the range from -1 to 1. The probability 
for a replacement p1 is equal to 0.01. All elements of 
all descendants exposed a random change of values. 
Changes were made to the whole matrix (all its 
values) on some small value, in the second method 
of making mutations. The intensity of the whole 
matrix mutation was determined by the probability 
p2, which was randomly selected from the range of 
0.001 to 0.03. Each descendant element ( , )w i j of 
the matrix W  was replaced with a new element, 
calculated according to the formula: 

2( , ) ( , ) ( , )v i j w i j p w i j   where i=1,2,...,20 and j = 
1,2, ..., n. After making mutational changes, the 
fitness of descendants (W and V) was evaluated, that 
is, Fmax was calculated for them. The descendant 
with a maximum value of Fmax was added to the 
population Qn. Concurrently, the worst organism 
with the smallest value of Fmax was removed from 
the population Qn. This method of replacing 
organisms in the population maintains the 
population size. 

2.6 Construction of the Alignment and 
Choice of Weight for Deletion 

2.6.1 Alignment of Amino Acid Sequence 
using the Random Matrices 

A local alignment of sequences S1 and S was 
conducted using the weight matrices (organisms) 
and affine function penalty for insertions and 
deletions, to search Fmax and the matrix M0 (Durbin 
et al., 1998). To construct the alignment, the 
matrices for similarity functions F, F1 and F2 were 
filled for each matrix M from the population (set 
Qn). Matrix M changed and turned into a matrix M'.  

1

1

2

1
1

2
2

0
( 1, 1) '( ( ), ( ))

( , ) max
( 1, 1)
( 1, 1)

( 1, )
( , ) max

( 1, )

( , 1)
( , ) max

( , 1)

F i j m s i s j
F i j

F i j d
F i j d

F i j d
F i j

F i j e

F i j d
F i j

F i j e

 
         
    

  
    

  
    

 
(6) 

where s1(i) and s(i) are letters from the sequences S1 
and S, d is the price for opening insertion or deletion 
in the sequences S1 and S, e is the price for the 
continued insertion or deletion in the sequences S1 
and S. Here, i and j changed from 1 to N. The 
matrices F, F1 and F2 have a dimension equal to 
N×N, where N is the length of sequences S1 and S. 
Fmax was selected as the maximum element of the 
matrix F. The coordinates of this element are im and 
jm.  

Simultaneously, by calculating the matrixes F, F1 
and F2 inverse transition matrix F' (same dimensions 
as the matrix F) were also filled. Each element of the 
matrix F’(i,j) contains the number of the matrix (1 
for F, 2 for F1 and 3 for F2) and the number of 
element of the matrix F or F1 or F2, which has a 
maximum value in Formula 6. Using the inverse 
transition matrix F’, the alignment of the sequences 
S1 and S was built. The path in the matrix F’ from 
the point (im, jm) to the point (i0, j0), corresponds to 
the created alignment. At the first instance, the point 
(i0, j0) F’ is equal to zero and serves as the beginning 
of the alignment. The matrix M (organisms) from the 
set Qn (population) was used to create the alignment 
of sequences S1 and S. For every matrix M from the 
set Qn, the values R and Kd were calculated before 
carrying out the alignment as: 

20
2 2

1 1

( , )
n

i j
R m i j

 

  (7) 

20

1 1

( , ) ( ) ( )
n

d
i j

K m i j f i t j
 

  
(8) 

where f(i)=b(i)/N, b(i) is the number of amino acids 
of type i in the sequence S, t(j)=1/n, N is the total 
number of amino acids in the sequence S. For 
calculation of the alignment, a changed matrix 'M  
has to satisfy two conditions. The first condition is 
that R for the matrix 'M  with the same period length 
n would be identical and equal to 5(20n)1/2. The 
dependence R~n1/2 allows a similar distribution for 
Fmax to be obtained, for a study of the different 
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random sequences Sri. These random sequences 
were obtained by mixing the original sequence S.

 The second condition is that the distribution 
functions for Fmax for each matrix from the set Qn 
should be close to each other. Such a distribution 
function can be determined for each matrix from the 
set Qn, if this matrix is used to calculate the 
alignments of the sequence S with each random 
sequence from the set Sri. Kd was selected for each 
matrix from the set Qn which would provide 
maximum identity l (see below this paragraph). 

The above two conditions enabled the 
replacement of the matrix M by the matrix that 
satisfies Equations 7 and 8. Equation 7 is the 
equation of the sphere in space 20×n and Equation 8 
is an equation of the plane. If the matrix satisfies 
these conditions, then it lies on the circle C formed 
by the intersection of the sphere (Equation 7) by the 
plane (Equation 8). Matrix M was considered as a 
point in space 20×n and from this point, the nearest 
point was taken which lies on the circle C. The 
coordinates of this point are the desired matrix 'M . 
It is possible to use Equations 7 and 8 and to 
calculate the matrix 'M . Actually, it means that if 
we have the constant R, Kd, matrix M and calculate 
f(i) for the sequence S, then the matrix 'M  (if there 
is the circle C) can be clearly defined. Matrix M’ is 
used in Equation 6. 

The next task was to choose the constant Kd for 
each matrix from the set Qn, which would provide 
the maximum identity of the distribution function of 
the Fmax. The average length of a random alignment 
l  for each matrix from the Qn set, as the average 
for difference (jm-j0) along with the calculation of the 
distribution function of the Fmax. Here, jm is the 
coordinate of Fmax in sequence S, j0 is the coordinate 
where F=0.0 in the calculation of the alignment 
(coordinate of the beginning of the alignment in the 
sequence S). The average length of the random 
alignment chosen is equal to N/5. This value 
provides the best determination of the alignment 
boundaries with respect to the actual boundaries for 
the model sequences of length N. As model 
sequences, random sequences were selected for the 
insertion of a local alignment with periodicity for 
which Z> 10.0 (Korotkov et al,. 2003a) and length is 
from N/10 to N/2. 

The constant Kd was selected iteratively. Kd 
provides l

 
to be approximately N/5 and obviously 

lies in the range from K1=0 to K2=-20. Then, the 
middle of this interval was taken. If l  was more 
than N/5, then K1=(K1+K2)/2 is calculated and if l  is 
less than N/5, K2=(K1+K2)/2 is calculated and the 

process was repeated. Upon reaching the value l
=N/5±20, selection of the constant Kd stopped. 

Random sequences were created by the 
following algorithms. A number sequence was 
generated using a random number generator of the 
same length as the amino acid sequence. Thereafter, 
the sequence of random numbers was arranged in 
ascending order and the permutations made were 
memorized. These changes were applied to the 
amino acid sequence. Random amino acid sequences 
of good quality were created by this algorithm. 

2.6.2 Weights of the Deletions and Other 
Constants 

The constant d for each period n was determined 
separately. The constant e was selected as 0.25d. A 
total of 100 test sequences were analyzed which 
were created for the period n as follows. Artificial 
sequences were created with length equal to 1000 
amino acids and contained a period n. The statistical 
significance of this periodicity Z(n) defined by the 
information decomposition method is equal to 7.0 
(Korotkov et al., 2003a). Insertions or deletions were 
introduced into the sequence randomly for every 50 
amino acids. A constant d was chosen which 
provides the greatest value Zmk by using Formula 3. 
This value was applied for alignments using 
weighting matrices from the set Qn. 

2.7 Selection of the Threshold Z0 

Initially, Z0 was estimated as the threshold for Zmk(n) 
to cut the influence of statistical noise. The method 
of this study was used to analyze 300 amino acid 
sequences. Therefore, the estimation of Z0 for 300 
random amino acid sequences was done. The 
sequence had a length equal to 600 amino acids and 
a period equal to 19 amino acids with 1.5 random 
changes per amino acid. To create the mutation, 
random positions were chosen in the sequence. 
Then, we changed the amino acid in a selected 
position that was randomly chosen (with probability 
which is equal for all amino acids). This was done 
900 times for each sequence. From 4 to 15 inserts 
having the length, one amino acid was added in each 
sequence at random locations. This set was called 
Q19. The ability of the developed approach to detect 
periodicity in a multitude Q19 was tested. The results 
showed that periodicity can be detected in 93% of 
cases. We believe it is possible to achieve 100% 
result, but the number of iterations should be 
increased to approximately 105  (see paragraph 2.3). 

Then, these 300 sequences were analyzed and
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Zmk(19) was calculated for each of them. Next, these 
300 sequences were shuffled and a random sequence 
was obtained. Then, the random sequences were 
analyzed and a set of values Zmk(19) were obtained. 
Then, Z0 equal to 10.0 was chosen since 
Nrandom(10.0)/Nreal(10.0) < 5%. It means that the 
number of errors of the first kind is less than 0.05. 
Therefore, Nrandom(10.0) shows a number of R

mkZ (19) 
with values equal to or more than 10.0; Nreal(10.0) 
indicates the number of Zmk(19) equal to or greater 
than 10.0. The level of 10.0 was chosen for all n. 
The computational complexity of the algorithm is 
the reason why only 300 amino acid sequences were 
analyzed. An analysis of 300 sequences required 
about 6 months of calculations on a computer cluster 
with 10 AMD FX-8350 processors. Therefore, the 
task of analyzing the entire Swiss-prot database was 
not done, because it would require a lot of computer 
resources. The intention of the authors was to show 
that periodicity exists in amino acid sequences with 
many substitutions as well as where there are amino 
acid insertions and deletions. This periodicity can be 
detected by the approach developed in this study, 
despite being combined with other methods. The 
300 amino acid sequences are enough to solve this 
problem. 

3 EXAMPLES OF AMINO ACID 
SEQUENCES 

In total, 300 amino acid sequences randomly 
selected from the Swiss-prot data bank (Boeckmann 
et al., 2003) were studied. In the process of 
selection, any sequence having already known 
amino acid repeats or repetitive domains (Kajava, 
2012) were excluded from the set. As a result, 71 
sequences were detected by our algorithm (any 
Z(n)>10.0) of having regions with the periodicity of 
various lengths. Lengths of regions with periodicity 
are more than 40 amino acids and number of periods 
is more than 3. Three typical examples of sequences 
having insertions and deletions were considered and 
were found to have latent periodicity. 

Figure 4 shows a second example of the 
spectrum Z(n) for the sequence Q1D823 (Yang et 
al., 2004), which contains the adventurous-gliding 
motility protein. The region from 35 to 1373 amino 
acids contains periodicity with length equal to 7 
amino acids, which can be revealed with deletions 
and insertions only. The Z(7) of this region has a 
maximum value for all period lengths and is equal to 
15.6. This region contains 4 extended coiled coil 

regions. Alignment containing 20 deletions and 
insertions of different lengths, that is, the average 
length between the insertions and deletions is about 
67 amino acids. Periodicity equal to 7 amino acids is 
typical for the coiled coil regions. This periodicity 
has the form HPPHCPC, where the positions of the 
period is referred to as abcdefg. Here, H represents 
hydrophobic residues, C represents typically charged 
residues, and P represents polar (and therefore, 
hydrophilic) residues. The positions of the heptad 
repeat are commonly denoted by the lowercase 
letters a through g. These motifs are the basis for 
most coiled coils, particularly leucine zippers, which 
have predominantly leucine in the d position of the 
heptad repeat. The periodicity observed in sequence 
Q1D823, is different from the periodicity specific 
for the coiled coil. It can be assumed that there are 
different heptad repeats, capable of forming a coiled 
coil. It is also likely that such a difference is due to 
insertions or deletions of amino acids. The findings 
of the present work indicate that the resulting matrix 
probably can be used to locate regions with long 
coiled coils. 

 
Figure 3: Spectrum Z(n) for the sequence O42918. 

 
Figure 4: Spectrum Z(n) for the sequence Q1D823. 
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Figure 5 shows the Z(n) for the amino acid sequence 
P48681 (Dahlstrand et al., 1992) in a region from 
182 to 1248 amino acids. The period which is equal 
to 11 amino acids is clearly visible. The periods of 
22 and 33 amino acids are induced by the main 
period which equals 11 amino acids. The sequence 
with periodicity includes some coil regions and tail. 
The periodicity was discovered only in the presence 
of 24 amino acid insertions or deletions of various 
lengths. In the absence of insertions and deletions, 
this periodicity is not detectable. 

We analyzed  71 amino sequences by the 
programs REP (Andrade et al., 2000), Internal 
Repeat Finder (Marcotte et al., 1999), Prospero 
(Mott, 1999), RADAR (Heger & Holm, 2000), 
REPRO (Heringa & Argos 1993), TRUST 
(Szklarczyk & Heringa 2004) and PTRStalker 
(Pellegrini et al., 2012). These programs found 
periodicity in these sequences, if Z is more than 
18.2. If Z lies in the interval from 18.2 to 15.5, these 
programs found only ~34% of our results. Also, if 
10.0<Z<15.5, then these methods found nothing. 
Totally, these methods found 6 regions with latent 
periodicity from 71 which was found in this work. 
As is written above (see paragraph 1), it is the 
consequence of using pairwise alignments between 
periods for the detection of latent periodicity 
(number of periods is more than 3). 

 
Figure 5: Spectrum Z(n) for the sequence P48681. 

The question arises about the role of the observed 
periodicity in the structure and functions of proteins. 
Two assumptions were put forward about the 
functional role of the detected periodicity. Firstly, 
the periodicity found could be some property which 
provides a certain secondary structure (Jernigan and 
Bordenstein, 2015). This assumption has been 
expressed for the amino acid repeats, which were 
found earlier (Jorda et al., 2010; Kajava, 2012). In 
this study, there are periods of length 6 and 7 amino 

acids which may participate in the formation of α-
helixes. Secondly, the periodicity found may reflect 
a certain spatial repeatability of protein parts 
belonging to 3D structures. For known repeats, this 
can be observed for the Zn-finger domains (Lee et 
al., 1989), Ig-domains (Sawaya et al., 2008) and the 
human matrix metalloproteinase (Elkins et al., 
2002). In the work of Kajava (2012), "the structural 
classification of the repetitive proteins based on the 
length of their repeats" provides additional 
information. 

The origin of multiple tandem repeats in proteins 
can be associated with the processes of multiple 
tandem duplications in DNA (De Grassi and 
Ciccarelli, 2009). It may come to the formation of 
new proteins (Björklund et al., 2006). Further 
evolution and accumulation of mutations (amino 
acid substitutions, deletions and insertions) could 
lead to the creation of latent periodicity with many 
amino acid substitutions, insertions and deletions. 
Periodicity was detected in the present work. 

In the future, the computation time for this 
algorithm can be reduced and all known amino acid 
sequences accumulated in the Swiss-prot database 
will be analyzed again. Increase in performance is 
possible due to the use of other methods instead of a 
genetic algorithm for optimization of the weight 
matrix M or application for calculations using large 
computing clusters. 
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