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Abstract: Using data from electronic medical records we were able to rapidly generate temporal network data. This 
data can then be loaded into a modern graph database and used to generate a temporal graph of the data. 
Using a specialist graph language for rapidly querying these graph databases, we are able to rapidly extract 
temporal path information about patient to patient contact networks based on shared ward encounters. This 
information can then be used to calculate various network statistics of interest that may be important for 
clinical use. 

1 INTRODUCTION 

Construction of social networks of hospital patients 
based on shared ward contacts or other potential 
disease transmission vectors has the potential to 
allow interesting analysis to be done which may 
provide useful actionable results to infection control 
professionals (Cusumano-Towner et al., 2013; 
Walker et al., 2012). 

Electronic medical records provide a rich source 
of data which can be readily used to generate these 
social networks for the study of infectious disease 
transmission within hospitals (Cusumano-Towner et 
al., 2013). As we have complete knowledge of 
patient ward based movements, we are able to use 
electronic records to construct the complete network 
structure allowing us to measure directly various 
properties of the network without having to resort to 
various network approximation methods to guess at 
missing data (Danon et al., 2011). 

Traditional network statistics fail to capture the 
dynamic process inherent in disease transmission 
(Holme and Saramäki, 2012). More recently there 
has been extensive work on temporal network 
models which allow us to capture the dynamic 
nature of networks and achieve more relevant results 
(Holme and Saramäki, 2012; Valdano et al., 2015). 
We need to make sure our models and methods are 
appropriate for handling temporal network data.  

Many important concepts within disease 
transmission can be modelled using network 

analysis (Holme and Saramäki, 2012). Concepts 
such as contact tracing, network centrality and 
reachability among others may provide important 
information to clinical staff which can then be used 
to make important decisions regarding patient care 
(Masuda and Holme, 2013; Cooper et al., 1999). 
Due to the large datasets and relatively dense 
network structure of patient connections we are 
interested in using new tools to allow us to calculate 
these various measures easily using newer temporal 
data models. 

Here we present an implementation of a 
temporal network model of shared ward contacts and 
show examples of how this can be used to rapidly 
calculate temporal network paths which can be used 
to calculate network statistics, very rapidly on large 
datasets using modern software tools, which may be 
important for infection control purposes. 

2 MATERIALS AND METHODS 

2.1 Ethics 

Data for this work was obtained from the Infections 
in Oxfordshire Research Database (IORD) (Finney 
et al., 2011), a linked data warehouse of anonymised 
patient records. IORD has Research Ethics 
Committee and Health Research Authority approval 
as a generic infectious disease electronic research 
database (14/SC/1069, ECC5-07(A)/2009). 
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The work described here represents the network 
engine used in the IORD approved study, 
“asymptomatic carriage candidate selection”. 

2.2 Network Model 

In order to model our data, we have used the same 
methods as described in (Holme and Saramäki, 
2012). We have timestamped (YYYY-MM-DD 
hh:mm) all our relationships and our code takes 
account of this when traversing the network.  

Traditional network models often aggregate links 
between nodes over a period of time and calculate 
statistics based on this (Holme and Saramäki, 2012); 
(Valdano et al., 2015). As can be seen from the 
Figure 1 below, this aggregation over a period of 
time does not reflect the true nature of the network. 
As an example node A cannot ever reach node C as 
following the temporal links between nodes never 
allow this. The link between nodes A and B occurs 
after the link between B and C never allowing the 
connection of A and C. 

 
Figure 1: We can easily see that if we start from node A, 
we can never reach node C as the connection between the 
intermediate link, B, and the final destination C happens 
before the link from A to B. 

In a more traditional static aggregated analysis 
all the relationships within a time period would be 
aggregated. In this example if we aggregate all 
relationships from t0 to t1 we would then have a 
path connecting all nodes at any point during this 
time. In this very simple example the difference in 
conclusions can be clearly seen. 

For the purposes of our work we have 
implemented our network using the property graph 
(Sun et al., 2015) in Figure 2. The graph represents 
the hospital patient to patient contact network, a 
subset of a larger network model we are working on. 

Each node in the graph represents a single 
patient.  The properties of the node represent various 

demographics about the patient, which we are not 
using in this example. All of this data can be used 
later for studying the graph using any properties of 
interest. Initially we are just concerned with our 
patient and their contact with other patients based on 
a shared ward space.  

The edge connection from one patient to another 
is a timestamped relationship representing the time 
(YYYY-MM-DD hh:mm) and location the patients 
came into contact in the hospital. This data is readily 
extracted from IORD. 

 
Figure 2: Here we have a simple property graph model 
representing patient connections. Each Patient node 
represents one unique patient in our data set. Patients are 
linked with timestamped (YYYY-MM-DD hh:mm) edges 
representing the date and time of contact, the place of 
contact and the length of time, in minutes, the contact 
occurred. This simple model provides enough information 
for a range of temporal graph queries. 

2.3 IORD Patient Data 

In order to populate our models, we needed to 
extract two sets of data. This data was generated 
from IORD. The first set of data was a set of all 
unique identifiers representing all inpatients in the 
hospital between April 2008 and April 2011. The 
fields for this data are listed in Table 1. This 
represented 244331 unique individuals.  

The second set of data described in Table 2, 
represented the timestamped edges of the graph. The 
represented patient to patient contacts based on 
sharing the same ward at the same time. They 
contained information over the same period and 
represented 21284670 patient to patient contacts. 

Table 1: nodeid is a unique identifier representing the 
individual node. patientid is the unique id representing a 
single patient with the birthdate and gender as given in the 
fields, dob and gender. 

Node Table 
nodeid 
patientid 
dob 
gender 
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Table 2: Edgeid represents a unique value representing a 
single overlapping time when two patients were in the 
same ward at the same time. Startdate represents the time 
the contact began with the endtime representing the end. 
Wardname is the ward that they shared. Intstartdate and 
intenddate are integer representations of the above dates to 
make future graph traversal easier to handle. Minutes 
together represents the length of time shared in the same 
ward space in minutes and will be used in further analysis. 

Edge Table 
edgeid 
fromnode 
tonode 
wardname 
startdate 
enddate 
intstartdate 
intenddate 
minutestogether 

Data was extracted from IORD, which is 
contained in an MSSQL2014 database, and extracted 
using TSQL. 

2.4  Graph Database 

Much of the electronic data within a hospital setting 
is traditionally held in a relational database (Wyllie 
and Davies, 2015). Although these databases work 
extremely well and efficiently for relational models, 
they perform poorly when trying to analyse data in a 
network model structure  (Rodriguez and Neubauer, 
2010).  

New types of NoSQL databases have emerged 
over recent years to handle other types of non-
relational data (Ciglan et al., 2012). For our work we 
use a specialist graph database, NEO4j, which 
natively models data in a graph format and allows 
for very rapid traversals. NEO4j allows one to easily 
extract data from your normal relational database 
and import it easily into a graph model. 

2.5 Cypher Query Language 

Once we have loaded our data into our NEO4j 
model, we are able to then do temporal graph 
traversals. The results of these traversals can then be 
used either directly to calculate various properties of 
the graph in question or the output can then be fed 
into traditional tools to generate statistics of interest. 

NEO4j uses a powerful declarative graph query 
language called Cypher (Webber, 2012). This 
language allows for extremely fast and expressive 
queries across graph data models. 

We implemented the following pseudo code in 
neo4j: 

Traverse paths between two nodes 
Store results in "PATHS" 
FOR EACH "PATH" in "PATHS"{ 
  FOR EACH relationship in "PATH"{ 
    IF relationship timestamp >  
    previous relationship timestamp  
    AND is within the range of 
interest{ 

Keep this path and continue 
checking. 
   }ELSE{ 
     Discard this path.   
   } 
  } 
  Path complete. Keep this path.  
} 
Return all successful paths. 

This pseudocode was implemented in neo4j 
using the following to traverse the graph across a 
temporal network. 

MATCH path =  allshortestpaths(( 
p:Patient{patientid:"11111"})          
-[w:WARD_SHARE*..]-> 
(q:Patient{patientid:"22222"})) 
with  path,  
EXTRACT(r in relationships(path) | 
r.ward) as final with path, 
final,     
REDUCE(acc = [0,1], r in 
relationships(path) | 
CASE WHEN 
r.intstartdate>acc[0] and 
r.startdate>{some_date} and 
r.startdate<{some_date} 
THEN  
[r.intstartdate, acc[1]*1] 
ELSE  
[r.intstartdate, acc[1]*0] 
END 
)[1]  as test 
where test=1 
return path; 

This cypher query calculates the paths between 
two given nodes, 11111 and 22222. It tests each new 
branch within an individual path to make sure that 
the path represents a step forward in time. The end 
result is a list of shortest paths between two nodes 
based on the number of hops between nodes. All of 
these paths all represent movements forward in time. 

Using a java (Gosling, 2000) interface we were 
able to connect the graph database to our relational 
dataset to run multiple queries over many patients’ 
connections to calculate various temporal graph 
paths of interest. 
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3 RESULTS 

For the purposes of testing our graph database we 
loaded 3 years of hospital admission, discharge and 
transfer (ADT) data from IORD into NEO4j. We 
used NEO4j enterprise version 2.21. This was run on 
a Windows 2008 R2 server with 32GB ram and 16 
cores. 

The data from April 2008 to April 2011 
consisted of 122 wards, 244331 unique patients and 
21284670 shared ward contacts between these 
patients. 

This data was loaded into neo4j using the native 
cypher loader. The 244331 nodes in the data set 
loaded in 10.4 second using the following cypher 
query: 

Using periodic commit 500 
Load csv with headers from 
“file:f:neo4jnodes.csv” as row 
Create (p:Patient) 
Set p=row; 

Create index on :Patient(patientid); 

The 21284670 relationships in the data set was 
loaded using the following query in 93 minutes. 

Using periodic commit 500 
Load csv with headers from 
“file:f:neorjrelations.csv” as line 
Match 
(pa:Patient{patientid:line.patient1}
), 
(pb:Patient{patientid:line.patient2}
) 
Create (pa)-[:WARD_SHARE 
{ward:line.ward, 
startdate:line.joindate, 
intstartdate:toInt(line.joinminute), 
enddate:line.enddate, 
intenddate:toInt(line.endminute), 
minutestogether:toInt 
(line.minutestogether), 
fromnode:line.patienti1, 
tonode:line.patient2}] 
->(pb); 

In order to test the speed of path generation for 
different paths, we first retrieved all anonymous 
identifiers for patients that had completed a C.diff 
test during the period of our data set. 

From this we initially chose March 1 2009 as our 
initial index day. Paths were generated between all 
patients on the index day that had a C.diff test as 
well as all patients that had been tested for C.diff at 
1,2,3,4,5,6,7,14,28,90,180 and 360 days. This was 
repeated for the following days until March 31 2009. 
The results of the timings can be found in Figure 3. 

This resulted in the search of 363823 potential 
shortest paths between pairs of patients on different 
days over a temporal network. The average time for 
each path was 0.0717 (SD=0.0283) seconds. 

 
Figure 3: This shows the timings for traversing all the 
paths in the set of interest. The squares show the total 
traversals for a given index day and the diamond shows 
the successful traversals where a path was actually found. 

4 DISCUSSION 

So far we have shown that we are able to load large 
patient to patient contact networks into a temporal 
data model using NEO4j and then apply cypher 
queries to efficiently extract paths between patients 
very quickly.  

On an individual basis, this information 
potentially allows you to know all contacts rapidly 
going backwards or forwards in time from a key 
patient. Depending on the situation, it may provide a 
rapid method of generating timely information for 
relevant clinicians. 

Once we start aggregating results from multiple 
paths we can potentially start to find interesting 
results. For example it is now trivial with a temporal 
model to calculate a reachability ratio (Holme, 2005) 
(Holme and Saramäki, 2012) of infection from one 
ward (assuming person to person in ward contact is 
the vector of transmission). This might provide 
important information for deciding for example 
which ward to place patients in order to minimise 
the risk of infection reaching them from other wards. 
It may also provide extra information to help decide 
to close a ward or provide extra cleaning if the ward 
has a high probability of spreading infection to other 
parts of the hospital. 

Other temporal network statistics can also 
readily be calculated from aggregated path data 
(Holme and Saramäki, 2012). Some examples are 
centrality measures, diameter, latency and contact 
networks. 
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A number of studies of infectious disease have 
reported on the importance of various centrality 
measures to determine the most important nodes in 
the network with regards to the disease in question 
(Christley et al., 2005). With a temporal graph 
model in place we can now readily calculate various 
centrality measures of interest and then act 
accordingly (Holme and Saramäki, 2012). 

Recent studies have shown the importance of 
using temporal network models for the SIR and 
similar compartmental models (Holme and Masuda, 
2015). 

Traditional SIR models across networks link 
pairs of individuals if there is a direct link during a 
sampling period. When looking at the same data 
through a temporal network it becomes obvious that 
many paths in the model do not actually exist. The 
end result can be completely different to the 
traditional static aggregated model and can 
potentially result in errors such as having a 
reproductive number greater than 1 when in fact the 
disease is actually dying out (Holme and Masuda, 
2015). 

Here with the framework we present we are able 
to extract the required temporal data rapidly and 
calculate various statistics as required. 

5 CONCLUSIONS 

Temporal graphs provide an important source of 
statistical data. Several studies have suggested that 
this data may provide information that may be 
important for clinical use such as providing clues 
about infection transmission (Holme and Saramäki, 
2012); (Walker et al., 2012). However the extraction 
of this data from hospital records has traditionally 
been complicated and has required specialist tools 
and knowledge to extract.  

We have developed a simple way of using a 
standard off the shelf graph database, connecting 
this database to our local relational Infection 
research database (IORD) and converting our data to 
a temporal graph model which can then be used for 
calculating various temporal graph statistics of 
interest. 

This work is important as it offers a way to 
implement an important network algorithm which 
can be used for infection control purposes that 
would otherwise be hard to do and require specialist 
tools and extensive custom programming. 

We are currently using this model as the backend 
for two research projects investigating various 

aspects of infectious disease transmission within a 
hospital setting. 

In the future we hope to integrate further 
algorithms into our work and potentially integrate 
this into a live system. 
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