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Abstract: We present a novel automatic method for measuring the duration of motor unit action potentials (MUAPs) 
and compare it with two state-of-the-art automatic duration methods on normal and pathological MUAPs. To 
this end we analyzed 313 EMG recordings from normal and pathological muscles during slight contractions. 
A “gold standard” of the duration positions (start and end markers) was obtained for each MUAP from the 
manual measurements determined by two expert electromyographists. The results of the novel method were 
compared to those obtained by the two automatic methods using the “gold standard” duration measures for 
the different groups of normal and pathological MUAPs. Several statistical tests were applied and showed 
that the novel method provided closer duration positions to the “gold standard” and fewer gross aberrant errors 
than those obtained by the two other methods in the four MUAP groups, being significantly different in many 
of the cases.

1 INTRODUCTION 

The motor unit (MU) is the functional unit for the 
voluntary activation of the muscle. It comprises a 
motor-neuron and the muscle fibres (MFs) innervated 
by it. The order for contraction of these MFs comes 
from the spinal cord and ultimately from the brain as 
a train of action potentials traveling along the motor 
unit. When they reach the muscle fibres highly 
synchronized action potentials are generated in these 
fibres and they travel towards the tendons producing 
the contraction of the fibres. The potential wave 
observed by an electrode near the MU is called motor 
unit action potential (MUAP) and is dependent of the 
structure and function of the whole MU. Analysis of 
the MUAP is a central aspect of needle EMG studies 
and is applied for diagnosis in clinical 
neurophysiology practice.  

The MUAP waveform is quantitatively 
characterized by several parameters of which 
duration is an essential one, as the rest of parameters 
are measured within the MUAP time span defined by 
its duration (Stalberg et al., 1986). MUAP duration is 
related to the number of muscle fibres in the MU and 
to the temporal dispersion of the activation times of 

the fibres and their conduction velocities (Stalberg et 
al., 1996).  

The MUAP onset is usually an abrupt takeoff due 
to the muscle fibre depolarization. However the offset 
is more difficult to determine as the final phase of the 
potential returns to the baseline (BL) very slowly and 
asymptotically without a distinct end point (Sonoo 
and Stalberg, 1993). It has been demonstrated in real 
electromyographic (EMG) recordings and simulation 
studies that the extinction of the action potentials 
continues for over 20 ms after the main spike of the 
MUAP (Lateva and McGill, 1998; Dumitru and King, 
1999; Dumitru et al., 1999). Real routine EMG 
signals almost invariably show slow baseline (BL) 
fluctuations and other noise such that it is very 
difficult to distinguish the full extension of the final 
portion of the MUAP. This work is devoted to the 
“clinical MUAP duration”, i.e., that which can be 
observed in routine neurophysiological practice and 
which has clinical meaning, as opposed to the 
“physiologic MUAP duration” (Dumitru and King, 
1999; Dumitru et al., 1999), which lasts until the 
repolarization is entirely completed. 

Measuring MUAP duration presents hard intrinsic 
difficulties, so much that manual duration 
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measurement has been previously described as “an 
arbitrary task” (Sonoo, 2002) and low degrees of 
reliability of manual duration markers have been 
reported (Stalberg et al. 1986; Nandedkar et al., 1988; 
Chu et al., 2003; Takehara et al., 2004b; Rodríguez et 
al., 2007a). A number of automatic algorithms have 
been designed to overcome the limitations of the 
subjective assessment of MUAP duration (Stalberg et 
al., 1986; Nandedkar et al., 1995). These were 
eventually implemented in available commercial 
EMG acquisition systems. But, as reported by several 
authors (Bischoff et al., 1994; Stalberg et al., 1995; 
Takehara et al., 2004a), conventional automatic 
algorithms imply the necessity of continuous visual 
supervision and frequent manual readjustments of the 
duration markers. These methods fail to estimate 
correctly the duration measurement mainly because 
of the presence of noise and fluctuations in the BL and 
other potentials, all of them being unfortunately 
common in routine EMG signals. 

Apart from the previous (conventional) 
approaches, a different automatic duration 
measurement method based on the wavelet 
transforms was presented more recently (Rodríguez 
et al., 2010; Rodríguez et al., 2012). In a comparative 
study, this duration algorithm outperformed the 
results of conventional methods over normal and 
pathological signals. However, recent works are still 
using conventional methods to measure MUAP 
duration (Ghosh et al., 2014; Matur et al., 2014), 
sometimes applying manual corrections (Jian et al., 
2015). 

In this paper we present a novel duration 
algorithm based on correlation. In biological systems 
some physiological situations generate a train of 
potentials or a quasi-periodic repetition of certain 
waveforms. This is the case of MUAP trains in 
voluntary or artificially-induced contractions of 
skeletal muscles, the P, QRS and T complexes in the 
ECG, the S1 and S2 sounds in the phonocardiogram, 
or the spike-and-wave complexes in the EEG of 
epileptic patients. If the physiological and recording 
conditions stay stable during a certain period of time 
in these situations, the potentials that can be recorded 
will include a deterministic component, that can be 
considered basically unaltered throughout this time, 
and a stochastic component, i.e., noise and artifacts of 
different origins which may include biological 
potentials from other sources different from the ones 
of interest. According to this, the correlation between 
two waveforms of a train will be high. Moreover the 
correlation between corresponding segments (i.e., the 
initial upraise, the central spike, the final portion, 
etc.), of two different waveforms of the train will also 

be large.  
On the other hand, the correlation between signal 

periods in which these repetitive waveforms are 
absent will be much lower. This is the central idea 
behind our new MUAP duration estimation method: 
to determine the potential duration regarding the time 
extension in which it presents high correlation with 
other potentials in the train. 

In this work we present this novel algorithm, and 
compare it to a well-known conventional automatic 
duration method and to the more recent wavelet- 
based approach over signals extracted from normal 
and pathological muscles.  

2 MATERIAL 

We analyzed 313 recordings containing a 5 seconds 
long EMG signal during slight voluntary 
contractions: 68 signals from 14 normal deltoid 
muscles, 105 from muscles with myopathies, 27 from 
chronic neurogenic muscles, and 72 from subacute 
neurogenic muscles. All these signals were recorded 
from eight different muscles and exhibited definite 
changes of characteristic pathologies. These signals 
were acquired with a Medelec Synergy Mobile 
electromyograph (Oxford Instruments Medical, Inc.), 
using concentric needle electrodes (type DCN37; 
diameter = 0.46 mm, recording area = 0.07 mm2; 
Medtronic). The filter setting was 3 Hz to 10 kHz 
with a sampling rate of 20 kHz and 16-bit analogue-
to-digital conversion. The digitized signals were 
stored on the hard disk of a PC computer and further 
analysis was performed off-line. 

The multi-MUAP procedure of an automatic 
decomposition method was used to extract MUAPs 
from the continuous EMG signals (Florestal et al., 
2006). Epochs of 50 or 100 ms containing discharges 
(potentials) of the same MUAP train were obtained. 
The maximal negative peak of the MUAP was 
centred on 40% of the length of the window epoch (at 
20 or 40 ms corresponding to 50 or 100 ms epoch 
window). A 100 ms epoch window was only used in 
8 MUAPs from chronic and subacute neurogenic 
muscles, as in these cases a 50 ms epoch was not 
sufficient to visualize the whole MUAP. 

Next, the waveforms of the isolated discharges of 
each MUAP train were aligned in the time axis by 
maximum correlation (Proakis and Manolakis, 1996; 
Campos et al., 2000) and in the voltage axis by 
euclidean distance minimization (the MUAP 
discharges are ordered in accordance to their 
euclidean distance to the average of MUAP 
discharges) (Navallas et al., 2006). Besides, 
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interactive tools were implemented to visualize the 
set of the extracted discharges in raster and 
superimposed modes in order to discard manually 
undesirable ones. The MUAP waveform was finally 
obtained using a novel method of sample estimation 
based on a sliding window algorithm (Malanda et al., 
2008). 

 

 

Figure 1: MUAP discharges (grey) and MUAP 
representative waveform (black) obtained using a sliding 
window algorithm. 

This method optimizes the MUAP waveform 
extraction procedure and can be applied in the 
presence of low or high superposition of discharges 
from other MUs (Fig. 1). 

Well defined waveforms (avoiding 
superimpositions, gross baseline fluctuations and 
secondary potentials) of 3 to 10 (mean 9.9 and 
standard deviation (SD) 0.7) discharges were selected 
for each studied MUAP. All the selected MUAP 
waveforms were well-defined above baseline (BL) 
activity and had a “rise-time” < 1 ms (most of them 
less than 500 μs). A total of 295 MUAPs were 
accepted for analysis: 68 from normal deltoid 
muscles, 124 from myopathic muscles, 20 from 
chronic neurogenic muscles and 83 from subacute 
neurogenic muscles.  

 

 

Figure 2: Example of determination of the gold standard of 
the duration markers positions (GSP) from six manual 
marker positions for the end point (continuous vertical 
lines). The GSP (x) is calculated as the mean position of the 
three closest manual marker positions. 

Notice that in relation to the number of analyzed 
signals, the number of extracted MUAPs is reduced. 
One of the reasons of this reduction is related to the 
extraction process. In spite of the efficiency of the 
described automatic methods for selection, alignment 
and cleaning of the discharges, all the processes were 
supervised and final selection were carried out 
manually for ensuring the acceptation of 
representative and distortion free MUAP waveforms. 

3 METHODS 

3.1 Determination of the Gold Standard 
Duration Marker Positions 

The high variability in the manual placement of 
duration markers requires first to define the best 
manual position among a set of several 
measurements. Therefore, a method was devised by 
the authors to find the “most likely” MUAP start and 
end points. Over the whole set of MUAPs extracted 
from the 313 recordings, two experienced 
electromyographists (LGU and IGG) made each of 
them three measurements of the duration, each 
measurement separated by at least two weeks. To 
perform this task they were provided with a software 
interactive tool (designed in MatlabTM) that showed 
the MUAP waveform and the set of the extracted 
discharges in raster and superimposed modes. The 
sensitivity scale was fixed at 100 μV/cm and the 
sweep speed at 10 ms/cm to place the duration 
markers. From the six manually marked positions for 
the start or end markers, the “most likely” placement 
was the mean point of the three closest positions 
using a probabilistic procedure (Fig. 2) as explained 
on a previous paper (Rodríguez et al., 2007a). This 
was considered our gold standard position (GSP). 

Among all the MUAPs extracted from the 313 
recordings, we decided to select those MUAPs with a 
high degree of agreement in the duration markers 
manually placed. Therefore, MUAPs with a 
maximum range of variation of 1 ms among all the 
six manual placements for the start and also for the 
end markers were selected. The mean and SD 
obtained from the range of the three closest markers 
were 0.02 and 0.05 ms for the start marker and 0.1 
and 0.1 ms for the end marker. This confirms the GSP 
markers as consistent estimates of the MUAP start 
and end points. Fig. 2 illustrates the GSP 
determination procedure.  
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3.2 Automatic Methods for the 
Measurement of MUAP Duration 

Our proposed based-correlation method (CM) was 
compared with two automatic methods for the 
measurement of MUAP duration were used: a well-
known conventional method (Nandedkar et al., 1995), 
and the wavelet-based method (WM) previously 
mentioned (Rodríguez et al., 2010). The conventional 
method and the WM were directly applied to the 
representative MUAP waveforms (only 1 potential), 
while the CM used the whole set of discharges of the 
MUAP train (from 3 to 10 discharges). 

3.2.1 Conventional Automatic Method 

The conventional automatic method is detailed in 
(Nandedkar et al., 1995), and we call it Nandedkar’s 
method, NM. In NM, MUAPs are automatically 
isolated, identified and classified using a multi-
MUAP system. In the referenced work from 50 to 65 
discharges are extracted for each MUAP and its 
representative waveform is obtained using median 
averaging. To find the MUAP start and end markers 
NM calculates the BL first, as the average of the first 
5 ms of the window epoch. Once the BL is subtracted, 
NM begins its search from the maximum MUAP 
peak. From this point, the start and end markers are 
calculated using thresholds related to the area under 
the MUAP and to the amplitude sample values. 

3.2.2 Wavelet Method 

This MUAP duration estimation method was based 
on the discrete wavelet transform (DWT) (Rodríguez 
et al., 2007a; Rodríguez et al., 2007b; Rodríguez et 
al., 2010; Rodríguez et al., 2012). In the DWT scales, 
the peaks related to MUAP peaks are identified and 
amplitude and slope thresholds are used to determine 
MUAP start and end points. Besides, high frequency 
noise and BL fluctuations can be put aside, so that BL 
estimation is not necessary. 

3.2.3  Correlation Method 

As explained before, the time span of a set of 
discharges from a MUAP train will be obtained so 
that different segments of the potentials in the set will 
be highly correlated to the corresponding segments in 
other discharges in the set. The first thing to do is to 
align the set of potentials in the time and amplitude 
axes. Each potential in the train is time aligned to the 
average potential by use of the standard technique of 
cross correlation maximization (Proakis and 
Manolakis, 1996). As for the amplitude alignment, 

we simply add a constant amplitude to each potential 
so that its Euclidean distance to the mean (i.e. the 
average of all the potentials in the MUAP train) is 
minimized. After this, a sliding window of a certain 
length (Lw) is moved along the complete length of 
these discharges (50 or 100 ms in our case), with hops 
of a given time length (h). We will call xij to the i-th 
discharges in the set as seen by the sliding window in 
its j-th hop (Fig. 3).  

The correlation coefficient (CC) between every 
pair of segments in a given hop will be computed 
(Matlab corrcoef function, which implements the 
standard algorithm was used) and the average among 
the CC of the different pairs will be obtained. This 
will be repeated for every j-th hop, yielding a curve 
of segment correlation along the complete interval 
under study (50 or 100 ms in our case) (Fig. 4). This 
curve usually has its maximum near the time 
occurrence of the MUAP central spike, around which 
a ‘plateau’ appears. Some ms at either side of the 
maximum point, the curve normally declines rapidly. 
To search the MUAP start marker, we will set a 
threshold (Th1) and find the time instant when, 
moving from the maximum peak to the left (towards 
the initial part of the discharges), the correlation curve 
goes below this threshold. This is tentatively our 
MUAP start marker. To make the detection more 
robust we will still move further to the left inspecting 
if there is a second peak higher than Th2, in which 
case, from this point we repeat again the search of the 
point where the curves goes down below Th1 and 
finally set there the MUAP start marker (Fig 4). To 
obtain the MUAP end marker we repeat all this 
operation, but moving from the maximum peak to the 
right (towards the final part of the potentials). To 
increase flexibility, different sets of parameters (Th1, 
Th2, Lw and h) can be used for the detection of the 
initial and the marker. 

In our study, for the start marker we empirically 
set Th1 and Th2 to 0.06 and 0.5, respectively, and Lw 
and h to 1 and 0.1 ms, respectively. For the end 
marker, Th1 and Th2 were set to 0.05 and 0.5, 
respectively, and Lw and h to 2.5 and 0.25 ms, 
respectively. Those values were set by visual 
inspection, not by computer simulations. 

3.2.4 Statistical Analysis 

To assess the accuracy of the automatic methods for  
MUAP duration measurement three statistical 
comparative tests were performed for each method: 
 

(a) Comparison of bias and precision. To measure the 
performance of both methods, the mean and the SD 
of the relative differences to the GSP were computed 
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for the start and end markers. The mean is related to 
the bias of a method around the GSP and the SD is 
related to its precision. The results of the methods in 
each group of MUAPs were compared using a 
Student’s t test. 

 

Figure 3: MUAP potentials presented in raster mode. 
Sliding window for selection is shown. (Time axis is given 
in samples and amplitude axis in Volts). 

 

Figure 4: shows how the CM calculates the start and end 
markers. (Time axis is given in samples and amplitude axis 
in Volts). 

(b) Calculation of the EMSE values. The mean of the 
differences between the automatic marker position 
(considering both start and end markers) and the GSP 
(i.e., the bias of each method) and the standard 
deviation (SD) of such differences (the precision) 
were calculated. Then we calculated the estimated 
mean square error (EMSE) of the differences as 
follows:  
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marker. We also obtained the global EMSE value for 
all the different MUAP groups using the next 
equation: 
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where EMSEN, EMSEM, EMSEC and EMSES are the 
results for the normal, myopathic, chronic neurogenic 
and subacute neurogenic potentials, respectively, and 
NN, NM, NC and NS are the number of MUAPs of the 
four different groups considered for the study, and NT 
is the total number of MUAPs  from all the groups put 
together. 

 

(c) Rate of gross errors. The number of cases in which 
the absolute difference between the GSP and the 
automatic marker position was greater than 5 ms was 
counted for each method. Such cases can be generally 
considered as gross errors. The proportions of gross 
errors corresponding to each method were compared 
using the Chi-square test. 

4 RESULTS 

4.1 Comparison of Bias and Precision 

The mean and the SD of the differences (bias and 
precision, respectively) between the start and end 
marker positions and GSPs of the three automatic 
methods are respectively given in Tables 1 and 2. 
Asterisks are shown to indicate significant 
differences between any method and the CM.  

Table 1: Differences between GSP and the start marker 
positions assigned by NM and CM for the different MUAP 
groups. Mean/SD (ms).* = p<0.05 (Student’s t test). 
Chr=Chronic. Subac=Subacute. 

MUAPs/Method NM WM CM 
Normal -1.4/1.2* -0.3/1.3 -0.1/0.8

Myopathic -1.2/1.0* -0.5/1.1* 0.0/0.5 
Chr. neurogenic 1.6/6.7 0.7/2.3* 0.0/0.5 

Subac. neurogenic -1.3/1.4* -0.4/1.6 -0.1/0.9

Table 1 shows the results for the start marker 
positions. It can be appreciated that the CM is the less 
biased and the most precise method placing the start 
marker, as it has simultaneously the lowest mean and 
the lowest SD of differences to the GSP for all the 
five MUAP groups. The CM presents significant 
differences against NM in all the MUAP groups 
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except for the chronic neurogenic MUAPs. On the 
other hand, the CM shows significant differences 
against the WM in myopathic and chronic neurogenic 
MUAPs. 

Table 2: Differences between GSP and the end marker 
positions assigned by NM and CM for the different MUAP 
groups. Mean/SD (ms).* = p<0.05 (Student’s t test). 
Chr=Chronic. Subac=Subacute. 

MUAPs/Method NM WM CM 
Normal 3.1/3.1* -0.1/3.5 -0.7/2.4 

Myopathic 4.4/2.9* 0.6/2.6* -0.7/1.9 
Chr. neurogenic 6.5/10.6* 1.4/7.6 -3.5/7.5 

Subac. neurogenic 4..3/4.2* 0.8/4.0* -0.7/3.3 

In Table 2, the results for the end marker positions 
are shown. It can be appreciated that the CM presents 
significant differences against the NM in all the 
MUAP groups. Comparing to the WM, the CM 
exhibits significant differences in myopathic and 
subacute neurogenic MUAPs, with more precision 
(lower SD). 

From inspection of the two tables, we can notice 
that in chronic neurogenic MUAPs, the bias of the 
methods is higher and the precision is lower than in 
other groups. This is probably a consequence of the 
rare characteristics of the analysed signals, which are 
the longest MUAPs and frequently present 
polyphasia. 

It can also be appreciated from these tables that 
end marker placements present higher mean and SD 
in absolute value than the start markers, which 
indicates that it is more difficult for the automatic 
methods to place the end markers than the start 
markers. 

4.2 Calculation of the EMSE Values 

Table 3 shows the EMSE values of the three methods 
for the four different MUAP groups and the global 
EMSE. As it can be appreciated, the CM presents the 
lowest EMSE in all the cases, except for the chronic 
neurogenic MUAPs. 

Table 3: EMSE values of NM and CM for the different 
MUAP groups and EMSEG. Chr=Chronic. 
Subac=Subacute. 

MUAPs/Method NM WM CM 
Normal 10.4 12.4 3.4 

Myopathic 15.3 4.2 2.1 
Chr. neurogenic 98.5 32.1 33.1 

Subac. neurogenic 19.9 9.5 5.9 

Total (EMSEG) 21.5 8.6 5.0 

4.3 Rate of Gross Errors 

The rate of gross errors for the start and end markers 
of the three duration methods for the four different 
MUAP groups are shown in Tables 4 and 5, 
respectively. 

For the start and end markers, the CM presents the 
lowest rate of gross errors in all cases. Significant 
differences were found between CM and the rest in 
chronic neurogenic MUAPs for the start marker. For 
the end marker, the CM showed significant 
differences in normal, myopathic and subacute 
neurogenic MUAPs against the NM, and in myopathic 
MUAPs against the WM.  

Table 4: Rate of automatic start marker placements in % 
with differences to the GSP greater than 5 ms for NM and 
CM and different MUAP groups.* = p<0.01 (Chi-square 
test) Chr=Chronic. Subac=Subacute. 

MUAPs/Method NM WM CM 
Normal 0.0 2.9 0.0 

Myopathic 1.6 0.8 0.0 
Chr. neurogenic 6.9* 10.3* 0.0 

Subac. neurogenic 3.6 3.6 1.2 

Table 5: Rate of automatic end marker placements with 
differences to the GSP greater than 5 ms for NM and CM 
and different MUAP groups.* = p<0.01 (Chi-square test) 
Chr=Chronic. Subac=Subacute. 

MUAPs/Method NM WM CM 
Normal 29.4* 11.8 7.4 

Myopathic 39.5* 9.7* 3.2 
Chr. neurogenic 37.9 27.6 13.8 

Subac. neurogenic 42.2* 9.6 9.6 

4.4 Visual Assessment 

Some examples of the NM and the CM over normal 
and the different pathological MUAP groups are 
shown in Figure 5. 

Normal MUAPs can have small or medium 
amplitude (Fig. 5.a). Polyphasic serrated myopathic 
MUAP is more difficult to measure (Fig. 5.b). 
Chronic poten tials can have great amplitude and also 
large duration (Fig. 5.c). 

Finally, subacute neurogenic MUAPs can have 
multiple turns and be polyphasic too (Fig. 5.d). In all 
these cases the CM achieves the best results. 

4.5 Computational Cost 

The CPU times in ms (mean/SD) for the Matlab 
implementation of the three algorithms (NM, WM 
and CM)  were  0.26/0.6, 5.1/2.4  and 513.3/101.4 ms,
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Figure 5: Examples of duration measurements of NM and CM on normal (a), myopathic (b), chronic neurogenic (c) and 
subacute neurogenic (d) MUAPs. GSP are in crosses. 

respectively. Therefore they are all fast enough for 
any real-time application. 

5 DISCUSSION 

MUAP duration is a very important, yet elusive, 
parameter in quantitative EMG, as it gives relevant 
information about the MU generating the MUAP (the 
number of fibres) and is also critical for the estimation 
of other MUAP waveform parameters. In this paper 
we have presented an automatic procedure to obtain 
MUAP duration markers with high agreement with 
the markers obtained by expert neurophysiologists in 
normal and pathological signals. 

The novel approach provides more accurate 
duration marker placements and fewer gross aberrant 
errors for normal and pathological MUAPs than the 
other two tested methods. This, together with its 
simplicity and low computational cost makes it a very 
valuable tool for quantitative analysis of MUAPs, 
reducing the requirement for electromyographists’ 
manual intervention. Moreover, real-time 
implementations in a clinical setting could reduce 
exploration time and patient discomfort. 

Future works will focus on computational 
approaches  aimed  to  obtain  optimum  values for the 

CM parameters. 
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