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Abstract: Motivation: Differentiation of cells into different cell types involves many types of chromatin modifications, 
and mapping these modifications is a key computational task as researchers uncover different aspects of that 
process. Modifications associated with heterochromatin formation pose new challenges in this context 
because we must define very broad regions that have only a moderately stronger signal than the rest of the 
chromatin. Lamin-associated domains (LADs) are a prime example of such regions. Results: We present 
Combinatorial Identification of Broad Association Regions (CIBAR), a new method to identify these types 
of broad regions. CIBAR is based on an efficient solution to a natural combinatorial problem, which adapts 
to widely variable yields of reads from ChIP-seq data and the associated controls and performs competitively 
with previous methods, including DamID, which has been used in many publications on LADs but cannot be 
applied in most in vivo situations. 

1 INTRODUCTION 

It is now widely accepted that there are many types of 
epigenetic chromatin modifications that profoundly 
impact cellular phenotypes and thus all types of life 
processes (Berstein et al, 2010). A typical task in 
processing genome-wide data regarding such 
modifications is to simplify the complex distribution 
of these modifications into simple collections of 
regions where they are present. 

There is no universal gold standard concerning 
present/absent decisions, but in general, we wish to 
see reproducible results (thus removing or decreasing 
the impact of data noise) that are associated with 
biological outcomes of interest, such as activating or 
repressing gene expression or the presence of other 
modifications. 

Because different modifications are associated with 
diverse molecular mechanisms, they require different 
computational tools. The best-investigated “regions 
of presence” are so-called (narrow) peaks of 
sequence-specific transcription factors, which can 
have lengths around 100 bps. Broad peaks, with 
lengths ranging from hundreds to thousands of bps, 
are typical regions for the presence of chromatin 

factors, e.g., chromatin-modifying enzymes that form 
protein complexes with transcription factors but have 
some mobility that allows them to modify longer 
chromosomal intervals. A prime example of regions 
with peaks and broad peaks are so-called promoters 
and enhancers (Ernst et al., 2011), and even longer 
broad peaks may be associated with regions with 
Polycomb repression complex activity (Ernst et al., 
2011; Mikkelsen et al., 2007). In this note, we focus 
on broad regions, which sometimes cover many 
millions of base pairs, that in many cases are 
associated with modifications that repress gene 
expression in wide domains because they are 
involved in the establishment of heterochromatin.  

The tools for finding broad peaks are not adequate 
for finding broad regions because they share the basic 
assumption with tools for narrow peaks: namely, they 
define locations that have a much higher normalized 
concentration of ChIP reads than so-called 
background locations. However, heterochromatin 
covers most of the genome, and the modifications 
associated with heterochromatin have a very wide 
distribution; therefore, assumptions of that kind are 
not applicable. 

One type of chromatin modification that is attracting 
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increasing attention is binding to lamins proteins 
present in the nuclear lamina, as well as the lamina of 
the nucleolus (Padeken and Heun, 2014). 

The lamina lines the membranes of the nucleus and 
nucleolus and forms a mesh-like structure that 
stabilizes the position of a portion of the chromatin in 
the nuclear periphery. Chromosomal regions where 
contact with lamins is detected are called lamin-
associated domains (LADs); binding to lamins is 
mediated through several proteins, and it is still under 
investigation. The following proportions have been 
reported in the mouse genome: (1) ca. 65% of 
chromatin is heterochromatin (Ernst et al., 2011), (2) 
ca. 40% of chromatin is in LADs (Guelen et al., 
2008), and (3) more than 90% of LADs are in 
heterochromatin (this estimate is based on the 
depletion of LADs with expressed genes [Table 1]). 
It is important to note that eukaryotic genomes vary 
widely in length and thus in gene density; hence, 
those proportions should be different in different 
species. The extent of heterochromatin changes 
during cell differentiation, and these changes are part 
of the processes that determine cell fate. In turn, a 
number of chromatin factors have been implicated in 
the formation of LADs. 

Table 1: Joint length, the number of gene transcription start 
sites (TSS) and the number of TSSs of expressed genes (E-
TSS, genes with an e9.5 expression level above the median) 
for LADs identified by DamID and by CIBAR. We define 
the consensus of the four e9.5 samples (three e12.5 
samples) as windows that are selected to be in LADs for all 
of them, with one possible exception, and we call the 
resulting set "3 of 4" ("2 of 3" for e12.5 samples). 

 

Computation of LADs includes the following three 
basic stages, and for each stage we can choose a 
method: (1) we obtain the data from the genome 
(signal and control), (2) we convert the data to a 
"normalized signal", and (3) we use the normalized 

signal to determine regions where the normalized 
signal values are mostly higher than in the remainder 
of the genome. 

There are two methods of collecting the binding 
data for lamins and proteins that interact with lamins 
for the purpose of genome-wide mapping of LADs. 
The first is DamID (Guelen et al., 2008). In DamID, 
the protein binding data are obtained by adding a 
DNA methylating domain to the investigated protein. 
Then, the loci with methylated DNA are identified by 
hybridization to microarrays (with ca. 2.5 million 
probes in the case of the mouse genome). These data 
are paired with data in which the protein is augmented 
with a “neutral” domain. The benefits are that no 
specific protein antibodies are required and that the 
control data match the signal data very well. 
However, such genomic manipulation is impractical 
in vivo; in particular, DNA methylation itself can 
affect the phenotype. The second method is to collect 
ChIP-seq using an antibody and input, which is the 
associated control formed from a portion of the 
starting material, i.e., the DNA from the respective 
cell sample. The signal data that are collected are 
quite uniformly distributed while methods of the 
broad peak-type perform well only when we have a 
high fold change between regions where we declare 
the present compared with the remainder of the 
chromatin. 
     The standard method for computing the 
“normalized signal” from the data is to use ratios, 
such as the “the number of ChIP reads” over “the 
number of input reads.” However, we present our 
alternative method in Section 2. 

Several methods have been previously used to 
identify broad regions from binding data. 

The first method is a 2-state Hidden Markov 
Model (HMM). The use of HMM for defining 
genomic regions is well established (e.g., Ernst et al., 
2011) and seems indispensable when we integrate the 
signals of multiple types. HMM has been used by Xu 
et al. (2010) to compute the broad peaks from ChIP-
seq/input data, and is also a part of the DamID 
method. However, when we have only one type of 
signal, combinatorial algorithms are faster and offer a 
better understanding of how the regions are defined, 
and consequently, of how to set the parameters to 
achieve the desired outcomes.  
     Lund et al. (2014) have tested several existing 
programs for computing “long peaks” and have found 
that all of them are inadequate for LADs. Another 
combinatorial approach used to identify LADs is the 
“sliding windows” method (Shah et al., 2013), in 
which a long window consists of k short windows 
(called steps). We accept a long window if it contains 
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some threshold number of short windows with the 
positive score, and we declare LADs as the union of 
the accepted long windows. An undesirable aspect of 
this method is that it ignores the signal values that can 
have considerable amplitudes and are not captured by 
comparison with a threshold. Moreover, the user must 
arbitrarily choose many parameters, including the 
threshold on the values, the length of the long 
windows and the minimum number of “positive” 
short windows. 

Those undesirable aspects are not present in a 
method that uses a combinatorial problem defined in 
terms of the sums of signal values (that can be 
positive and negative) in the selected intervals. The 
EDD method by Lund et al. (2014) incorporates the 
following combinatorial problem: (1) we are given a 
number of arrays with real values and (2) we find a 
contiguous fragment with the maximum sum of 
values. Then, we select that fragment and remove it 
from its array, which may increase the number of 
remaining arrays. We repeat this selection a desired 
number of times, and finally we reject the selected 
regional candidates that do not pass a permutation test 
for significance. 

Our CIBAR method has two major differences 
from EDD. First, we use a different formula for 
computing the signal values that more accurately 
follows the dependency between the distribution of 
the ChIP and input reads. Second, instead of selecting 
the fragments one at a time, we apply a framework of 
global optimization such that for a given array and k, 
we select k array fragments in such a way that the sum 
of all of the values in the selected fragments is 
maximized. We also show a very efficient solution to 
that problem. 

2 METHODS - DESCRIPTION 
OF CIBAR 

2.1 Windows 

We partitioned the genome into 1000 bp windows 
(also known as bins) and each window has a position, 
e.g., chr2:3001 for bps 3,001,001 to 3,002,000. Each 
window w has aw input reads and bw ChIP reads. 
Because the windows are merged into much longer 
regions, the precise selection of the window length 
has moderate importance. However, in our 
experience, the average value of the aw, number of 
input reads in a window should be in the range of 50.  

We collected reads from several ChIP and input 
sets, and we process only windows with at least one 

read mapped in one of the sets. The other windows 
are ignored, and we call them “null windows.” As a 
result, we do consider windows with aw = bw = 0 if 
they have reads in some other data sets. 

2.2 Scores of Windows – The 
Motivation 

The “significance” of an interval of windows is 
related to the p-value that we see for a particular 
number of signal reads in that interval, but we 
normalize that number on the basis of the number of 
input (control) reads. 

The question that we address in a novel way is 
how to normalize the signal. ChIP reads are not 
uniformly collected through the genome because of 
the differences in the accessibility of different parts 
of chromatin to the processes that generate the reads 
(Kharchenko et al. 2008). In particular, 
heterochromatin tends to be less accessible, and the 
frequency of input reads in heterochromatin tends to 
be lower. This motivates normalization approaches, 
such as the ratio between the normalized ChIP and 
input read counts.  

The ratio approach is valid if the relationship 
between the ChIP and input counts is linear. 
However, this is not the case. 

 

Figure 1: The X-axis is the aw, which is the number of input 
reads in a 1 kbp window, and each bar represents the set of 
all windows with aw indicated by the X-coordinate. The 
heights of the colors for the Y-coordinate are the values of 
bw, which are the numbers of ChIP reads that are order 
statistics for this window set. The top of blue is 25% (the 
highest value in the bottom quadrant), the top of red is 50% 
(the median), and the top of green is 90% (the lowest value 
in the top decile). Forty-four is the median level for the 
input reads, less than 0.1% of the windows have more than 
100 input reads, and because the sets for aw > 100 are very 
small, their statistics change quite irregularly. 

Figure 1 illustrates the distribution for a typical 
input-ChIP pair. In that example, the input-ChIP 
relationship is well approximated as linear between 0 

Combinatorial Identification of Broad Association Regions with ChIP-seq Data

29



 

and 20 input reads, and  as constant between 30 and 
100 input reads; i.e., the ChIP read counts are almost 
independent of the input counts. For rare high counts 
of input reads, the relationship is once again roughly 
linear. 

Normalization is important because 20-25% of 
windows have low input counts and proportionally 
smaller ChIP counts. Moreover, these windows are 
primarily in the heterochromatin where we expect 
LADs to be. However, for a wide range of input 
values, linear normalization would be a significant 
distortion. Our solution is to normalize the signals 
separately for each possible number of input reads. 

To our knowledge, previous work has made no 
account of this problem. The use of ChIP-input ratio 
did not produce very distorted results because the 
effect is to exaggerate the link between LADs and 
heterochromatin, although in actuality, this link is 
very strong. However, in studies of embryonic 
differentiation, etc., we are very much interested in 
“marginal” LADs, where the dynamic extent of 
LADs has regulatory impact on gene expression 
without total heterochromatin silencing 
characteristics. Thus, misclassification of LADs, over 
1-5% of the genome can have a high impact on the 
lists of genes whose regulation can be attributed to 
LADs. Moreover, the positive bias for 
heterochromatin can be detrimental when the method 
is applied to regions associated with PRC activity or 
gene elongation. 

Other than separating the windows according to 
their input counts, our method for computing the 
signal is quite similar to the one by Lund et al. (2014). 

2.3 Window Scores – The Formula 

Given that a window w has aw input reads and bw ChIP 
reads, we define the following statistics: 

(1) ni is the number of all of the windows with aw 
= i,  

(2) sik is the number of all of the windows with aw 
= i and bw = k, and 

(3) Aik is the average rank of windows with aw = i 
and bw = k among all of the windows with aw 
= i, i.e., Aik = si0 + … + si(k-1) + ½sik. 

    The score(i, k) = κ(2 Aik /ni ), where 
κ(x) = log x if x ≤ 1  and  κ(x) =  −log (2−x) if x ≥ 1.   

Note that the score(i, k) is negative/zero/positive if Aik 

is smaller/equal/greater than ½ni, respectively. 
The idea of the scoring is that we prefer to select 

windows with positive scores and to avoid selecting 
windows with negative scores. However, with the 

described method for assigning scores, about half of 
the windows have positive scores, and about half have 
negative scores, even though the target regions 
occupy less than half of the genome. Therefore, we 
use 
    score(w) = score(aw, bw) – α,  

where α is the score adjustment, which is the same for 
all of the non-null windows. The larger the score 
adjustment we use, the fewer the windows belonging 
to the selected regions. The score adjustment is one 
of the two parameters supplied by the user. 

This scoring formula is subjected to a high 
statistical fluctuation when ni is small. If ni is smaller 
than 1000, we enlarge the counts by forming a set of 
windows of size 1000 or more, which have between 
i−d and i+d input reads for the smallest possible d. 

2.4 From Signal Values to Regions/ 
Domains 

LAD signals computed with our formula exhibit large 
random-like variability, in part because the collection 
of reads, both input and ChIP, is essentially a random 
process of extracting the reads from a library. In the 
case of narrow and broad peaks, we observe 
concentrations of ChIP reads that are many times 
larger than background, although this is not the case 
with the much less-concentrated signal that we see in 
very broad regions. Instead, we can see a rather small 
advantage of the positive signal that persists over a 
long interval. 

We identify our broad regions by solving the 1-
dimensional fragment selection (1DFS): given an 
array with real values (scores of windows in 
chromosomes) and a target number k, find k 
disjointed fragments that are contiguous sub-arrays 
and have the maximum sum of scores. The 1DFS 
problem describes the optimization goals more 
directly than the iterative formulation by Lund et al. 
(2014). Importantly, exact solution of 1DFS can be 
found efficiently in time proportional to n log n, 
where n is the number of windows. This is slightly 
slower than the speed of the algorithm in Lund et al. 
(2014), but the probabilistic validation of the 
computed regions takes approximately 10 times 
longer and our entire computation takes about one 
minute on a 1.7 Ghz Macintosh computer. Our 
algorithm for 1DFS uses a greedy method and is easy 
to implement. 

We give the details of the 1DFS algorithm and the 
proof of its correctness in the Appendix. To our 
knowledge, this is a new algorithm that may have 
more applications in genomic region studies. 

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

30



 

3 RESULTS 

We applied our method to laminB1 ChIP data 
collected for the following two biological conditions 
(ChIP was performed as described in Shah et al. 
(2013)): (1) the mouse embryonic heart at e9.5 and 
(2) the mouse embryonic heart at e12.5 (days after 
conception), with four and three replicates, 
respectively. These samples are subsequently referred 
to as A-D and K-M, respectively. We found that using 
an input with less than 50 million reads leads to erratic 
results, so we used the same input for all of the ChIP 
samples; it was collected from the e9.5 sample and 
had 111 million reads. We set the target number of 
LADs at 1500 and experimented with different 
adjustment parameters. Adjustments that led to LADs 
having much more than 800 Mbps in joint length had 
a considerable proportion of regions with p-values 
above 0.001, so we decided not to further increase the 
size (see Appendix for the details of p-value test). 
Then, we checked whether the LADs have the 
properties previously reported in the literature. The 
first property is that LADs are severely depleted of 
genes and that the genes present in LADs are mostly 
silent (very low expression level). We tested this on 
18,988 genes that have annotations in refGene.txt for 
the mm9 mouse genome build (available from UCSC 
Genome Browser) and for which we also had 
microarray expression data. 
    Table 1 shows that our LADs contain similar 
numbers of genes and expressed genes as LADs 
computed with the DamID method (see Peric-Hupkes 
et al., 2010). DamID LADs cover 42-47% of the 
genome, 14-18% of genes and 4-6% of expressed 
genes. Our LADs (identified by CIBAR) cover 33-
34% of the genome, representing proportionally 
fewer genes, and are also depleted expressed genes, 
though not as much. 
    Taking a consensus of regions computed for the 
same condition results in a similar depletion in 
expressed genes as in DamID; consensus is an 
effective method to eliminate false positives. We 
defined the consensus as the base pairs that occur in 
all or all but one of the LAD sets that were computed 
for that condition; this is shown in Tables 1-3. 
    We also measured the level of consistency for the 
LADs computed for the four cell types studied in 
Peric-Hupkes et al. (2010) and our LADs from the 
embryonic heart (see Table 2). 

The degree of consistency between our embryonic 
LADs and the LADs computed in Peric-Hupkes et al. 
(2010) is similar to the consistency between those cell 
types (note that among those four types, neural 

pluripotent cells (NPC) and astrocytes, a 
differentiated neural type, are the closest). 

Table 2: Similarity of different LAD sets. For e9.5 and 
e12.5, we use consensus regions (called “3 of 4” and “2 of 
3”). The percentage of the smaller set that belongs to both 
sets being compared is in red. 

 

In Table 3 we compare EDD with CIBAR. 
Both EDD and CIBAR produce LADs with 

properties reported in Peric-Hupkes et al. (2010), 
namely that they cover approximately 40% of the 
genome (32-33% in the case of CIBAR and 34-36% 
in the case of EDD) and that LADs are depleted in 
genes, even more so in expressed genes, as we already 
discussed. The consistency with DamID LADs is also 
similar. CIBAR LADs have two advantages. First, 
they are computed with 1 kbp windows, while EDD 
automatically selects window sizes between 35 and 
90 kbps, which means that the LAD boundaries are 
much less precise. Second, EDD produced 200-275 
LADs, and CIBAR produced 880-1280 LADs, which 
is closer to what was previously reported.  

Table 3: Comparison of results of CIBAR and EDD.  The 
column labels correspond to row labels in Table 1. 

 

To a degree, this is a consequence of the parameters 
we chose for CIBAR, namely the selection of the 

Common Mbps % of the smaller set

Set Mbps e9.5 e12.5 Astro ESC MEF NPC

e9.5 721 565 584 581 600 594

78 81 81 83 82

e12.5 832 565 577 605 635 579

81 69 73 76 70

Astro 1112 582 577 772 881 931

81 69 72 78 87

ESC 1067 581 605 772 836 786

81 73 72 78 87

MEF 1179 600 635 881 836 880

83 76 78 78 82

NPC 1070 594 579 931 786 880

82 70 87 74 82
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window size, target size (regulated by the adjustment) 
and the target number of regions. 

4 CONCLUSIONS 

We presented a new method of computing broad 
regions associated with chromatin modifications that 
is applicable even when ChIP data do not exhibit 
large fold changes between the affected regions and 
the rest of the genome. Although our method was 
conceived and implemented before the publication of 
EDD (Lund et al., 2014), it shares the following three 
aspects: (a) using scores of windows rather than a 
selected cut-off between “good” and “bad” windows, 
(b) basing the score number on the ranks of the 
windows and (c) applying a natural combinatorial 
problem to group windows into regions. 

   Our scoring method models the distributions of 
ChIP and control reads more accurately; thus, we 
avoid the positive bias for selecting windows in the 
least accessible parts of the genome. It remains an 
open question whether this is a good model, and we 
expect further progress in this direction. 

   The combinatorial problem that we have 
applied, 1DFS, is much more natural than the iterative 
selection of fragments with the highest sum of scores, 
which can excessively merge “positive” regions with 
the “negative” regions that separate them. Lund et al. 
(2014) introduced gap penalty (decreasing all 
negative scores by a constant) to reduce that 
tendency, but we suspect that this is one of the reasons 
why EDD works with such low granularity. Although 
1DFS is a global optimization problem, we have 
found a solution that is very efficient and easy to 
implement. 

Our method uses only two parameters, k and α, 
but the proper selection of parameters remains an 
open problem. In Section 2, we set k to obtain the 
number of LADs, which is close to the number 
reported in papers applying the DamID method (see 
Peric-Hupkes et al., 2010). Parameter α can be 
selected in different ways. As it increases, the 
proportion of windows with positive score(w) 
decreases, as does the sum of lengths of identified 
LADs. However, when we decrease α too much, the 
p-values of the computed LADs tend to increase, and 
we cannot suggest a statistic that allows to optimize 
α. In fact, we tested our program and EDD on six 
genes confirmed to be in LADs using ChIP-qPCR 
(data not included). We found that increasing α may 
paradoxically exclude some of them, whereas 
choosing a consistent α of 0.12 led to consistent 
inclusion of 5 of the genes in LADs computed for all 

four e9.5 samples. LADs computed by EDD (which 
automatically adjusts parameters to optimize the p-
values) consistently included exactly 3 of these genes. 
This small evidence suggests that at present there is 
no better way to select the parameters than using 
whatever knowledge we have, most preferably some 
genomic positions confirmed to be in LADs or 
outside LADs, and picking the parameters to be 
consistent with that knowledge. The situation with 
identifying short peaks of transcription factors is 
similar because the existing programs can produce 
"false positives," i.e., statistically significant peaks 
that are too weak to have a biological impact. 
Therefore, these programs provide options to select 
the parameters, such as maximum p-value/FDR, 
minimum fold change. 
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APPENDIX – THE GREEDY 
ALGORITHM FOR THE 1DFS 
PROBLEM 

1.1 Problem Definition  

An instance of 1DFS consists of an array of real 
values A[0] … A[n−1] and a positive integer k. A 
fragment A[s, t] is specified by two distinct integers; 
if s < t then it consists of A[s] … A[t−1], otherwise it 
is a “wrap around” fragment that consists of A[s] … 
A[n−1] and A[0] … A[t−1]. The value of a fragment 
is the sum of its entries. The goal is to find j ≤ k 
disjointed fragments with the maximum possible sum 
of values. 

Allowing the wrap-around fragments simplifies 
the problem such that every entry has two neighbors, 
left and right, that can join it in the same fragment. 
Moreover, it is equivalent to find j disjoint and non-
adjacent fragments with the maximum sum of values 
and to find j fragments with the minimum sum of 
values because the complement of j disjoint and non-
adjacent fragments also consists of j disjoint and non-
adjacent fragments.  

In our application, we have a number of arrays, 
one for each chromosome. However, even though 
1DFS has only one array and allows wrap-around 
fragments, it is in fact equivalent. We can add an entry 
with a very low negative value to the end of each of 
those arrays and combine all of them into one. Then, 
the “improper” fragments are formally allowed, but 
they cannot be present in an optimal solution because 
they have negative values. 

1.2 Instances with Restricting 
Partitions and the Greedy 
Algorithm 

We generalize problem instance by adding P, a 
restricting partition of array A, into disjoint 
fragments, and then we allow only fragments that are 
unions of fragments from P in the solution. The 
fragments from P can be numbered p0 … pm−1, and 
we use AP[i] to denote the value of pi. 
   Our algorithm starts with the restricting partition of 
A into 1-entry fragments and then applies the rules 
described in Figure 2 until it terminates. The 
algorithm is greedy in the sense that the rules are very 
simple, and it either terminates or applies a rule that 
reduces the size of the problem (the number of 
fragments in the restricting partition).  
Use the first applicable rule from the following list: 

(1) Terminating Rule. If P contains k or fewer 
fragments with positive values, return the set of 
these fragments. 

(2) Equal Sign Rule. If pi  and pi+1 both have 
negative values or both have non-negative values, 
merge them together. 

(3) Minimum Value Rule. Select i with the 
minimum | AP[i] |, merge together pi-1, pi and pi+1. 

 

Figure 2. The rules in the algorithm for the 1DFS 
problem. 

1.2.1 Correctness of the Terminating Rule 

The sum of the values from the selected fragments 
cannot exceed the sum of the values from all of the 
positive fragments in P; thus, the value of the returned 
solution is optimal, and because there are at most k 
such fragments, the solution is valid.  

1.2.2 Correctness of the Equal Sign Rule 

Suppose that the solution S is consistent with the 
former restricting partition but not with the new one. 
Then, a fragment of S (F, for example) contains pi but 
excludes pi+1 or vice versa. If the value of pi is 
negative, we can modify F by excluding pi, thus 
increasing the value of F and S; this works because pi 
is at the end of F. Similarly, if the value of pi is non-
negative, we can modify F by extending it with pi+1, 
which before was fully excluded from the solution, 
and the value of the solution will increase or stay the 
same because the value of pi+1 is also non-negative. 
Thus we defined a solution S’ that has the same value 
as S and is consistent with the new partition.    

1.2.3 Correctness of the Minimum  
Value Rule  

Because the Termination Rule does not apply, the 
number of the positive restriction fragments is l > k. 
Because the Equal Sign Rule does not apply, the 
fragments of P with negative and non-negative values 
alternate, so the number of P-fragments is equal to 2l  
> 2k.  
    Suppose that solution S is consistent with the 
former restricting partition, P, but not with the new 
one P’. This means that the fragments of S contain 
some but not all of pi−1, pi and pi+1. We can assume 
that S cannot be improved by extending or shrinking 
one of its fragments by one P-fragment. Hence, in 
every fragment of S, the first and the last P-fragment 
have positive values, and in every fragment of the 
complement of S, the first and last P-fragment has 
negative values. Thus, each fragment of S and of the 
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complement of S consists of an odd number of 
restriction fragments. 
Case 1: Fragments of S contain only pi−1. We can 
extend S by incorporating pi and pi+1, and the value of 
S increases by AP[i+1]−|AP[i]| ≥ 0.  
Case 2: Fragments of S contain only pi, so the 
restriction fragment pi is also a fragment of S. We 
remove pi from S, which decreases the value of S by 
x, which is the value of pi. We have to modify S to 
increase its value by x or more. Because we have 
decreased the number of fragments in S, the 
modification is allowed to increase the number of 
fragments by 1. Because there are more than 2k 
restriction fragments, one of the fragments of S or the 
complement of S (F, for example) contains at least 
three restriction fragments. If F is a fragment of S, it 
contains a restriction fragment pj with a negative 
value –y. We remove pj from F, which increases the 
number of fragments by one and increases the value 
of the solution by y ≥ x. If F is a fragment of the 
complement of S, it contains a restriction fragment pj 
with a positive value y, so we add pj to S. Again, the 
number of fragments in S increases by 1 and the value 
by y	≥	x. Importantly, as pj neither starts nor ends F, 
it cannot be pi−1 or pi+1.  

Other cases are symmetric, so every solution that 
satisfies the restriction before we applied the merging 
can be modified to a solution that satisfies the new 
restriction with a value that is the same or larger. 

Implementation 

We first compute a matrix with read counts for every 
data sample (input and ChIP) and every window, and 
we then use that matrix (tab separated file) as the 
input for our C-program. Null windows, those 
without any reads, are ignored as “unmappable”. 

In the program, we use an array of doubly linked 
lists for fragments in the restriction partition, with one 
list for each chromosome. The fragments are also 
represented in a binary heap (priority queue), which 
allows rapid application of the Minimum Value Rule. 

To assess the p-value of computed regions, we 
used the null model in which the scores of windows 
are randomly permuted. We found out that for regions 
with more than 200 windows, the p-value can be well 
approximated using the cumulative Gaussian 
distribution. For fewer windows, we use one million 
runs of 200 random window selections, which 
allowed us to tabulate empirical p-values for all of the 
region sizes up to 200 windows. As a result, this 
Monte Carlo test adds less than a minute to the 
computation time and uses very little additional 
memory. 
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