
Towards a Common Understanding of Business Process Instance Data

Nima Moghadam and Hye-young Paik
School of Computer Science and Engineering, University of New South Wale, Sydney, NSW 2052, Australia

Keywords: Business Process Management, Process Instances Data, Data Models, Interoperability, BPMS Architectures.

Abstract: In an organisation several Business Process Management System (BPMS) products can co-exist and work
alongside each other. Each one of these BPM tools has its own definition of process instances, creating a
heterogeneous environment. This reduces interoperability between business process management systems and
increases the effort involved in analysing the data. In this paper, we propose a common model for business
process instances, named Business Process Instance Model (BPIM), which provides a holistic view of business
process instances generated from multiple systems. BPIM consists of visual notations and their metadata
schema. It captures three dimensions of process instances: process execution paths, instance data provenance
and meta-data. BPIM aims to provide an abstract layer between the process instance repository and BPM
engines, leading to common understanding of business process instances.

1 INTRODUCTION

A business process is a collection of related activi-
ties performed together to fulfill a goal in an organ-
isation (Aguilar-Saven, 2004). A main function of a
BPM system is to turn a business process model into
an executable program so that the process described
in the model is enacted to assist business operations.

A process instance is a concrete running instance
of such a program containing (i) a subset of the activ-
ities appearing in the model that spawned the instance
and (ii) materialised data (e.g., Customer Name, Or-
der Number). For example, given a process model de-
scribing a car insurance claim process, a BPM system
would enact concrete instances of the model, each in-
stance representing an actual claim being processed
and the details of the data involved.

Although business process instances could be
short-lived, many process instances are in fact long
running, in that they could take hours and days from
start to finish. This is because a typical life-cycle of
a business process instance could spend most of its
life in wait mode (e.g., waiting for a reply from a
previous request). When a running process instance
reaches to the point that it needs to wait, the BPM sys-
tem maps the instance information directly to physi-
cal storage artefacts such as relational tables or XML
database and stores it. BPM systems also use a physi-
cal storage to store other information such as process
instance execution logs. Organisations can use this in-

formation to analyse and improve their business pro-
cesses (Grigori et al., 2004).

In modern enterprise environments, multiple BPM
systems and applications co-exist and work along side
each other. In this paper, we examine issues of busi-
ness process instance management in such an environ-
ment. Figure 1 depicts a scenario where a single ap-
plication (i.e., single process instance) is supported by
two sub-processes, each implemented with different
BPM solutions. Each BPM system has its own repre-
sentation of process instances and a proprietary pro-
cess instance repository, leading to a heterogeneous
environment.

The lack of common understanding about busi-
ness process instances amongst BPM systems could
prompt the following problems:
• Having to analyse multiple/heterogeneous

sources (e.g., Log Files, Data Tables) to extract
complete process instance information.
• Having not enough information to fully describe

a process instance. Some BPM systems do not
store important information about process in-
stance (e.g., which user or application started the
instance, snapshots of data during the execution)
and makes it impossible to understand the process
instance fully.
• Tight-coupling of a process instance model to a

physical storage model.
We believe the challenges in creating a process

instance model to induce the common understanding

Moghadam, N. and Paik, H-y.
Towards a Common Understanding of Business Process Instance Data.
DOI: 10.5220/0005678401930200
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 193-200
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

193



Figure 1: Customer Journey Process Implemented by Two
Sub-processes: Get Customer Account, Customer Payment.

are two folds. First, such a model should contain all
necessary information that a process execution engine
needs to enact, suspend and resume a process instance
effectively. Second, the model should be able to aid
in creation of an architectural framework that allows
decoupling of the business process instance manage-
ment from an individual BPM system.

Here, we propose BPIM (Business Process In-
stance Model) which provides a holistic view of a
business process instance by considering process exe-
cution paths, data provenance and relevant meta-data.

2 PROBLEM BACKGROUND

In this section, we examine the problem area in de-
tail through a motivating scenario, an E-Toll pro-
cessing application. The application is divided into
two: Get Customer Account sub-process imple-
mented by a third party solution using jBPM1, and
Customer Payment sub-process implemented using
an in-house solution with Riftsaw BPM2.

According to the model (Figure 1), the sub-
process Get Customer Account retrieves a cus-
tomer account and passes it to Customer Payment
which calculates the final fare to be paid – considering
discounts that may apply, and processes the payment.

When required (e.g., a long wait), an instance
of the customer journey process would be stored in

1jBPM, www.jbpm.org
2RiftSaw Open Source BPEL,riftsaw.jboss.org

its respective BPM engine (i.e., jBPM (as part of
Get Customer Account sub-process) and Riftsaw
(as part of Customer Payment sub-process)). Note
that BPM products use different data structures (e.g.,
Data Table, RDF, XML) to model the business pro-
cess instance (Choi et al., 2007; Grigorova and Kame-
narov, 2012; Ma et al., 2007). The E-Toll Application
has its own private repository which contains subset
of the data from the two BPM systems. The develop-
ment teams have modified the services/BPM systems
to send the data to E-Toll Applications private reposi-
tory.

Let us explore the following scenarios to highlight
the issues in the current BPM systems.
1. Data Sharing: Although the two sub-processes

are interdependent, directly accessing and sharing
the data is difficult because jBPM and Riftsaw are
using different schemas.

2. Failure and Error Diagnosis: If something goes
wrong, to investigate the root cause of the failure,
the operation team needs to perform complicated
tasks of going through the data in both systems.

3. Migrating Data: The stakeholders of E-Toll ap-
plication request a new business report show-
ing discount entitlements and payment details for
each customer journey completed. The develop-
ment team needs to modify the business processes
and the Web services involved in this process to
send the new information to the E-Toll application
database. However, migrating the information for
the existing process instances is hard due to the
differences between the process instance models
in the two BPM systems.

4. Rollback/Re-start: Managing a rollback or re-
start of a process instance is difficult as differ-
ent systems provides different level of supports.
For example, jBPM lets you restart the process
instance execution from a specific activity, but it
does not roll back the changes which might have
happened to the data.

5. Data Inconsistency: The database system in E-
Toll application goes down for a while, but the
BPM systems continue to run. This leads to data
inconsistency between E-Toll and BPM system
databases.

6. Changing Process Instance Storage Technol-
ogy: Because the BPM systems are tightly cou-
pled with its storage mechanism, it is impossible
to replace the underlying technology (e.g., from
RDBMS to No SQL).

To mitigate these types of problems, we propose a
common model for representing business process in-
stances, which BPM systems may adopt and use. The

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

194



model, BPIM (Business Process Instance Model), de-
fines a framework for process instance information;
it defines three separate data aspects that can collec-
tively build a common view on process instances. In
doing so, BPIM aims to makes it easier to obtain a
holistic view of the process instance and help build an
abstract model that could de-couple the BPMS execu-
tion engine from a physical storage.

3 RELATED WORK

Most of the academic research work so far have
focused on business process modelling and process
model repositories (Yan et al., 2012; Choi et al., 2007;
Grigorova and Kamenarov, 2012). In-depth discus-
sions about models for business process instances
have been largely neglected. We discuss the most rel-
evant streams of academic work below.
Interoperability: The issue of interoperability be-
tween process instances in a distributed environment
is discussed in Zaplata et al. (Zaplata et al., 2010).
They have identified BPEL and XPDL as the most
popular execution languages and conducted a com-
prehensive study on the elements in these languages
to develop a model for process instances that is flex-
ible enough to be used for both languages. Using
this model, a BPM execution engine (a source envi-
ronment) can transform its native process instance to
an interoperable instance and sends the information
to another BPMS execution engine (a target environ-
ment). However, much of the elements in the model
focuses on the migration aspects and does not provide
the holistic view a process instance.
Artefact Oriented BPM: Recently, a data-oriented
business process view has emerged. The approach
allows decoupling of the process instance data from
its execution engine. Sun et al. (Sun et al., 2014;
Sun et al., 2012) propose ‘Self-Guided Artefact’ as
a holistic view of process instance. Each self-guided
artefact (sg-artefact) contains process instance data
and its process model. A workflow system can under-
stand the sg-artefact and execute the process instance.
A data-oriented view of the process through artefacts
is certainly relevant to our topic. However, we see
major differences in that (i) a sg-artefact incorporates
a process model, as we mentioned before BPM sys-
tems can use different process modelling languages
and coupling the process instance to a specific mod-
elling language makes it less interoperable, (ii) A sg-
artefact does not cater for instance specific informa-
tion such as Execution Path and Meta-Data.
Process Mining: Finally, a process mining technique
is a possible method for building a holistic view of

process instances in a heterogeneous and distributed
environment. The ProM process mining framework
(Van Der Aalst et al., 2007) uses an XML format to
define a workflow log model. This model contains
information about the business process, process in-
stance and related data. This approach is useful when
we are dealing with business processes with no formal
process model to begin with. We see process min-
ing as a bottom up approach and they have to be cus-
tomized for each system. In many BPM systems, we
already have a model to generate instances with (as
described in our scenario in Customer Journey pro-
cess). Instead of logging the activities and trying to
analyse them later (a bottom-up approach), we are
proposing to store the instance related information in
a format that any BPM system can understand.

4 BUSINESS PROCESS
INSTANCE MODEL

In this section, we introduce the individual compo-
nents of Business Process Instance Model (BPIM).
It consists of three views (i.e., dimensions): Process
Instance Execution Path, Process Instance Data, and
Process Instance Meta Data.

We will first present the visual notations of the
model and then the BPIM Meta Model that describes
the schema of BPIM elements.

4.1 Process Instance Execution Path

The Process Instance Execution Path, or Execution
Path for short, focuses on describing the exact exe-
cution path that activities took in an instance. Unlike
a process model, a Process Instance Execution Path

(a) Activities in Execution Paths

(b) Transitions in Execution Paths

Figure 2: BPIM Elements.

Towards a Common Understanding of Business Process Instance Data

195



contains just the activities that have been performed
during the process instance execution.

To be self-contained, we briefly show the main el-
ements of Execution Paths. The design details of this
component are in our previous work (Moghadam and
Paik, 2015).

BPMN v2.0 (Object Management Group, 2011)
comes with an interchange standard. Instead of cre-
ating new notations and their semantic from scratch,
we use a subset of BPMN elements and added new
elements that are relevant to the runtime information.

As shown in Figure 2a, besides the tasks, the Wait
element indicates that process instance execution is
suspended. Call Process Instance and Reference Pro-
cess Instance specify that during the current process
instance execution, a message or event has been sent
to/received from another process instance.

Figure 2b shows transition elements. Transition
connects two activities and shows the direction of the
process execution flow. Transition also has another
responsibility in the Execution Path. It shows how
many times the execution engine has passed through
it during the execution.

4.2 Process Instance Data

Process instance data contains information relating
to the goal the corresponding instance aims to fulfil.
Here, we first examine the data structure characteris-
tics of process instance data. Then, we introduce the
Process Instance Data Snapshot, or Data Snapshot
for short, Data Snapshot Graphs and Data Snapshot
Pools and their visual notations.

4.2.1 Data Elements in a Process Instance

Different types of data exist in a process instance.
These data types can be grouped into the following
categories:

• Basic Data Types: Each BPM system comes with
built in data types (e.g., byte, integer, character)
for defining process instance variables (Qin and
Fahringer, 2012).

• Complex Data types: A complex data structure
is composed of basic data types as attributes and
builds a new data type (e.g., business entities, doc-
uments).

• Arrays: An array contains a collection of data
with the same or different data types (e.g., basic or
complex data item or another array ). For exam-
ple, in the Customer Payment process ‘Discount
Entitlements’ is an array.

During the process instance enactment, activities
in the Execution Path can introduce new data or mod-

ify the existing instance data. Each activity in the Ex-
ecution Path may define input or output data items.

Table 1 defines the input and output for the activ-
ities in the Execution Path. None of the transitions
in the Execution Path modify the data items, so they
do not have data input/output and they are not listed
here. Also, note that ‘End’ and ‘Wait’ activities do
not change the instance data, these activities have no
data input or output.

Table 1: Input/output for activities in the Execution Path.

Activity Name Input Output
Start 7 3
End 7 7
Automated Task 3 3
Manual Task 3 3
Wait 7 7
Call Process Instance 3 7
Reference Process Instance 7 3

Keeping track of the changes in the process in-
stance data before and after the execution of an activ-
ity can be valuable. Chebotko et al. (Chebotko et al.,
2010) states that data provenance management is an
essential component for interpreting the result, diag-
nosing errors and reproducing the same result in sci-
entific workflows. Although most of researches have
focused on the data provenance in the scientific work-
flows, recently the same concepts are being applied
to industrial systems. Shamdasani et al. (Shamdasani
et al., 2014) discusses the usefulness of data prove-
nance in the BPM systems and proposes a workflow
system which can store provenance data.

BPIM, similar to scientific workflows, stores the
data provenance as Data Snapshots and Graphs and
Data Snapshot Pools. Each Data Snapshot of a pro-
cess instance represents the state of data items at a
specific point of execution (i.e., before or after execu-
tion of an activity in the Execution Path). Data Snap-
shot Graphs capture the transition of Data Snapshots
by the activities.

A Data Snapshot Pool is a repository of all Data
Snapshots and each snapshot is identified by a unique
id. Each node in a Data Snapshot Graph contains this
unique id which points to the actual instance of the
Data Snapshot. The Data Snapshot Pool helps the
Data Snapshot Graphs to share the same Data Snap-
shots across different nodes in the graph.

4.2.2 Data Snapshots and Graphs

We present the details of Data Snapshots and Graphs
along with their the visual notations. The Data Snap-
shot Graph is a directed graph and it shows:

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

196



1. The state of data before and after the execution of
each activity in the Execution Path

2. The flow of data items between activities during
the process instance execution

3. Any errors and faults that occurred before or after
the execution of an activity

Figure 3 shows the visual notations. To explain:

Figure 3: Data Snapshot and Graphs.

Data Item: The basic and complex data types are
represented by data item notation. Data item dis-
plays a text and a number. The text is data item’s
name and number is data item’s version.

Data Item Array: This notation represents an array
of basic or complex data types. Data item array
similar to data item displays the data item array’s
name and version number.

Data Transition: Each activity in the Execution Path
maps to a transition in the data snapshot graph.
When an action changes the data during the exe-
cution, it creates a brand new version of data item
and connects the older version to the new version
with a directed edge in the graph.

Null Data Item: Null data item is used in cases
where the activity does not produce any output
data nor require input.

To create a snapshot, we use the following rules:
• Each data item has an identifier.
• Each data item has a version number.
• When an activity in the Execution Path modifies

the existing data item, it will create a brand new
instance of that object with the same identifier and
different version.

• When an activity in the Execution Path creates a
new data item, it assigns an unique identifier and
version to it.

• Initial version for all data items starts from 1.
• Data item identifier is a unique id which can be

used to retrieved that object but there might be
more than one instance of that object with differ-
ent version number.

• Combination of item identifier and version makes
an item unique.

4.3 Process Instance Metadata

BPIM also represents the information about the life-
cycle of a process instance (i.e., creation, enactment
and termination). Some of these information are
merely informational (e.g., creation date time) and
some of them are important for the execution engine
(e.g., process instance state) to enact the instance.

We describe the Process Instance Metadata as a
relation with the following tuple {id, name, mod-
elId, creationDateTime, endDateTime, creator, server,
state}, where modelId is the process model Id, cre-
ator is the name of the application or user created the
process instance, server is the host which created the
instance, state is the current state of the instance3.

4.4 BPIM Meta Model

Along with the visual notations, BPIM defines a meta
model using UML to formally describe the elements
of the model as well as the schema for the elements.
That is, the BPIM meta model is a model which de-
scribes all the elements in the Process Instance Exe-
cution Path and Data Snapshots and Pools.

4.4.1 Execution Path Meta Model

Figure 4 provides the meta model for the Execution
Path elements.

Figure 4: Process Instance Execution Path Meta Model.

In the following, we will closely look at the schema
information for the elements in the Execution Path.

3From here on, we will skip descriptions of the attributes
whenever the names themselves are descriptive enough.

Towards a Common Understanding of Business Process Instance Data

197



Activities: All the activities in the BPIM Execu-
tion Path share some common attributes. We define
them as a relation with a tuple {id, name, startDate-
Time, endDateTime, performer, server, state, map-
pingCorrelationId}, where performer is the name of
the person/application executed the activity, server is
the host which executed the activity, mappingCorre-
lationId is the correlationId to identify the target el-
ement in the execution language during the mapping
process. The following tuple describe the additional
attributes for each activity type in the Execution Path:

• Automated Task: {serviceName, serviceURL,
serviceGroup, applicationName, applicationId},
where serviceName is the name of the service
which BPM system calls. A service refers to any
object which can process the instance data and
provide a response (e.g., Java Object, Web ser-
vice), applicationName and applicationId are the
details of the application which hosts the service,

• Manual Task: {userId, userName, role, com-
ments, description, organisation, department},
where userId, userName, role are the details of
the user who performs the task, extra comments
made and task descriptions are captured in com-
ments and descriptions respectively.

• Wait: {duration, expiryDateTime, interrupted},
where duration is the period of time which pro-
cess execution was suspended (ExpiryDateTime
should be empty), expiryDateTime specifies the
date and time which process instance execution
can resume (Duration should be empty), inter-
rupted specifies if Wait was interrupted

• Call Process Instance: {targetInstanceId, targe-
tActivityId, targetServer}, where the details of the
target process instance and activity are stored

• Reference Process Instance: {sourceInstanceId,
sourceActivityId, sourceServer}, where the details
of the source instance and activity are stored

Transitions: All the transitions in the Execution
Path have some common attributes. We define them
as a relation {id, name, from, to, mappingCorre-
lationId, traverseCounter}, where mappingCorrela-
tionId is the correlationId to identify the target ele-
ment in the execution language during the mapping
process, traverseCounter shows how many times ex-
ecution engine passed through this transition

In the following, the tuples describe the extra at-
tributes for each transition type in the Execution Path:

• Event Transition: {eventId, eventType, event-
Name}, where eventType refers to the type of the
event (e.g., Message, Timer)

• Message Transition: {messageId, message-
Name}, where the message Id and Name are mes-
sage details
• Gateway Transition: {gatewayId, gatewayType,

gatewayName}, where the gateway Id, Type and
Name are gateway details

4.4.2 Process Instance Data Meta Model

The process instance data meta model describes the
structure and schema of Data Snapshots and Graphs.
Figure 5 provides the meta model for the elements.

Figure 5: Process Instance Data Snapshots and Graphs
Meta Model.

As discussed in Section 4.2.1, the process instance
data elements can have basic or complex data types.
Depending on the complexity of the data type, it can
have different metadata (e.g., a document can have
author and size attribute, a Customer entity can have
name and address). In this section, we only list the
common attributes for these data types.

The following tuples describe the attributes for
each element in the Snapshots and Graphs:
• Data Item: {id, dataItemObject, version, cre-

ationDateTime, type}, where dataItemObject is a
reference to a data object.

• Data Item Array: {id, dataItemArrayOb-
jects, version, creationDateTime, size}, where
dataItemArrayObjects is a reference to an array
of data objects, size is the number of items it.

• Data Transition: {id, activityId, dataInput,
dataOutput}, where activityId refers to an activ-
ity in the Execution Path.

• Data Input: {id, dataElementIds}, where
dataElementIds specifies the transition inputs.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

198



• Data Output: {id, dataElementIds}, where
dataElementIds specifies the transition outputs.

5 APPLICATION OF BPIM

In this section, we present how BPIM is applied to the
customer journey process scenario.

5.1 The Customer Journey Process

We use the customer journey process presented in
Section 2 and create a process Execution Path, Data
Snapshots and Data Snapshot Pools. In doing so,
we assume that: (i) the BPM systems involved have
adopted the BPIM framework and implemented it, (ii)
they have added new functionality to support calling
a process instance which is hosted by the other tools.
We also assume that BPM systems share the same
process instance repository.

5.1.1 The Execution Paths

Figure 6 shows an Execution Path of a customer jour-
ney process instance, made up of two Execution Paths
from the sub processes: one from Get Customer
Account process instance in jBPM, the other from
Customer Payment process instance in Riftsaw.

Figure 6: An Execution Path of a customer journey in-
stance.

The Get Customer Account Execution Path dis-
plays all the steps taken to retrieve a customer ac-

count. After loading the customer account, jBPM ex-
ecution engine sends a message to Riftsaw to create a
new Customer Payment process instance and termi-
nates. The ‘Call Process Instance’ activity is a link be-
tween these two instances. The Customer Payment
Execution Path also has a corresponding ‘Reference
Process Instance’ activity which points to the Get
Customer Account process instance.

All the transitions in the Execution Path are
marked with a number. This number shows how many
times the execution engine has traversed that tran-
sition. In this example ‘Apply Discount’ node has
two input transitions which are marked with 1 and 2.
From there, we know that there are three discount en-
titlements applied for this journey. The example also
shows that the Customer Payment Execution Path
has no ‘End’ activity for this process instance. This
means this process is not finished yet and it is waiting
to try to call payment service again.

5.1.2 The Data Snapshots

Similar to the Execution Paths, we have two
Data Snapshots from Get Customer Account and
Customer Payment. Figure 7 displays these two side
by side.

Figure 7: Data Snapshots from a customer journey instance.

The number beside the description of each data
object is the version number. Having a version num-
ber helps to distinguish multiple versions of the same
object. For example there are three discount entitle-
ments for this customer and each one individually ap-
plies to the fair amount. As a result of that we end

Towards a Common Understanding of Business Process Instance Data

199



up with four versions of ‘Fair Amount’ entity. In or-
der to simplify the notations, if an activity (e.g. for
each loop) produces multiple versions of the same
data item we just display the latest version of that data
item. All the intermediary versions of the data item
exist in the Data Snapshot Pool.

Figure 8 illustrates the Data Snapshot Pool for the
Customer Payment process instance.

Figure 8: Customer Payment Process Instance Data Snap-
shot Pool.

BPIM makes it possible for the BPM systems to
share the same schema and data. Using a standard
model for process instance, removes the need for E-
Toll application’s private database. It also makes it
easy to diagnose an error and because it keeps the data
snapshots, it is possible to rollback the changes and
restore the process instance to a specific point during
the execution.

6 CONCLUSION AND FUTURE
WORK

In this paper, we proposed an interoperable model
which provides a holistic view of process instances.
The model is designed to capture process execution
paths, instance data provenance and process context
metadata. This model may be adopted by BPM sys-
tems to work as an abstraction layer between execu-
tion engine and physical storage. This helps BPM
systems share their process instances with each other.

Currently, we are working to provide the full map-
ping between the elements in the BPMN and BPEL
to/from BPIM elements and realise a full transforma-
tion algorithm. A prototype will be developed to show
how all these components work together and build a
holistic view of process instance information.

REFERENCES

Aguilar-Saven, R. S. (2004). Business Process Modelling:
Review and Framework. International Journal of Pro-
duction Economics, 90(2):129–149.

Chebotko, A., Lu, S., Fei, X., and Fotouhi, F. (2010). Rdf-
prov: A relational rdf store for querying and managing
scientific workflow provenance. Data & Knowledge
Engineering, 69(8):836–865.

Choi, I., Kim, K., and Jang, M. (2007). An XML-based
Process Repository and Process Query Language for
Integrated Process Management. Knowledge and Pro-
cess Management, 14(4):303–316.

Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal,
M., and Shan, M.-C. (2004). Business Process Intelli-
gence. Computers in Industry, 53(3):321–343.

Grigorova, K. and Kamenarov, I. (2012). Object Relational
Business Process Repository. In Proceedings of the
13th Int’l Conference on Computer Systems and Tech-
nologies, pages 72–78. ACM.

Ma, Z., Wetzstein, B., Anicic, D., Heymans, S., and Ley-
mann, F. (2007). Semantic Business Process Repos-
itory. In Proceedings of the Workshop on Semantic
Business Process and Product Lifecycle Management
SBPM 2007, held in conjunction with the 3rd Euro-
pean Semantic Web Conference (ESWC 2007).

Moghadam, N. and Paik, H.-y. (2015). Bpim: A multi-view
model for business process instances. In Proceed-
ings of the 11th Asia-Pacific Conference on Concep-
tual Modelling (APCCM 2015), volume 27, page 30.

Object Management Group (2011). Business Pro-
cess Model And Notation (BPMN) Version 2.0.
http://www.omg.org/spec/BPMN/2.0/.

Qin, J. and Fahringer, T. (2012). Semantic-based scientific
workflow composition. In Scientific Workflows, pages
115–134. Springer.

Shamdasani, J., Branson, A., McClatchey, R., Blanc, C.,
Martin, F., Bornand, P., Massonnat, S., Gattaz, O., and
Emin, P. (2014). Cristal-ise: Provenance applied in
industry. arXiv preprint arXiv:1402.6742.

Sun, Y., Su, J., and Yang, J. (2014). Separating execution
and data management: a key to business-process-as-
a-service (bpaas). In Business Process Management,
pages 374–382. Springer.

Sun, Y., Xu, W., Su, J., and Yang, J. (2012). Sega: A me-
diator for artifact-centric business processes. In On
the Move to Meaningful Internet Systems: OTM 2012
Workshops, pages 658–661. Springer.

Van Der Aalst, W. M., Reijers, H. A., Weijters, A. J., van
Dongen, B. F., Alves de Medeiros, A., Song, M., and
Verbeek, H. (2007). Business Process Mining: An In-
dustrial Application. Information Systems, 32(5):713–
732.

Yan, Z., Dijkman, R., and Grefen, P. (2012). Business Pro-
cess Model Pepositories – Framework and Survey. In-
formation and Software Technology, 54(4):380–395.

Zaplata, S., Hamann, K., Kottke, K., and Lamersdorf,
W. (2010). Flexible Execution of Distributed Busi-
ness Processes Based On Process Instance Migration.
Journal of Systems Integration, 1(3):3–16.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

200


