
Anomaly-based Mobile Malware Detection: System Calls as Source for
Features

Dominik Teubert, Fred Grossmann and Ulrike Meyer
Department of Computer Science, RWTH Aachen University, Aachen, Germany

Keywords: Mobile Malware, Machine Learning, Anomaly Detection, One-class SVMs, Hidden Markov Models.

Abstract: Mobile malware nowadays poses a serious threat to end users of mobile devices. Machine learning techniques
have a great potential to automate the detection of mobile malware. However, prior work in this area mostly
focused on using classifiers that require training with data from both the benign as well as the malicious class.
As a consequence, training these models requires feature extraction from large amounts of mobile malware,
a task that becomes increasingly difficult considering the obfuscation and emulator detection capabilities of
modern mobile malware. In this paper we propose the use of one-class classifiers. The advantage of using these
models is that they are exclusively trained with data from the benign class. In particular, we compare generative
as well as discriminative modeling approaches, namely Hidden Markov Models and one-class Support Vector
Machines. We use system calls as source for our features and compare the discriminatory power of binary
feature vectors, frequency vectors, as well as temporally ordered sequences of system calls.

1 INTRODUCTION

In recent years, the popularity of mobile devices
such as smartphones and tablets has continuously in-
creased. According to market research company IDC,
nearly 1.3 billion smartphones were shipped in 2014
(IDC, 2014). Gartner Inc. predicts that by 2018 more
than 50 percent of users will turn to their mobile de-
vices first for all online activities (Gartner, 2014).
However, the broad range of capabilities of today’s
mobile devices, as well as their unique suitability for,
e.g., mobile payment or premium rate services, make
mobile devices an attractive target for malware au-
thors. The accumulation of large amounts of poten-
tially sensitive data on the devices also contributes to
the fact that mobile malware recently emerged from
a theoretical danger to a real threat for end users and
mobile operators.

Commercial mobile malware detection systems to
date mainly use a signature-based approach, which
requires the vendors to continuously obtain and an-
alyze new malware samples in order to generate up-
to-date signatures. This signature generation process
is time-consuming and costly—particularly in face of
the rapidly increasing number of new malware sam-
ples. Consistently, the detection rates reported in a
recent evaluation of four of these mobile malware de-
tection systems are rather low, ranging from 20.2% to

79.6% (Zhou and Jiang, 2012). Another disadvantage
of the signature-based approach in the mobile context
is that the scanning process has a negative impact on
battery lifetime and conflicts with user demands on
system responsiveness.

Alternative approaches to mobile malware detec-
tion (e.g., (Dini et al., 2012; Burguera et al., 2011;
Shabtai et al., 2012; Bose et al., 2008)) make use
of machine learning techniques in order to automate
malware detection based on monitoring characteris-
tic and measurable properties of a single app or the
operating system and using them as features for clas-
sification. Most of the prior approaches in this area,
however, make use of multi-class classifiers that try
to discriminate between malicious and benign system
behavior. That is, these approaches train a classifier
with correctly annotated feature vectors from the be-
nign as well as the malicious class and thus vitally
depend on finding and analyzing malware samples for
training purposes. While various features have been
proposed in this context, a particularly promising ap-
proach (also known from host-based intrusion detec-
tion (Forrest et al., 1996; Warrender et al., 1999; Ye-
ung and Ding, 2003; Mutz et al., 2006; Maggi et al.,
2010)) is using system call traces as source of fea-
tures: Since system calls provide the interface be-
tween user-space and kernel-space, all malicious ac-
tions that may harm the system have to pass this inter-
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face. To date two approaches exist that make use of
system call features in the mobile context (Burguera
et al., 2011; Dini et al., 2012). However, these ap-
proaches focus on frequencies of system calls only
and do not consider other options to derive features
from system call traces.

In contrast to prior work, in this paper we pro-
pose the use of one-class classifiers, i.e., models that
exclusively rely on data from one class only (in our
case the benign class) in the training phase. Specifi-
cally, we compare generative as well as discriminative
modeling approaches, namely Hidden Markov Mod-
els (HMMs) and one-class Support Vector Machines
(SVMs) as two state-of-the-art models of this type.
The obvious advantage of such models is that they al-
low model training without access to data from the
malicious class. Most importantly, however, they can
be expected to be able to also detect zero-day mal-
ware that heavily differs from known malware as they
define anomalies as deviations from benign behav-
ior rather than similarity to known malicious patterns.
We concentrate on system calls as source for fea-
tures. However, instead of considering only frequen-
cies of system calls in observed traces as in (Burguera
et al., 2011; Dini et al., 2012), we propose two addi-
tional feature types derived from system call traces,
namely binary vectors indicating the occurrence of
system calls, and (temporally ordered) sequences of
system calls. We comparatively evaluate the two
modeling methods in combination with the different
feature types on pairs of benign apps and their mali-
cious repackaged counter parts. Specifically, we train
a model with feature vectors derived from system call
traces of a benign app and then test if the model is
able to detect feature vectors derived from traces of
the app’s malicious counterpart.

The remainder of this paper is structured as fol-
lows: Section 2 reviews relevant related work. Sec-
tion 3 describes how features that are used through-
out this paper are derived from monitored system call
data. Section 4 introduces the models used. Section 5
describes our experimental setup. Section 6 presents
the results, and puts them into context.

2 RELATED WORK

The work published so far in the area of mobile mal-
ware detection aims to overcome the shortcomings of
signature-based approaches, namely the great effort
that is necessary to create signatures. Thus, most of
the related work on mobile malware detection focuses
on finding malicious patterns in an automated fashion
by means of machine learning. These approaches sig-

nificantly vary in the features and models used. In the
learning phase, typically a classifier is trained with
features derived from observed data. In the subse-
quent detection phase, the features are derived from
the data observed while the mobile device is under
regular usage and are tested against the trained model.

Following the two most important ways to analyze
(mobile) malware, the approaches can be classified
into those that use static analysis to gather the data
needed to derive features and those that use dynamic
analysis to monitor behavioral features at runtime.

The former line of work includes (Arp et al.,
2014),(Zhang et al., 2014), and (Aafer et al., 2013),
in which API-level features of varying complexity are
derived and used to train classifiers with the goal to
distinguish malicious from benign apps. Approaches
of this category are not able to cope well with mal-
ware that uses obfuscation techniques as these render
automated features extraction based on static analysis
infeasible in many cases. Approaches from the latter
category typically monitor system- or user-behavior-
based features. In an early approach, Bose et al. use a
temporal logic to define behavioral signatures of API
calls (Bose et al., 2008). To be able to also match
partial signatures at run-time, the authors use SVMs
for classification. Xie et al. proposed pBMDS, a sys-
tem that correlates user inputs with system call traces
(Xie et al., 2010). The authors use HMMs to model
theses correlations to detect anomalies that indicate
the infection with malware. Shabtai et al. proposed
an anomaly detection framework called Andromaly,
which uses a large set of very different run-time fea-
tures (such as CPU load and number of incoming
SMS messages) and compares six different standard
classifiers on this data (Shabtai et al., 2012). Contract-
based approaches that try to infer policies apps have
to meet in a dynamic and collaborative manner also
fall into this category (Dini et al., 2014; Aldini et al.,
2014).

Recently, the idea using system call traces as
source for features, originally proposed in the area
of host-based intrusion detection (Forrest et al., 1996;
Warrender et al., 1999; Eskin et al., 2002; Yeung and
Ding, 2003; Mutz et al., 2006; Maggi et al., 2010),
was adapted to mobile malware detection. With
Crowdroid Burguera et al. proposed a solution that
collects system call traces of Android apps using a
user-space app, i.e., system calls are monitored on
a per-app basis (Burguera et al., 2011). The traces
are further preprocessed locally into feature vectors
representing the frequency of each monitored sys-
tem call. On a remote server, the feature vectors
are then clustered into two classes using the k-means
algorithm. The crucial step is then to label these
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two classes as benign and malicious. Burguera et
al. propose to solve this problem by applying a crowd-
sourcing approach: for each app, feature vectors are
collected by the crowd and submitted to the server.
After clustering, the larger of the two resulting classes
is labeled as benign, following the assumption that
benign apps are executed more often than their ma-
licious counter parts. This approach has two major
shortcomings: first, it always results in two classes,
even if only benign vectors are present and second,
the approaches rely on the participation of a sufficient
number of honest users in order to guarantee that the
assumption holds.

Similar to Burguera et al., Dini et al. use frequen-
cies of system calls as features. However, the sys-
tem calls are not monitored on a per-app basis, but
system-wide. Furthermore, only 11 of the most sensi-
tive system calls are taken into account. The resulting
features are complemented with two additional fea-
tures: (1) whether or not the user is idle and (2) the
count of sent SMS messages. They use the k-nearest
neighbors (KNN) classifier and train it with benign
traces generated with the help of real users as well as
artificially generated malicious traces. This manual
creation and later interpolation of malicious feature
vectors is a major drawback of the system, since it
requires detailed assumptions on how malicious ac-
tions influence the system call counts. Another weak-
ness of the system is the combination of the system
call counts and the two additional features into the
same feature vector, since it is not clear to which ex-
tent the system call counts contribute to the discrim-
ination power of the system. So it is very likely that
e.g., for SMS sending malware the classifier learns
over-simplistic rules of the form “malware detected
if the user is idle and SMS messages are sent”. The
heavy reliance on the idleness-indicator allows smart
malware to bypass detection very easily by becoming
active if and only if the user is active as well.

Nearly all of the aforementioned approaches use
benign as well as malicious data to train a multi-class
classifier in the learning phase (with (Xie et al., 2010)
being the only exception). This diminishes the advan-
tages of implementing anomaly detection in its purest
form based on a one-class classifier trained on be-
nign data only. In particular, such one-class classifiers
do not require the collection and processing of mal-
ware samples. In addition, they can be expected to
be able to also detect zero-day malware that heavily
differs from known malware as they define anoma-
lies as deviations from the model of benign behav-
ior rather than similarity to known malicious patterns.
We therefore propose the use of one-class classifiers
in this paper and compare two state-of-the-art models

of this type. While so far only the use of frequencies
of system calls as feature was studied (e.g. (Burguera
et al., 2011; Dini et al., 2012)), we compare three
different features derived from system calls. Specifi-
cally, we evaluate the different combinations of one-
class classifiers and feature types with respect to their
power to differentiate between a benign app and a
repackaged malicious version of the same app. Note
that as most other recent work in this area we focus on
the market leading Android platform, which is most
targeted by mobile malware authors. Most Android
malware comes as repackaged malicious version of
some benign app (Zhou and Jiang, 2012).

3 FEATURE DERIVATION

While system calls as a source for features were con-
sidered in different approaches in behavior-based mo-
bile malware detection (see Section 2), the field to
date lacks a systematic comparison of different fea-
tures derived from sequential system call data. No-
tably, prior work solely focused on the frequency fea-
ture, neglecting to investigate other system call de-
rived features of varying complexity.

In this paper we study the following three types of
increasingly complex features:

• Binary Feature: The binary feature is the most
straightforward way to process system call data.
It indicates whether or not a specific system call
was invoked. A binary feature vector therefore is a
bitvector of the form xbin ∈ {0,1}n, where n is the
number of system calls available on the operating
system.

• Frequency Feature: The frequency feature has
a structure similar to that of the binary feature.
However, instead of a bit indicating the presence
of a system call the vector now consists of integers
indicating the number of occurrences for each
call. This yields a vector of the form x f rq ∈ Nn.

• Sequence Feature: The most complex feature we
use in this paper is the sequence feature. Unlike
the other two types of feature vectors, sequence
vectors capture the temporal ordering of system
calls. The use of sequence vectors requires some
preprocessing, since models typically require se-
quences to have equal length. We use the standard
sliding window approach to solve this problem: A
window of fixed size is moved over the sequence
with a specific step-size to generate sequences of
fixed length. Each sequence vector therefore has
the form xseq ∈ Sk, where S denotes the set of sys-
tem calls and k the size of the sliding window.
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4 MODELING

In the following we briefly describe the theoretical
foundation of the two state-of-the-art one-class mod-
els we use in the rest of this paper, namely HMMs and
one-class SVMs. While HMMs are generative, prob-
abilistic models, SVMs are discriminative and non-
probabilistic models allowing us to compare the suit-
ability of different algorithm types for the anomaly
detection use case. The former is particularly suited
to model temporally ordered data as needed for the
sequential feature. The one-class SVMs on the other
hand, can be used in connection with all three feature
types introduced in Section 3.

4.1 Hidden Markov Models

HMMs (Rabiner, 1989) are finite state machines
(FSMs) that describe a doubly embedded stochastic
process. The first process is discrete and stationary
and is modeled with a fixed number of states. Since
this process is defined as first-order Markov process,
an additional restriction known as the Markov prop-
erty is introduced. This property refers to the con-
straint that the process behavior at any time t depends
only on the current and the directly preceding state.
While this first stochastic process is considered not
to be observable (i.e., it is assumed to be hidden), a
second stochastic process exists through which means
the first process is observable. At any time t this
second process generates an output Ot , which is re-
ferred to as observation. Note that the observation
probability P(Ot | qt = S j) only depends on the cur-
rent state qt and not on any preceding states or ob-
servations. Since the internal behavior (in particu-
lar the sequence of visited states during generation)
of the model is hidden, the generated observation se-
quence O = O1O2 . . .OT is the only model behavior
that is visible from the outside. These observation se-
quences, which directly map to the data the model is
trained with, show that HMMs naturally operate on
sequential data.

The complete specification of a first-order HMM
λ comprises finding a reasonable value for the num-
ber of hidden states N and specifying the alphabet of
the observation symbols including its size M. In addi-
tion, three probability matrices A, B and π have to be
specified. Here, A denotes a matrix of state transition
probabilities, B denotes a matrix of observation prob-
abilities and π is a vector of initial state probabilities.
Since the number of hidden states N and the size of
the alphabet M are implicitly defined by the dimen-
sions of the matrices A and B, λ = (A,B,π) represents
a compact notation of the parameter set of an HMM.

In the context of this paper, two basic problems
of HMMs and their efficient algorithmic solutions are
of interest. First, the training problem covers the
question how a model λ can be trained given a set
of training sequences X = {O1,O2, . . . , Ol}, so that
P(X | λ), that is the probability of λ generating X , is
maximized. This problem is most commonly solved
using the Baum-Welch algorithm, an iterative proce-
dure for model parameter estimation from the class of
expectation-maximization (EM) algorithms. Second,
the evaluation problem covers the issue how P(O | λ),
i.e., the probability that λ generates O, could effi-
ciently be computed given an HMM λ and an observa-
tion sequence O = O1O2 . . . OT . This latter problem
can be solved using the forward algorithm, an algo-
rithm that, instead of enumerating every possible state
sequence like the naı̈ve approach does, splits the ob-
servation sequence into two subsequences, one cov-
ering the range from time 1 to t and the second one
covering the range from t + 1 to T . This idea can be
encoded into the so-called forward variable α and it
leads to a recursive definition and thus to an efficient
formulation of the calculation.

HMMs are furthermore generative models and
support one-class training, so that they can readily
be applied to anomaly detection. Since HMMs have
their strengths in temporal pattern recognition we use
them solely to model the sequence vectors. For this,
the sequences are preprocessed with a sliding window
of fixed size. The gathered fixed-length sequences
are then used to train an HMM with the help of the
Baum-Welch algorithm. In the detection phase the
monitored sequences are preprocessed in the same
way and tested against the model using the forward
algorithm. Both training and detection phase are de-
scribed in more detail in Section 5.

4.2 One-class SVMs

SVMs have gained great popularity in recent years
due to their outstanding classification performance in
a number of application areas. Besides these empir-
ical results, there are theoretical founded arguments
from statistical learning theory for a good generaliza-
tion performance of SVMs. These theoretical guar-
antees on how well SVMs generalize to unseen data
make it a particular interesting modeling approach,
since those predictions are generally rare for learning
algorithms. However, the original application area for
SVMs are multi-class problems. Due to the advances
of Schoelkopf et al. (Schölkopf et al., 1999) the ad-
vantages of SVMs can also be used if data for only
one of two classes is available, as it is the case in
anomaly detection where only benign system behav-
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ior is observed during training. In contrast to HMMs,
SVMs are discriminative and non-probabilistic mod-
els.

A classical two-class SVM places a hyperplane
between two classes of points that make up the train-
ing data. New data points are classified according to
which side of the hyperplane they lie on. To achieve
a good generalization performance, a SVM maxi-
mizes the margin between the two different classes.
A one-class SVM as described by Schoelkopf et
al. (Schölkopf et al., 1999) places a separating hyper-
plane with maximal distance to the origin. This way
the data space is partitioned into two subspaces: one
holds points that are alike to the training points and
the other has points that are very different. If we allow
some slack while defining the hyperplane boundary, a
few training points may be labeled as outliers.

Training a one-class SVM corresponds to solving
a quadratic maximization problem, where the output
is a sparse vector of data points that define the deci-
sion boundary, the support vectors. The form of this
decision boundary can be adjusted by tuning the pa-
rameters of the SVM. Finding the optimal parame-
ters specific to the problem at hand is referred to as
model selection. In the one-class SVM formulation
the free parameter that influences the placement of
the hyperplane is ν. Here, the parameter ν gives an
upper bound on the fraction of data points the one-
class SVM may designate as outliers during training.
Another interpretation for ν is to consider it a lower
bound on the fraction of support vectors. Thus, se-
lecting an appropriate ν is a crucial part of model se-
lection.

Kernels. The biggest advantage of (one-class)
SVMs, especially when dealing with structured data,
is the support of kernels. The main idea of kernels is
to map non-linearly separable data into a higher di-
mensional feature space where the data points are lin-
early separable with the help of a hyperplane. In our
context this allows us to model all three features de-
scribed in Section 3 with a single modeling approach
and to compare them against each other and against
HMMs.

The simplest kernel is the linear kernel. It com-
putes the similarity metric between two points simply
as the standard dot product. Another frequently used
kernel is the Gaussian Radial Basis Function (RBF)
kernel. The corresponding kernel function is of the

form: k(x,x′) = e−
||x−x′ ||

τ . Because of the additional
parameter τ, which can be interpreted as the kernel’s
width, we have to evaluate an extra dimension in the
model selection process if we use the RBF kernel.

Besides these two standard kernels which we use

for the binary and frequency vectors, the spectrum
kernel introduced by Leslie et al. (Leslie et al., 2002)
is used in the context of sequence vectors. In con-
trast to HMMs, the monitored trace is not split into
fixed-length sequences in a preprocessing step, but
implicitly by the spectrum kernel. Given a trace of
system calls, the spectrum kernel extracts all k-mers
(sequences of length k) and compares the number of
occurrences of these k-mers in the traces via the dot
product.

5 EXPERIMENTAL SETUP

In this section we provide details on how we evaluate
the different combinations of modeling approaches
and features. We start by explaining how we obtain
the benign apps used to train our models and the mal-
ware samples used for the assessment of the detection
performance of the trained models. Note that we train
models on a per app basis; i.e. each benign app is
used to train an individual model for this one app and
the detection performance of this model is then tested
with features derived from the benign app as well as
its malicious counterpart. I.e., while our models do
not require any malicious data for training purposes,
determining their detection quality naturally requires
malicious data. We then describe how we monitor
system call traces of benign and malicious apps. This
is followed by the definition of the metrics used to
quantify the detection quality of our models. Finally,
we describe the evaluation steps for the two modeling
approaches in detail.

5.1 Malware Samples and Benign Apps

Throughout the evaluation we will study repackaged
malware, i.e., legitimate Android apps that were tro-
janized with a malicious payload. Specifically, we
train a model with features derived from the system
call traces of a benign app and then evaluate how well
the model is able to differentiate between features de-
rived from traces of the benign app in question and
features derived from traces of its malicious coun-
terpart. The decision for this scenario follows two
crucial insights: On the one hand repackaged mal-
ware has a massive prevalence. According to Zhou
and Jiang (Zhou and Jiang, 2012) 86% of the An-
droid malware available at that time were repackaged
variants of legitimate applications. Considering only
repackaged malware, therefore, does not constitute
a major restriction. On the other hand, the case of
repackaged malware meets the strengths of anomaly
detection, since one can learn a clean model from the

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

30



Table 1: Overview over the repackaged apps.

Package Name MD5 Type Shortcut
com.appspot.swisscodemonkeys.steam 5895bcd066abf6100a37a25c0c1290a5 fun app steam

com.bwx.bequick 8b540b320359cc1b842dd800a9e49628 utility bequick
com.camelgames.mxmotor e5b7b76bd7154dea167f108daa0488fc game mxmotor

com.camelgames.shootu ffc735a75a6135a282ff4172fff2f371 game shootu
com.creativem.overkill 5c8c0433e7f0c5f8c686a92b9eb462ca game overkill

com.estrongs.android.pop 82f5bf4509e35c3ae7172a0dd7c3ecf4 utility estrongs
com.forthblue.pool 042177a7d144d5e3264a85341f539cb5 game forthblue

com.gamelio.DrawSlasher b87f2f3a927bf967736ed43ca2dbfb60 game drawslasher
com.googlecode.netsentry 17a2b038d1d9080b42ca8e497dddafb8 utility netsentry

org.zwanoo.android.speedtest.Speedtest b18e9a2ab55ec87b2fcac0227e61d20e utility speedtest
tencent.qqgame.lord 1bcda430eda6f2606d50f917d485500a game qqgame

Table 2: Details on the repackaged apps according to
virustotal.com.

App Malware Fam. Ratio First Sub.
steam Adrd 42 / 55 2011-03-01

bequick RootSmart 34 / 54 2013-10-28
mxmotor BaseBridge 38 / 56 2012-06-11

shootu Dowgin 24 / 54 2014-08-01
overkill BaseBridge 39 / 54 2012-10-08
estrongs PjApps 40 / 56 2011-10-23
forthblue Voxv 27 / 54 2013-03-10

drawslasher GoldDream 41 / 55 2011-07-06
netsentry Geinimi 40 / 55 2012-01-04
speedtest Mseg 28 / 50 2014-03-26
qqgame BaseBridge 47 / 56 2011-06-05

benign version and can evaluate this model by test-
ing the trace of the malicious version against it. Con-
versely, this means that a generalization to more com-
plex cases is needless, if the models fail to achieve
sufficient detection performance in the simple case
of discriminating between benign apps and malware
repackaged with the same app.

Note that the effort required to find pairs of a legit-
imate app and its trojanized counterpart is very high
and therefore the overall number of evaluated apps is
limited. The difficulty here resides not in finding ma-
licious apps (which we obtained through a coopera-
tion with virustotal.com), but rather in finding the
exact benign counterpart for such a trojanized app,
i.e., the benign app with with identical version tag.
As there is no central repository for benign apps that
also lists former versions additional effort is required
to find and obtain these apps. Fortunately, since we
train our classifiers on a per-app basis, the classifica-
tion performance would not profit from a higher num-
ber of apps. To make the evaluation as meaningful as
possible despite the limited number of samples, we
focused on finding a set of apps that cover a broad
range of expected behavior. Overall, we found 11
pairs using this approach, including 9 different mal-
ware families and covering a 3 year time span be-
tween 03/2011 and 03/2014. In Table 1, we provide
an overview of the malware samples, stating the Pack-
age Name of the sample, its MD5 hash, the Type, and
a Shortcut introduced for further reference in this pa-
per. Table 2 gives further details about the evaluated
samples, where App identifies the app with its short-
cut, Malware Family denotes the malware family the
majority of the search engines at virustotal stated,

the Detection Ratio gives the ratio of search engines at
virustotal that detected the sample, and First Sub-
mission gives the date when the sample was uploaded
to virustotal for the first time.

5.2 Data Acquisition

To generate extensive data sets from the found app
pairs, we utilized an automated approach using the
Android emulator that ships with the Android SDK.
The actual system call monitoring is done by an An-
droid app that in turn uses the Linux user-land tool
strace to attach to all running processes. Since user
interaction has to be mocked in our automated ap-
proach, we used the monkeyrunner—an SDK tool
that is often used to stress test apps in the develop-
ment process—to inject random touch and keystroke
events. With help of this automated setup 50 indi-
vidual runs of each (benign or malicious) app were
monitored. However, due to crashes during monitor-
ing some very short traces had to be excluded from
the data set. The resulting strace log files were then
preprocessed to extract the features described in Sec-
tion 3 and to format the data for the different modeling
approaches.

5.3 Metrics

To quantify the performance of the different modeling
approaches and features we utilize the common met-
rics true positive rate (TPR), false positive rate (FPR),
and (balanced) accuracy (ACC). For both of our mod-
els the assessment of the TPR, i.e., the proportion of
correctly classified malware, is straightforward, since
it involves simply the test of all malicious traces of an
app against the model trained with all benign traces
of an app. We also refer to the TPR as detection rate.
The calculation is as follows:

T PR = # true positives
# true positives + # f alse negatives

Evaluating the FPR requires a validation set that is
not included in the training set. We use k-fold cross-
validation with k = 5 to assess the FPR, i.e., our orig-
inal data set of benign traces is partitioned into 5 ran-
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domly chosen subsets. In every of 5 iterations 4 sub-
sets constitute the training set and one subset is used
as validation set, so that every subset is used as valida-
tion set exactly once. The FPR can then be calculated
as follows:

FPR = # f alse positives
# f alse positives + # true negatives

To summarize the overall performance of our models
we use the balanced accuracy, which is defined as the
arithmetic mean of the true results, i.e., true positive
rate and true negative rate:

ACC = T PR + T NR
2

5.4 Modeling Approaches

While there are differences between the modeling
approaches regarding the preprocessing and the ac-
tual training, the scope of the models stays the same.
Since we use repackaged apps for evaluation, we are
able to create models on a per-app basis, using the be-
nign versions as a base line to detect anomalies. An
individual model therefore represents the benign be-
havior of a single app. Building the evaluation setup
on a per-app basis also means that the overall percent-
age of detectable apps will not significantly change
when including more apps, since a broad range of dif-
ferent malware families is included in our test set.

HMM Modeling. The HMM modeling initially
uses a sliding window preprocessing to obtain se-
quences of length 8 from all of the monitored traces.
This preprocessing step therefore is the actual deriva-
tion of the sequence vectors described in Section 3.
The obtained sequence vectors from the benign traces
are then taken as input for the Baum-Welch algorithm.
A crucial issue when training HMMs is that of hidden
space cardinality, i.e., the absolute number of hidden
states of the model. Since there is no general rule to
determine the optimal number of hidden states ((Ye-
ung and Ding, 2003) recommends a number close to
the number of used system calls in the traces, what we
used as a hint), we optimized this parameter across
our 11 repackaged apps which resulted in the use of
76 states.

After the training of an HMM representing the be-
nign behavior of a repackaged app, we are able to test
traces against this model. The forward-algorithm is
used to calculate the so called production probability,
i.e., the probability that the sequence was generated
by the model. To finally decide whether a monitored
app can be classified as malware or not, two different
thresholds are applied. The first threshold determines
if a single sequence is suspicious. This threshold is
determined by testing a single validation trace, i.e., a

benign trace not included in the training set, against
the model. The obtained probabilities are then sorted
and the minimum of these values is used as the thresh-
old. Note that this first threshold is determined on
a per-app basis. The second threshold, however, is
static for all apps and is used to ultimately decide if
an app is considered malware. For this second thresh-
old we select and evaluate two different static values.
The first one optimizes the overall average accuracy
and is set to 0.0001, stating that if 1 or more anoma-
lies are found in 10,000 sequences the app is classified
as malware. The second one is set to 0.01 and opti-
mizes the overall false positive rate (see Table 6 (b)).
Since the determination of the second threshold de-
pends on the availability of malicious traces, it is set
static across all apps. The rationale behind this ap-
proach is to find a value that is as generic as possible,
so that it also can be applied on new apps for which
no malicious counterpart is available. In Section 6 we
also briefly describe the results that can be achieved
when optimizing the second level threshold on a per-
app basis (see Table 7).

One-class SVM Modeling. The preprocessing re-
quired for the one-class SVM modeling varies de-
pending on the chosen feature representation and the
selected kernel. Binary vectors can be used as input
for the linear and the RBF kernel directly, whereas
frequency vectors have to be normalized first. Nor-
malizing the frequencies to the interval [0,1] elimi-
nates the overweighting of common system calls that
occur in benign traces. We divide each system call
frequency by the maximal value that was recorded
during a benign trace, if this value is different from
zero. System calls that do not occur in the benign
traces are not normalized. For the spectrum kernel,
we map each system call trace to a string, with each
character representing one system call. To this end,
we reduced the number of system calls that are taken
into account to those that occur at least once during
monitoring.

After preprocessing, we train the one-class SVM
with the data of the benign applications. To conduct
the model selection with one-class SVMs, we have
to determine the parameter ν. Additional parameters
that are used within the specific kernel have to be se-
lected as well. In case of the linear or the sequence
kernel we conduct a one-dimensional grid search for
ν, whereas for the RBF kernel a two-dimensional grid
search is performed to find the additional kernel pa-
rameter τ. We sample the search space exponentially,
testing the values 0.90, . . . ,0.9249 for ν for all kernels
except when using the RBF kernel. Sampling a two-
dimensional grid for training with the RBF kernel re-
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Table 3: Repackaged apps evaluated with one-class SVM on the binary feature.

App ACC TPR FPR
steam 83.67 95.74 27.45
bequick 95.62 99.55 22.00
mxmotor 90.22 100.00 18.37
shootu 90.34 96.51 15.56
overkill 84.85 98.00 28.57
estrongs 66.32 100.00 69.57
forthblue 74.32 100.00 54.29
drawslasher 82.47 91.49 26.00
netsentry 94.38 97.22 6.34
speedtest 71.43 90.00 47.92
qqgame 72.90 100.00 54.72
Avg. 82.41 97.14 33.71

App ACC TPR FPR
steam 98.98 100.00 1.96
bequick 85.40 87.50 24.00
mxmotor 100.00 100.00 0.00
shootu 53.41 5.81 1.11
overkill 88.89 80.00 2.04
estrongs 70.53 61.22 19.57
forthblue 63.51 43.59 14.29
drawslasher 68.04 93.62 56.00
netsentry 99.44 97.22 0.00
speedtest 58.16 22.00 4.17
qqgame 73.83 100.00 52.83
Avg. 78.20 71.91 16.00

(a) RBF kernel (b) Linear kernel

Table 4: Repackaged apps evaluated with one-class SVM on the frequency feature.

App ACC TPR FPR
steam 62.24 68.09 43.14
bequick 95.26 100.00 26.00
mxmotor 63.04 67.44 40.82
shootu 91.48 96.51 13.33
overkill 54.55 88.00 79.59
estrongs 51.58 100.00 100.00
forthblue 59.46 79.49 62.86
drawslasher 59.79 70.21 50.00
netsentry 92.70 97.22 8.45
speedtest 56.12 80.00 68.75
qqgame 53.27 96.30 90.57
Avg. 67.23 85.75 53.05

App ACC TPR FPR
steam 55.10 72.34 60.78
bequick 98.54 99.55 6.00
mxmotor 54.35 11.63 8.16
shootu 52.27 5.81 3.33
overkill 59.60 34.00 14.29
estrongs 51.58 79.59 78.26
forthblue 56.76 43.59 28.57
drawslasher 56.70 14.89 4.00
netsentry 97.75 97.22 2.11
speedtest 54.08 56.00 47.92
qqgame 74.77 100.00 50.94
Avg. 64.68 55.88 27.67

(a) RBF kernel (b) Linear kernel

quires much more work, so we limit the search space
to 0.90, . . . ,0.949 for ν and 23, . . . ,2−13 for τ. Since
we decrement the exponent by 2 each turn for τ, we
search 450 parameter combinations when using the
RBF kernel while only evaluating 250 parameters on
other kernels.

Linear and RBF kernel do not need any prepro-
cessing, we just have to provide the feature vectors.
The spectrum kernel on the other hand works on
strings. Internally, it breaks down the string into se-
quences of length 8 using the sliding window tech-
nique. Since each system call is represented by a char
after the preprocessing, we can concatenate 8 system
calls to make up a 64-bit word. These 64-bit words
are in turn interpreted as unsigned integers to build up
a sparse vector. This vector has a dimensionality of
264, however, due to the sparse representation it suf-
fices to save the actually occurring sequences.

6 EVALUATION RESULTS

In this section we present and compare the results
of our evaluation of HMMs and one-class SVMs
(see Section 4) in the context of distinguishing ma-
licious from benign Android apps based on features
extracted from system calls (see Section 3). We evalu-
ate HMMs on the sequence feature only (see Table 6),
as HMMs reasonably work on sequential data only.
One-class SVMs are tested on different combinations
of kernels and features. Specifically, the binary fea-

ture and the frequency feature are evaluated in combi-
nation with the linear kernel and the RBF kernel (see
Table 3 and Table 4), while the sequence feature is
evaluated with the spectrum kernel, which naturally
works on sequences (see Table 5). In the following
we first compare the performance of the individual
features in combination with different modeling ap-
proaches averaged over all apps. We start with the bi-
nary feature, continue with the frequency feature and
finally discuss the sequence feature. Then we take
a closer look at the results on a per-app basis. Fi-
nally, we discuss and compare the overall discrimi-
natory power of the three different feature types pro-
posed.

In Table 3 we summarize the one-class SVM re-
sults for the binary feature. Here the RBF kernel
shows superior results regarding the accuracy, while
the linear kernel has a lower detection rate, but also
a much lower false positive rate. The comparison of
both kernels using the frequency feature presented in
Table 4 shows a very low average accuracy for both
kernels, with only individual apps achieving an ac-
ceptable ratio of detection rate and false positive rate.

While the RBF kernel shows slightly better aver-
age accuracy than the linear kernel on both the binary
and the frequency feature, it also shows much higher
false positive rates in both cases. We reckon that this
behavior is due to an overfitting of the RBF kernel to
the training data, which is underpinned by the signif-
icantly higher support vector ratio of the RBF kernel
compared with the linear kernel. Since the RBF ker-
nel also needs more time for training, the linear kernel

Anomaly-based Mobile Malware Detection: System Calls as Source for Features

33



Table 5: Repackaged apps evaluated with one-class SVM with spectrum kernel on the sequence feature.

App ACC TPR FPR
steam 56.12 89.36 74.51
bequick 97.81 99.55 10.00
mxmotor 61.96 41.86 20.41
shootu 77.27 87.21 32.22
overkill 55.56 42.00 30.61
estrongs 51.58 100.00 100.00
forthblue 79.73 92.31 34.29
drawslasher 74.23 70.21 22.00
netsentry 96.07 97.22 4.23
speedtest 60.20 34.00 12.50
qqgame 65.42 96.30 66.04
Avg. 70.54 77.27 36.98

App ACC TPR FPR
steam 58.16 65.96 49.02
bequick 98.54 99.55 6.00
mxmotor 63.04 39.53 16.33
shootu 78.98 90.70 32.22
overkill 56.57 52.00 38.78
estrongs 55.79 85.71 76.09
forthblue 79.73 92.31 34.29
drawslasher 74.23 70.21 22.00
netsentry 97.19 97.22 2.82
speedtest 63.27 34.00 6.25
qqgame 65.42 96.30 66.04
Avg. 71.90 74.86 31.80

(a) Constant window size 8 (b) Varying window size optimized on per-app basis

Table 6: HMM evaluated on repackaged apps.

App ACC TPR FPR
steam 99.34 100.00 1.32
bequick 78.33 100.00 43.34
mxmotor 65.78 43.90 12.35
shootu 92.75 95.06 9.57
overkill 82.21 73.47 9.05
estrongs 71.12 51.02 8.78
forthblue 60.06 33.33 13.21
drawslasher 64.44 30.00 1.11
netsentry 89.24 86.21 7.73
speedtest 83.70 78.43 11.03
qqgame 78.59 98.15 40.97
Avg. 78.69 71.78 14.40

App ACC TPR FPR
steam 100.00 100.00 0.00
bequick 88.58 77.16 0.00
mxmotor 50.89 2.44 0.67
shootu 96.55 95.06 1.96
overkill 57.14 14.29 0.00
estrongs 50.00 0.00 0.00
forthblue 49.85 2.56 2.86
drawslasher 53.75 7.50 0.00
netsentry 91.38 82.76 0.00
speedtest 50.00 0.00 0.00
qqgame 50.00 0.00 0.00
Avg. 67.10 34.71 0.50

(a) Threshold 0.0001, optimizing accuracy (b) Threshold 0.01, optimizing false positive rate

has a superior balance between accuracy, false posi-
tive rate, and training performance.

Table 5 shows the evaluation of the sequence fea-
ture in the one-class SVM case with a fixed window
size of 8 in (a) and a varying window size between 2
and 8 that optimizes the accuracy in (b). Overall, the
one-class SVMs with spectrum kernel rank behind the
one-class SVMs on the binary feature and the HMMs
with respect to the accuracy. In Table 6 (a) the results
for the HMMs on the sequence feature are summa-
rized, showing an average accuracy on one level with
one-class SVMs with linear kernel on the binary fea-
ture. Note that HMMs show the lowest false positive
rate of all models and that this value can further be
optimized as shown in Table 6 (b). This optimization
that brings the FPR to a real-world applicable level of
below 1%, however, comes to the price of only de-
tecting 36% of the apps fairly reliably. For the sake of
completeness we also included the detection perfor-
mance for a per-app optimized second level threshold
in Table 7, showing only a slight improvement com-
pared to the static threshold applied in Table 6 (a).

Turning to the results for individual apps, our
evaluation shows that there are apps that show good
detection performance across model boundaries (in
particular netsentry, followed by bequick) and that
there are apps that show the opposite result, i.e.,
bad performance across model boundaries (estrongs,
drawslasher, forthblue, and qqgame). Figure 1 gives
an overview over the achieved accuracy for all tested
apps and models, where frq, bin, and seq denote

Table 7: HMM evaluated on repackaged apps with per-app
optimized second level threshold.

App ACC TPR FPR Thres.
steam 100.00 100.00 0.00 0.01
bequick 92.97 99.49 13.56 0.0008
mxmotor 65.78 43.90 12.35 0.0005
shootu 96.55 95.06 1.96 0.01
overkill 82.21 73.47 9.05 0.0001
estrongs 71.12 51.02 8.78 0.0001
forthblue 60.06 33.33 13.21 0.0001
drawslasher 64.44 30.00 1.11 0.0001
netsentry 93.10 86.21 0.00 0.004
speedtest 83.70 78.43 11.03 0.0001
qqgame 78.83 98.15 40.49 0.0002
Avg. 80.80 71.73 10.1

the frequency feature, the binary feature, and the se-
quence feature, followed by the used kernel. For the
two apps that are well detectable, all but one model
achieve an accuracy above 85%. In particular, netsen-
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Figure 1: Overview of the accuracy of all evaluated models
and features.
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(b) False positive rate
Figure 2: Overview of all evaluated models and features.

try also shows prominent peaks in Figure 2 (a) that
indicate a high detection rate and in Figure 2 (b) that
indicate a low FPR across models. In the case of the
poorly detectable apps, only two models achieve an
accuracy above 80%, the vast majority of the models
perform clearly below 80%. An explanation for this
is that both apps with good detection performance are
fairly simple utility or fun apps, while the latter apps
are a feature-rich file browser (estrongs) and games
(drawslasher, forthblue, and qqgame), and thus much
more complex.

Therefore, it is to assume that the additional mali-
cious payload is much easier to discriminate from the
simple apps than from the complex apps. Our results
also show, however, that a number of apps show no
clear trend across different models and that sufficient
accuracy for these apps can only be achieved in few
of our models.

Taking a step back to the overall picture, our
evaluation shows that one-class SVM-based modeling
achieves the best performance with the binary feature,
i.e., with the simplest of the three features, outper-
forming the frequency feature and the sequence fea-
ture considerably. Using the accuracy as basis for
these comparisons, the sequence feature processed
by the spectrum kernel performs second best, while
the frequency feature lags far behind. The bad per-
formance of the frequency feature is especially sur-
prising, since this feature shows good performance
in prior work (see (Dini et al., 2012; Burguera et al.,
2011)). In the case of MADAM by Dini et al. an ex-
planation could be found in the enrichment of the fea-
ture vectors (see Section 2), leaving it unclear how
much the additional features contribute to the detec-
tion performance. The fact that the best performance
with one-class SVMs can be achieved with the binary
feature suggests that the introduction of system calls

by the malicious payload that are not present in the
benign traces is most discriminative in the context of
this model. The strong performance of the binary fea-
ture compared to the more complex features indicates,
that the variations of the system call frequencies and
the additional information encoded in the temporal or-
dering is not distinctive enough that it can be reliably
learned by our one-class SVM-based classifier. The
inferior result regarding the sequence feature in the
one-class SVM case, however, is contrasted by the
strong performance of this feature in the HMM-based
approach. This, in turn, suggests that the used spec-
trum kernel does not capture the temporal structure of
the underlying data nearly as well as the HMM does.

The most pronounced result of our evaluation is,
that the structure and complexity of the feature has
to be taken into consideration when choosing the ac-
tual modeling approach. Taking the most important
values—accuracy, detection rate and false positive
rate—into account, it is remarkable that both one-
class SVMs with linear kernel on the binary feature
and HMMs on the sequence feature achieve the best
results with almost identical average values. Simpli-
fied one can state that there is not one best modeling
approach for anomaly-based mobile malware detec-
tion on system calls, but that there are best modeling
approaches for each particular derived feature.

7 CONCLUSION

In this paper, we proposed the use of one-class clas-
sifiers in the context of mobile malware detection.
These classifiers have the advantage that they are
trained with data from the benign class only, do thus
not require access to malware samples during train-
ing, and have a great potential to detect new malware
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that significantly differs from known malware. We
systematically compared HMMs (a generative prob-
abilistic model) and one-class SVMs with different
kernels (discriminative, non-probabilistic model) in
combination with three different feature types derived
from system call traces. We showed that HMMs in
combination with the sequence feature slightly out-
perform the other modeling approaches. The most
discriminative feature type, however, strongly de-
pends on the model chosen. In particular, despite
of the good performance of the sequence feature in
the HMM case, the binary feature outperformed both
the frequency feature and the sequence feature in the
one-class SVM case. Overall, our evaluation shows
that the discriminatory power of the features derived
from system call traces varies greatly on a per-app
basis which indicates that not all malicious behav-
ior is appropriately covered with system call traces.
We identified the heavy use of inter-process commu-
nication (IPC) on the Android platform as a main rea-
son. In future work we plan to study low-level fea-
tures that provide superior discrimination power than
system calls and to evaluate them with state-of-the art
models from the field of one-class classification.
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