
Evaluation of the CORAL Approach for Risk-driven Security Te sting
based on an Industrial Case Study

Gencer Erdogan1,2, Ketil Stølen1,2 and Jan Øyvind Aagedal3

1Department for Networked Systems and Services, SINTEF ICT, PO Box 124 Blindern, N-0314, Oslo, Norway
2Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316, Oslo, Norway

3Equatex, Martin Linges vei 25, N-1364, Fornebu, Norway

Keywords: Case Study, Security Testing, Risk Assessment.

Abstract: The CORAL approach is a model-based method to security testing employing risk assessment to help security
testers select and design test cases based on the available risk picture. In this paper we present experiences from
using CORAL in an industrial case. The results indicate that CORAL supports security testers in producing
risk models that are valid and threat scenarios that are directly testable. This, in turn, helps testers to select
and design test cases according to the most severe security risks posed on the system under test.

1 INTRODUCTION

We have developed a method for risk-driven secu-
rity testing supported by a domain-specific language
which we refer to as the CORAL approach, or just
CORAL (Erdogan et al., 2014b). It aims to help se-
curity testers to select and design test cases based on
the available risk picture.

In this paper we present experiences from apply-
ing CORAL in an industrial case. We evaluate to
what extent CORAL helps security testers in select-
ing and designing test cases. The system under test
is a comprehensive web-based e-business application
designed to deliver streamlined administration and re-
porting of all forms of equity-based compensation
plans, and is used by a large number of customers
across Europe. The system owner, which is also the
party that commissioned the case study (often referred
to as party in the following), require full confidential-
ity. The results presented in this paper are therefore
limited to the experiences from applying CORAL.

The paper is organized as follows. In Section 2
we give an overview the CORAL approach. In Sec-
tion 3 we present our research method. In Section 4
we give an overview of the case study, and in Sec-
tion 5 we present the obtained results organized ac-
cording to our research questions. In Section 6 we
discuss these results, and finally in Section 7 we re-
late our work to other approaches and conclude by
highlighting key findings.

The CORAL

method to risk-

driven security

testing

Description

of the

system

under test

Test report

to party

Input Output

Figure 1: Input and output of the CORAL method.

2 THE CORAL APPROACH

The CORAL approach consists of a domain-specific
risk analysis language based on UML interac-
tions (OMG, 2011) and a method for risk-driven se-
curity testing within which the language is tightly
integrated. As illustrated in Figure 1, the CORAL
method expects a description of the system under test
(SUT) as input. The description may be in the form
of system diagrams and models, use case documenta-
tion, source code, executable versions of the system,
and so on. The CORAL method involves seven steps
grouped into three phases: Test planning, security risk
assessment, and security testing. The output from ap-
plying CORAL is a test report.

In Phase 1 we prepare the system model, iden-
tify security assets to be protected, define frequency
and consequence scales, and define the risk evaluation
matrix based on frequency and consequence scales.

In Phase 2 we carry out risk modeling in three
consecutive steps. First, we identify security risks by
analyzing the system description with respect to the
relevant security assets and describe threat scenarios

Erdogan, G., Stølen, K. and Aagedal, J.
Evaluation of the CORAL Approach for Risk-driven Security Testing based on an Industrial Case Study.
DOI: 10.5220/0005650902190226
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 219-226
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

219



that may cause the security risks. Second, we esti-
mate the frequency and the consequence of the iden-
tified risks by making use of the frequency and con-
sequence scales, respectively. Third, we evaluate the
risks with respect to their frequency and consequence
and select the most severe risks to test.

In Phase 3 we conduct security testing in three
consecutive steps. First, for each risk selected for
testing, we select its associated threat scenarios and
specify test objectives for that threat scenario. To ob-
tain a test case fulfilling the test objective, we annotate
each threat scenario with stereotypes from the UML
Testing Profile (OMG, 2013) according to the test ob-
jective. Second, we carry out security testing with
respect to the test cases. Finally, based on the test
results, we produce a test report.

3 RESEARCH METHOD

We conducted the case study in four main steps. First,
we designed the case study by defining the objective,
the units of analysis, as well as the research questions.
Second, we carried out the CORAL approach within
an industrial setting. Third, we collected the relevant
data produced by executing the CORAL approach.
Finally, we analyzed the collected data with respect
to our research questions.

The test report delivered to the party that commis-
sioned the case study describes, in addition to the test
results, risk models and security tests designed with
respect to the risk models. Our hypothesis was that
the report is good in the sense that (1) the risk mod-
els are valid, and (2) the threat scenarios are directly
testable. Recall that the CORAL language is based
on UML interactions (OMG, 2011). By a directly
testable threat scenario, we mean a threat scenario that
can be reused and specified as a test case based on its
interactions. Thus, the units of analysis in this case
study are the risk models.

With respect to point (1), we defined two research
questions (RQ1 and RQ2). With respect to point (2),
we defined one research question (RQ3). Addition-
ally, we carried out both black-box and white-box
testing of the SUT, because we were interested in in-
vestigating the usefulness of the CORAL approach
for both black-box and white-box testing (RQ4).

RQ1. To what extent is the risk level of identified
risks correct?

RQ2. To what extent are relevant risks identified
compared to previous penetration tests?

RQ3. To what extent are the threat scenarios that
causes the identified risks directly testable?

RQ4. To what extent is the CORAL approach use-
ful for black-box testing and white-box testing,
respectively?

4 OVERVIEW OF CASE STUDY

The system under test was a web-based application
providing services related to equity-based compen-
sation plans. The web application was deployed on
the servers of a third party service provider and main-
tained by the same service provider with respect to in-
frastructure. However, the web application was com-
pletely administrated by the client commissioning the
case study for business purposes, such as customiz-
ing the web application for each customer, as well as
patching and updating its various features.

In order to limit the scope of the testing, we de-
cided to test two features available to customers: a
feature for selling shares (named Sell Shares), and a
feature for exercising options for the purpose of buy-
ing shares in a company (named Exercise Options).
In the following, we explain how we carried out the
CORAL approach by taking you through a fragment
of the case study. We consider only Exercise Options
and two potential threat scenarios: one from a black-
box perspective and one from a white-box perspec-
tive.

4.1 Test Planning (Phase 1)

We modeled Exercise Options from a black-box per-
spective by observing its behavior. That is, we ex-
ecuted Exercise Options using a web browser, ob-
served its behavior, and created the model based on
that. We also modeled Exercise Options from a white-
box perspective by executing and analyzing its source
code. Figures 2a and 2b show the black-box model
and the white-box model of Exercise Options, respec-
tively.

Together with the party we decided not to con-
sider security risks related to infrastructure because
this was a contractual responsibility of the service
provider hosting the web application. Instead, we fo-
cused on security risks that may be introduced via the
application layer. Thus, the threat profile is some-
one who has access to Exercise Options, but who re-
sides outside the network boundaries of the service
provider. We identified security assets by consulting
the party. The security asset identified for Exercise
Options wasintegrity of data.

We also defined a frequency scale and a conse-
quence scale together with the party. The frequency

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

220



sd Exercise Options (black-box)

:Client web

browser

exercise(options)

:Exercise

Options form

selectExerciseMethod

continue(exerciseMethod)

exerciseRequestConfirmation

sd Exercise Options (white-box)

:Client web

browser

:Exercise Options form
:New

exercise

controller

:Abstract

controller

:Client

specific

controller

getExerControl()

exerControl

this.setHtml(this.getExerControl().getHtml())

exerciseRequestConfirmed

pageOutput=ctrl.getHtml()

this.getExerControl().doBusiness(exerciseMethod,null)

this.newExResultPage(confirmed)

exercise(options)

selectExerciseMethod

continue(exerciseMethod)

(a) (b)

Figure 2:(a) Black-box model of feature Exercise Options.(b) White-box model of feature Exercise Options.

scale consisted of five values (Certain, Likely, Possi-
ble, Unlikely, and Rare), where each value was de-
fined as a frequency interval. For example, the fre-
quency interval for likelihood Possible was[5,20〉:1y,
which means “from and including 5 to less than 20
times per year.” The consequence scale also consisted
of five values (Catastrophic, Major, Moderate, Minor,
and Insignificant), where each value described the im-
pact by which the security asset is harmed. For exam-
ple, consequence Major with respect to security asset
integrity of datawas defined as “the integrity of cus-
tomer shares is compromised.” The scales were also
used to construct the risk evaluation matrix illustrated
in Figure 4.

4.2 Security Risk Assessment (Phase 2)

We identified security risks by analyzing the models
in Figure 2 with respect to security assetintegrity of
data. We did this by first identifyingunwanted in-
cidents. Unwanted incidents are messages modeling
that an asset is harmed or its value is reduced, and
they are represented by a yellow explosion sign at the
transmission end (see Figure 3). Second, we identi-
fied alterations that have to take place in the messages
in order to cause the unwanted incidents (referred to
asaltered messages). Altered messages are messages
in the SUT that have been altered by a threat to de-
viate from their expected behavior, and they are rep-
resented by a triangle with red borders and white fill.

Third, we identified messages initiated by the threat
which in turn could cause the alterations. These are
referred to asnew messagesand are represented by a
red triangle.

Let us consider a threat scenario for the black-box
model of Exercise Options. Assume that a malicious
user attempts to access another system feature, say
an administrative functionality, by altering certain pa-
rameters in the HTTP request sent to Exercise Op-
tions. The malicious user could achieve this, for ex-
ample, by first intercepting the request containing the
messagecontinue(exerciseMethod)using a network
proxy tool such as OWASP ZAP (OWASP, 2015),
and then altering the parameterexerciseMethodin the
message. This alteration, could in turn give the mali-
cious user access to another system feature. This un-
wanted incident occurs if the alteration is successfully
carried out, and Exercise Options responds with an-
other system feature instead of the expected message
exerciseRequestConfirmation. Thus, the unwanted in-
cident may occur after the reception of the last mes-
sage in the black-box model (Figure 2a). The result-
ing threat scenario is shown in Figure 3. We carried
out a similar analysis during white-box testing by an-
alyzing the model in Figure 2b. The reader is referred
to the technical-report version of this paper (Erdogan
et al., 2015) for details on risk modeling based on the
white-box model of Exercise Options.

In order to estimate how often threat scenarios
may occur, in terms of frequency, we based ourselves

Evaluation of the CORAL Approach for Risk-driven Security Testing based on an Industrial Case Study

221



[20,

50>:1y

exercise(options)

:Client web

browser
:Exercise

Options form Integrity

of data

Malicious

user

:Network tool

sd Malicious user accesses another system feature by

changing parameter exerciseMethod (black-box)

interceptRequest

Another system feature is accessed

by changing parameter exerciseMethod

respOtherSysFeat

setExerciseMethod(otherSysFeat)

continue(otherSysFeat)

selectExerciseMethod

interceptHTTPRequest

continue(exerciseMethod)

Moderate

[16,

40>:1y

[16,

40>:1y

0.8

Figure 3: A threat scenario for the black-box model of feature Exercise Options.

on knowledge data bases such as OWASP (OWASP,
2015), reports and papers published within the soft-
ware security community, as well as expert knowl-
edge within security testing. We see from Figure 3
that the malicious user successfully alters the parame-
terexerciseMethodwith frequency[20,50〉:1y. Given
that parameterexerciseMethodis successfully altered
and transmitted, it will be received by Exercise Op-
tions with conditional ratio0.8. The conditional ratio
causes the new frequency[16,40〉:1y for the reception
of messagecontinue(otherSysFeat). This is calculated
by multiplying [20,50〉:1y with 0.8. Given that mes-
sagecontinue(otherSysFeat)is processed by Exercise
Options, it will respond with another system feature.
This, in turn, causes the unwanted incident (security
risk) to occur with frequency[16,40〉:1y. The un-
wanted incident has an impact on security assetin-
tegrity of datawith consequenceModerate.

Figure 4 shows the obtained risk evaluation ma-
trix. The numbers in the matrix represent the 21 risks
identified in the case study. Each risk was plotted
in the matrix according to its frequency and conse-
quence. Risks are grouped in nine levels horizontally
on the matrix where Risk Level 1 is the lowest risk
level and Risk Level 9 is the highest risk level. The
risk level of a risk is identified by mapping the un-
derlying color to the column on the left-hand side of
the matrix. For example, Risks 11 and 19 have Risk
Level 8, while Risk 20 has Risk Level 4. The risk ag-
gregation did not lead to an increase in risk level for
any of the risks. The suspension criterion in this case
study was defined as “test all risks of Risk Level 6 or
more.” Based on this criterion, we selected 11 risks to

test from the risk evaluation matrix.

4.3 Security Testing (Phase 3)

The test objective for the threat scenario in Figures 3
was defined as: “Verify whether the malicious user
is able to access another system feature by changing
parameterexerciseMethodinto a valid system param-
eter”. Based on this test objective, we annotated the
threat scenario with stereotypes from the UML test-
ing profile (OMG, 2013). The resulting security test
case for the threat scenario in Figure 3 is shown in
Figure 5. Needless to say, the security tester takes the
role as “malicious user” in the test case.

We carried out all black-box tests manually and
used the OWASP Zed Attack Proxy tool (OWASP,
2015) to intercept the HTTP requests and responses.
We carried out all white-box tests semi automat-
ically supported by the debug mode in Eclipse
IDE, which was integrated with a web-server and
a database. We also carried out automatic source
code review using static source code analysis tools
for the purpose of identifying potential threat scenar-
ios. The tools we used for this purpose were Find
Security Bugs V1.2.1 (FindBugs, 2015), Lapse plus
V2.8.1 (LapsePlus, 2015), and Visual Code Grepper
(VCG) V2.0.0 (VCG, 2015).

5 CASE STUDY RESULTS

We group the results with respect to our research
questions.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

222



Certain

LikelyPossibleU
nlikely

Rare

Cat
as

tr
ophic

M
aj

or

M
odera

te

M
in

or

In
si
gn

ifi
ca

nt

1,

3,

6, 12

11, 19

13

20

Risk level 1

Risk level 2

Risk level 3

Risk level 4

Risk level 5

Risk level 6

Risk level 7

Risk level 8

Risk level 9

2, 4, 5,
15, 16,
17

9,

18

7,

8, 10, 14,

21

Figure 4: Risk evaluation matrix.

RQ1 To what extent is the risk level of identi-
fied risks correct? As shown in the risk evaluation
matrix in Figure 4, we identified in total 21 security
risks. The risk aggregation did not lead to an increase
in risk level for any of the risks. Based on the suspen-
sion criterion defined by the party, we tested 11 risks
(all risks of Risk Level 6 or more).

The testing of these 11 risks revealed 11 vulnera-
bilities. The vulnerabilities were assigned a severity
level based on a scale of three values (Low, Medium,
and High). High severity means that the vulner-
ability should be treated as soon as possible, and
one should consider taking the system offline while
treating the vulnerability (“show stopper”). Medium
severity means that the vulnerability is serious and
should be treated based on available time and re-
sources. Low severity means that the vulnerability is
not serious and it should be treated if this is seen as
necessary. Four vulnerabilities were assigned sever-
ity Medium, and the remaining 7 vulnerabilities were
assigned severity Low.

We also tested the 10 risks initially not selected
for testing, in order to have a basis for comparison.
This testing revealed only 2 vulnerabilities of severity
Low.

RQ2 To what extent are relevant risks identi-
fied compared to previous penetration tests?The
party commissioning the case study had previously
executed commercial penetration tests. We did not
get access to the reports or results from these penetra-
tion tests due to confidentiality reasons. However, it
was confirmed by the party that we had identified 16
security risks which had also been identified by previ-
ous penetration tests. Additionally, we had identified

5 new security risks which had not been identified by
previous penetration tests. Moreover, the party also
confirmed that we had not left out any risks of rele-
vance for the features considered in the case study.

RQ3 To what extent are the threat scenarios
that causes the identified risks directly testable?
The identified 21 security risks were caused by 31
threat scenarios. The 11 risks initially selected for
testing were caused by 18 threat scenarios, while the
remaining 10 risks were caused by 13 threat scenar-
ios. We identified 18 security test cases based on the
18 threat scenarios causing the 11 risks. Similarly, we
identified 13 security test cases based on the 13 threat
scenarios causing the remaining 10 risks.

RQ4 To what extent is the CORAL approach
useful for black-box testing and white-box testing,
respectively? Table 1 gives an overview of results
obtained from the testing. The row “risks tested” rep-
resents the number of risks initially selected for test-
ing, as well as those not initially selected for testing
(in parentheses). The row “vulnerabilities identified”
represents the number of vulnerabilities identified by
testing the risks initially selected for testing, as well as
the number of vulnerabilities identified by testing the
risks not initially selected (in parentheses). The four
rows at the bottom of Table 1 provide statistics on the
use of the various modeling constructs of CORAL to
express threat scenarios.

6 DISCUSSION

The two variables that determine the risk level of a
risk, that is, the frequency value and the consequence

Evaluation of the CORAL Approach for Risk-driven Security Testing based on an Industrial Case Study

223



exercise(options)

<<TestComponent>>

:Client web browser

<<SUT>>

:Exercise

opt. formMalicious

user

<<TestComponent>>

:Network tool

sd Test Case Malicious user accesses another system feature by

changing parameter exerciseMethod (black box) : Verdict

interceptRequest

respOtherSysFeat

setExerciseMethod(otherSysFeat)

continue(otherSysFeat)

selectExerciseMethod

interceptHTTPRequest

continue(exerciseMethod)

<<TestComponent>>

<<validationAction>>

fail

Figure 5: Security test case based on the threat scenario in Figure 3.

value, are estimates based on data gathered during the
security risk assessment. In other words, these esti-
mates tell us to what degree the identified risks exist.
Thus, in principle, the higher the risk level, the more
likely it is to reveal vulnerabilities causing the risk.
The same applies the other way around. That is, the
lower the risk level, the less likely it is to reveal vul-
nerabilities causing the risk.

The results obtained for RQ1 show that 11 vulner-
abilities were revealed by testing the risks considered
as most severe, while only 2 vulnerabilities were re-
vealed by testing the risks considered as low risks.
Additionally, the 2 vulnerabilities identified by test-
ing the low risks were assigned low severity (see Ta-
ble 1). These findings indicate that the risk levels of
identified risks were quite accurate. In contrast, if we
had found 2 vulnerabilities by testing the most severe
risks, and 11 vulnerabilities by testing the low risks,
then that would have indicated inaccurate risk levels,
and thus a risk assessment of low quality. The results
obtained for RQ2 show that we identified all relevant
security risks compared to previous penetration tests.
In addition, we identified five new security risks and
did not leave out any risks of relevance for the fea-
tures considered. In summary, the results obtained for
RQ1 and RQ2 indicate that the produced risk models
were valid and of high quality, and thus that CORAL
is effective in terms of producing valid risk models.

The results obtained for RQ3 point out that all
threat scenarios were directly testable. We believe
this result is generalizable because, in the CORAL
approach, risks are identified at the level of ab-
straction testers commonly work when designing test
cases (Dias Neto et al., 2007). This is also backed

up by the fact that we made direct use of all threat
scenarios as security test cases. Thus, the CORAL
approach is effective in terms of producing threat sce-
narios that are directly testable. However, it is impor-
tant to note that the CORAL approach is designed to
be used by individual security testers, or by a group
of security testers collaborating within the same test-
ing project. The risk models produced by a tester, or
a group of testers working together, will most likely
be used by the same tester(s) to design test cases, and
consequently execute the test cases.

In general, the CORAL approach seems to work
equally well for black-box testing and white-box test-
ing. Based on the results obtained for RQ4, we see
that it is possible to carry out the complete CORAL
approach both in black-box and white-box testing.
The reason why Table 1 shows lower numbers in the
white-box column compared to the numbers in the
black-box column, is because we had fewer white-box
models to analyze compared to black-box models.

Table 1 also shows that the threat scenarios mostly
consisted ofnew messagesand altered messages.
Only 17 out of 272 messages weredeleted messages1.
This may be an indication that threat scenarios can
be sufficiently expressed without the usage of deleted
messages. Nevertheless, they are important to docu-
ment that an interaction is deleted by a threat. Note
that the number of unwanted incidents (34) is greater
than the number of identified risks (21). This is be-
cause some of the risks reoccurred in several threat
scenarios, and thus had to be repeated in every threat

1A deleted message is a message in the SUT that has
been deleted by a threat. Deleted messages are represented
by a triangle with red borders and a red cross in the middle.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

224



Table 1: Results obtained during black-box testing and white-box testing.

Black-box White-box Total

SUT diagrams analyzed 11 2 13

Threat scenarios identified 27 4 31

Risks identified 19 2 21

Test cases identified 27 4 31

Risks tested 10 (plus 9) 1 (plus 1) 11 (plus 10)

Vulnerabilities identified 4 medium and 5 low (plus 0) 2 low (plus 2 low) 4 medium and 7 low (plus 2 low)

New messages 144 17 161

Altered messages 52 8 60

Deleted messages 10 7 17

Unwanted incidents 30 4 34

scenario in which they reoccurred.
Another important observation is that the threat

scenarios identified during white-box testing helped
us locate where in the source code risks occurred, al-
though the threat scenarios were initiated at the appli-
cation level.

7 RELATED WORK AND
CONCLUSIONS

In the following we relate CORAL to other risk-
driven testing approaches focusing on security. The
reader is referred to the technical-report version of
this paper (Erdogan et al., 2015), as well as our sys-
tematic literature review (Erdogan et al., 2014a), for
a detailed discussion on related work and state of the
art risk-driven testing approaches in general.

The risk-driven security testing approaches pro-
vided by Botella et al. (Botella et al., 2014), Groß-
mann et al. (Großmann et al., 2014), and See-
husen (Seehusen, 2014) make use of the CORAS risk
analysis language (Lund et al., 2011) for the purpose
of security risk assessment. The graphical notation
of the CORAL risk analysis language is based on the
CORAS language. CORAL is therefore closely re-
lated to these approaches. However, there are some
fundamental differences. First, CORAS risk models
represent threat scenarios and risks at a high-level of
abstraction, while we represent these at a low-level of
abstraction. Second, CORAS risk models are repre-
sented as directed acyclic graphs, while we represent
risk models as interaction diagrams, which are bet-
ter suited for model-based testing (Dias Neto et al.,
2007). Third, these approaches use the risk estimates
assigned to a CORAS risk model to make a priori-
tized list of threat scenarios which in turn represent

a prioritized list of high-level test procedures (See-
husen, 2014). The high-level test procedures are then
used as a starting point for identifying/designing test
cases either manually or by instantiating certain test
patterns. In CORAL we map the risks to a risk eval-
uation matrix based on the risk estimates, and then
we make a prioritized list of risks. We then select the
most severe risks that the system under test is exposed
to, and design test cases by making use of the CORAL
risk models in which the selected risks occur.

Other approaches focusing on security are pro-
vided by Wendland et al. (Wendland et al., 2012) and
Zech et al. (Zech et al., 2012). The former approach
focuses on high-level qualitative risk assessment and
does not explicitly model test cases, but instead pro-
vides guidelines testers may use to model test cases.
The latter approach identifies security risks and asso-
ciated models by matching attack patterns on the pub-
lic interfaces of a system. However, the risk models
do not contain information regarding the threat initi-
ating the attacks, and the chain of events causing the
security risks. The approach transforms risk models
into misuse case models used to generate test cases.

What is common for all the approaches discussed
above is that they model risks and the system under
test in separate models using separate modeling lan-
guages. This makes it difficult to get an intuitive un-
derstanding with respect to exactly how and where the
risks affect the system under test. CORAL risk mod-
els represent specific threat scenarios, security risks
caused by the threat scenarios, and the relevant as-
pects of the system affected by the risks, within the
same model. This enables testers to identify exactly
how and where certain security risks may occur.

In this paper, we have presented an evaluation of
CORAL based on our experiences from applying the
approach in an industrial case study. The SUT in
the case study was a web application designed to de-

Evaluation of the CORAL Approach for Risk-driven Security Testing based on an Industrial Case Study

225



liver streamlined administration and reporting of all
forms of equity-based compensation plans. The ob-
jective was to evaluate to what extent CORAL helps
security testers in selecting and designing test cases.
In CORAL we select and design test cases based on
risk models produced during security risk assessment.
Our hypothesis was that the produced risk models are
valid, and that the threat scenarios represented by the
risk models are directly testable.

The case study results indicate that CORAL is ef-
fective in terms of producing valid risk models. This
is backed up by two observations. First, we identified
in total 21 risks, and 11 of these risks were considered
as severe, while the remaining 10 risks were consid-
ered as low risks. By testing these 11 risks we identi-
fied 11 vulnerabilities, while by testing the remaining
10 risks we identified only 2 vulnerabilities. Second,
we identified all relevant security risks compared to
previous penetration tests. In addition, we identified
five new security risks and did not leave out any risks
of relevance for the features considered.

The CORAL approach seems to work equally well
for black-box and white-box testing. One point worth
noting for white-box testing is that the threat scenar-
ios help locating risks at the source code level al-
though they are initiated at the application level.

Finally, one of the most important findings we did
in the case study is that the CORAL approach is very
useful for identifying security test cases. We used all
threat scenarios identified in the case study for the
purpose of security test case design and execution.

ACKNOWLEDGEMENTS

This work has been conducted as a part of the
DIAMONDS project (201579/S10) and the AGRA
project (236657) funded by the Research Council of
Norway, as well as the RASEN project (316853)
funded by the European Commission within the 7th
Framework Programme.

REFERENCES

Botella, J., Legeard, B., Peureux, F., and Vernotte, A.
(2014). Risk-Based Vulnerability Testing Using Secu-
rity Test Patterns. InProc. 6th International Sympo-
sium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’14), pages 337–
352. Springer.

Dias Neto, A., Subramanyan, R., Vieira, M., and Travas-
sos, G. (2007). A Survey on Model-based Testing Ap-
proaches: A Systematic Review. InProc. 1st ACM
International Workshop on Empirical Assessment of

Software Engineering Languages and Technologies
(WEASELTech’07), pages 31–36. ACM.

Erdogan, G., Li, Y., Runde, R., Seehusen, F., and Stølen,
K. (2014a). Approaches for the Combined Use of
Risk Analysis and Testing: A Systematic Literature
Review. International Journal on Software Tools for
Technology Transfer, 16(5):627–642.

Erdogan, G., Refsdal, A., and Stølen, K. (2014b). A Sys-
tematic Method for Risk-driven Test Case Design Us-
ing Annotated Sequence Diagrams. InProc. 1st In-
ternational Workshop on Risk Assessment and Risk-
driven Testing (RISK’13), pages 93–108. Springer.

Erdogan, G., Stølen, K., and Aagedal, J. (2015). Evalua-
tion of the CORAL Approach for Risk-Driven Secu-
rity Testing Based on an Industrial Case Study. Tech-
nical Report A27097, SINTEF Information and Com-
munication Technology.

FindBugs (2015). Find Security Bugs V1.2.1.
http://h3xstream.github.io/find-sec-bugs/. Accessed
April 30, 2015.

Großmann, J., Schneider, M., Viehmann, J., and Wendland,
M.-F. (2014). Combining Risk Analysis and Secu-
rity Testing. In Proc. 6th International Symposium
on Leveraging Applications of Formal Methods, Ver-
ification and Validation (ISoLA’14), pages 322–336.
Springer.

LapsePlus (2015). Lapse Plus Console V2.8.1.
https://code.google.com/p/lapse-plus/. Accessed
April 30, 2015.

Lund, M., Solhaug, B., and Stølen, K. (2011).Model-
Driven Risk Analysis: The CORAS Approach.
Springer.

OMG (2011). Unified Modeling Language (UML), super-
structure, version 2.4.1. Object Management Group.
OMG Document Number: formal/2011-08-06.

OMG (2013).UML Testing Profile (UTP), version 1.2. Ob-
ject Management Group. OMG Document Number:
formal/2013-04-03.

OWASP (2015). Open Web Application Security Project.
https://www.owasp.org/index.php/MainPage. Ac-
cessed April 30, 2015.

Seehusen, F. (2014). A Technique for Risk-Based Test Pro-
cedure Identification, Prioritization and Selection. In
Proc. 6th International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Valida-
tion (ISoLA’14), pages 277–291. Springer.

VCG (2015). Visual Code Grepper V2.0.0.
http://sourceforge.net/projects/visualcodegrepp/.
Accessed April 30, 2015.

Wendland, M.-F., Kranz, M., and Schieferdecker, I. (2012).
A systematic approach to risk-based testing using
risk-annotated requirements models. InProc. 7th In-
ternational Conference on Software Engineering Ad-
vances (ICSEA’12), pages 636–642. IARA.

Zech, P., Felderer, M., and Breu, R. (2012). Towards
a Model Based Security Testing Approach of Cloud
Computing Environments. InProc. 6th International
Conference on Software Security and Reliability Com-
panion (SERE-C’12), pages 47–56. IEEE Computer
Society.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

226


