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Abstract: In the field of cryo-electron tomography (cryo-ET), numerous approaches have been proposed to tackle the
difficulties of the three-dimensional reconstruction problem. And that, in order to copdyithe missing
and noisy data from the collected projectio(®,errors in projection images due to acquisition problefgk,
the capacity of processing large data sets and parameterizing the contrast function of the electron microscopy.
In this paper, we present a novel approach for dealing with angular uncertainty in cryo-ET. To accomplish this
task we propose a cost function and with the use of the nonlinear version of the optimization algorithm called
Conjugate Gradient, we minimize it. We test the efficiency of our algorithm with both simulated and real data.

1 INTRODUCTION Nevertheless, there are several limits to the reso-
lution of the reconstruction: the missing data corre-
For a better understanding of the biological cells, sci- sponding to the uncovered projection space, the low
entists use electron microscopy to investigate their in- electron dose used during the acquisition to minimize
ner structures. The cryo-ET offers the possibility to the weight of radiation damage (Egerton et al., 2004),
reconstruct the three dimensionaD(Bvolume of a  the thickness of the ice used in the sample fixation
cell slice. The cryo-ET principle is to acquire two that affects also the final reconstructed volume reso-
dimensional (D) projections with theTransmission  lution (Stagg et al., 2006) and the error made on the
Electron Microscope (TEM) by tilting the sample projection parameters. The missing data, the electron
around an axisof. Figure 1). The tilting range is  dose and the ice thickness are an acquisition phase
[-70°, 70°] with steps between°2and 5. Thenthe  problem that we cannot correct them directly in our
projection angles are known and are used in the re-work, but we try to minimize their effect on the re-
construction of the B sample. Figure 2 presents the construct results. The classical reconstruction pro-

four different steps of cryo-ET. cess involves as a first step an image alignment pro-
cess. The two well common alignment techniques are
Z A Blectron;source (Frank, 2006):(1) marker tracking, where gold par-
i ticles are implanted into the samples before the ac-
(_3 2N 0 quisition of the images and then the calculation based

Tilt gy on these markers is used to align the images (Brandt
and Ziese, 2006), (Sorzano et al., 200@); cross-
correlation methods, where alignment is carried out

P by the cross-correlation calculation between each suc-

l-; }y cessive couple of images (Zheng et al., 2010).

The second step of the cryo-ET is th® 3e-

Support

@]

construction. Numerous reconstruction methods are
% used in cryo-ET, mainly belonging to two families.
First, the analytic family, with methods as filtered
Detector back-projection or direct Fourier inversion, imple-
Figure 1: Transmission electron microscopy acquisiton Mented in Fourier's space (Penczek, 2010). The sec-
mechanism. ond family is the algebraic family, with iterative real-
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space methods such as ART (Gordon et al., 1970) or2 RELATED WORK
SIRT (Gilbert, 1972).

Besides the reconstruction difficulties, the acqui- In recent years, the use of simultaneous optimization
sition process rises different type of problems such is increased in many fields. One of those fields is
as the specimen movement (translation, rotation) overthe alignment phase in the reconstruction. For exam-
the carbon support especially when the tilting reachesple, in the field of the singular particles reconstruc-
the highest values, the blur caused by ©entrast tion, a large set of small projections used in the re-
TransferFunction (CTF), and the uncertainty on the construction of an object are from unknown orien-
angular information due to mechanical imprecision of tations. Thus, to improve the estimation of the un-
the microscope (Colliex, 1998). All these problems known projection orientations, Yang al. (Yang
affect the quality of resolution of the reconstructed et al., 2005) proposed to use a Quasi-Newton opti-
object. Many approaches are proposed to overcomemization based algorithm to minimize a cost function
all this mentioned problems except for the angular between the projection angles and the reconstructed
uncertainty, due to the fact that the resolution of the 3D object starting from a rough reconstruction.
reconstruction is mediocre, so the angular uncertainty  In cryo-ET, the context is different: the data is a
does not have the effect over it. Now days, and due to small set of large projections with known tilt angles.
the improvement of the reconstruction techniques, the However, this tilt angles can be erroneous due to the
resolution become important especially when we aim malfunction of the tilt mechanism of the object holder
to reconstruct and locate small particles such as ribo-in the TEM. In this field, Traret al. (Tran et al.,
some and nucleosomes. Treating the angular uncer-2013) proposed a hierarchical method to correct the
tainty will push as forward to a better reconstruction reconstruction and the alignment problems in alter-
resolution. nating way. They treat the transformation parameters

We begin in our work by concentrating on the (translation, rotation, scale). Inspiring from the cross-
angular uncertainty problem, which we prove in our correlation method of alignment, they begin by find-
tests that even a slight change in the set of angles usdng the first set of transformation parameters by an op-
in the reconstruction has its affect over the accuracy timization between each successive pair of projection
of the resolution of the reconstructe 8olume. Our images. After that, a first reconstruction is applied
approach is based on optimization problem where we followed by refinement of the set of transformation. If
use a cost function has the set of angles as parameterthe method has not yet converged, they raise a new re-
to be minimized. To gain more accuracy we include construction. Infact, the reconstruction is based on an
also the reconstructed object as parameters into theoptimization between the actual projections and the
function. Using the two sets of parameters simulta- resulting projections of the reconstructed object. In
neously in our approach provides more accurate re-the same way, the phase of refinement of transforma-
sults than optimizing the angular uncertainty and the tion parameters represents an optimization between
reconstructed object separately. the processing parameters found from the current pro-
jections and those of the previous iteration.

We propose in our work to optimize the recon-
structed object and the transformation parameters si-
multaneously at the same level. In addition, we take
into account the error of the angular uncertainty of
projection. Indeed, we make the correction on the
reconstructed object itself, instead of those made on
projections. The idea is to try for each projection ori-
entation used to reproduce the same projection pro-
vided by the TEM. In this paper, we only present our
work for the refinement of the projection angles and
the reconstructed object.

The rest of the paper is structured as follows: in
Section 3, the projection algebraic model of the ac-
quisition is given; in Section 4, the proposed approach
is detailed and the associated cost function is defined;
Alignment Reconstruction the results are shown and discussed in Section 5. Fi-
nally, we summarize and give some perspectives.

Acquisition Segmentation

Figure 2: Different Steps of cryo-ET.
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3 PROJECTION ALGEBRAIC jections images and a set of uncertain angles of pro-
MODEL jection. Hence, the idea to create a function that can
calculate the difference or we can call it also the dis-
tance between the real projection data and the projec-
dimensional problem, but in the section we will tion data found after re-projecting the reconstructed

give a generah-dimensional presentation for the volume according to the current set of angles. Thus,

problem. To see the reconstruction problem as an PY refining these two, we can assure having a much

algebraic model, we must change the reconstructed®ccurate reconstructed objet. _ _
volume f and the projections imagep; to their We begin by defining the cost functian, which
respective vectors forms. presents the Euclidian distance between the real set of

Letf be the vector representationetiimensional  Prejection datdI and the re-projection data from the
imagef, f = (f1,f2,....fn)T. Nis the number of vox-  féconstructed objeét, so we have :
els off, in other wordsN = M{_; Ny, whereNy is the
size of f in the dimensiord.

Letp® = (p%,pd ..., p2)T is the vector represen-
tation of then — 1-dimensional projection image of
the imagef according to the orientatio. M is the
number of pixels of, in other worddM = I'IQ;%Md,
whereMy is the size ofp; in the dimensiord. Cc(f,0) =

In fact, p is an element of a bigger vectdt,
which contains all the elements of tH& projec-
tions images. S is the numbers of the angles used =
in the tilting process. We can assemble these an-
gles in a set calledd, and then we havd® =
(p%,p%,... p8 ... p%), vB cO.

We define the relation between the projection vec-
tor P and the image vectdras:

In the cryo-ET, The reconstruction is three-

1 13, i ¢
C(h,0)=3IM-PlE=53 I='-p%5 @)
1=

This equation can be developed to :
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wherewﬁi’J is the projection coefficient of theth
pixel by thej-th projection line according to tHg.

The cost functiorC depends on three parameters,
the actual projections, the current reconstructed vol-
P =Wf, (1) ume and the current tilt angles.

We use the square in the equation (3) to ensure the
positivity of the function. The similarity between the
p% =W f, (2) two types of projections reaches its maximum when
the functionC reaches its minimum. In this case, the
solution set of our problerff,©) is :

Which can be seen also as :

Thereby, the projection problem is modeled as an
equation system whose mati, is sparse. The ma-
trix We, holds the coefficients of the projections ac- (f,©) = argmin C(f,©) (6)
cording to the angl6;. In fact, each line of this matrix The equation (6) is convex in(due to the using of
desc;ribes one of the projection lines passing throws , quadratic sum) an@ is close to the solution by hy-
the image. Many methods are proposed to calculate yihegis . We can therefore assume that in this case,
IS MaleSUCHNaS VOXEl d_rlven and "ray driven” o optimization problem of Eq. (6) is convex. More-
(Joseph, 1982). However, in our work, the calcula- e\ it is plain that the cost functiod is not linear
tion of Wy, is based on the "distance driven” method according taf, ®). Thus, we have to use a non-linear
proposed by (Man and Basu, 2004). Note that the non iz ation algorithm. Among the known determin-
ngll coeff|C|er_|ts change whe changes but the ma- istic optimization algorithms mentioned in the litera-
trix We, remains sparse. The equation (2) cannot be y,ro (Nocedal and Wright, 2006), we chose the non-

straightly inversed. Then we propose thereafter a re- linear version of theConjugateGradient (CG) algo-
constructed volume refinement method that simulta- fithm (Dai and Yuan, 1999). The CG method is the

neously acts on the reconstructed volume and the tilt

most prominent iterative method for solving sparse
angles.

systems of equations. We preferred this algorithm for

its convergence rate, its simple implementation and

since it appeals only to the first order derivative.

4 PROPOSED APPROACH The steps below constitute one of the CG itera-
tion of movement along a conjugate directidn The

When we investigate the reconstruction problem, we algorithm starts by initializinglo = go = —0C(Xo0)

find that the only real data that we have it is the pro- (Dai and Yuan, 1999), then :
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find a; the length of the descent step that mini- Then,
mizesC(Xi + aidi),

oC 1 M (N et (Bhrdo).]
o Vi ='—|—(X'd', o = wioh e7J_Wh edf
Xi+1=Xi idi 30, 2o jZl (kgl( k k )k
e gir1=—0C(Xi+1), \
T (o oy i 9i.]
o Bi= max{—-|-—€"+1(§'+g_1 %) ,0}, x (T[‘j - kZka fk> :
e updating the conjugate directioth,1 = gi+1+ We noticed that according a small value to the pa-
Bidi. rameterAg may produce a null derivative for some

The first step to use the CG is to calculate the gra- angles because of the discrete nature of the rotation

dient of our cost functiort. In order to facilitate this ~ Which may boil down to the identity map for the small

phase, we have changed the equation (4) by : angle changes. Therefore, after many experiments we
’ found that the most suitable value is 1

M After computing the gradient, we can proceed to
Z (Cr(£,8:,)))2 (7) the optimization phase. Firstly, we reconstruct the ini-
=1 tial object; in our case, we chose to use the algebraic
, , - N B reconstruction method SIRT for this phase. However,
with Cr(f,81, ) =1 = S Wi e any algorithm either analytic or algebraic is can be
Now we calculate thelCr then we will deductthe  ysed. Secondly, we take the initial reconstructed ob-
OC. Due to the discrete nature of the cost function, ject and the projection data with the tilt angles used in
we use the finite difference to estimate the gradient the acquisition as input for the iterative CG algorithm.

NI =
n

C(f,0) =

values. The algorithm of our approach is showed in Alg.1.
Forh=1,...,N, the f,-th partial derivative ofC
is given by Algorithm 1: CG refinement algorithm.
acr 6 initializationfo = fiNt, @9 = @'t cond=0
F while iter < itermax AND cond=0do
_ compute gradierfl C(fier, Oiter)
which leads to, computefiiers 1, Ojters1 With the CG
a(Cr 2 . N . AC= C(fiter, eiter) - C(fiter+1, eiter+1)
S o (5 Wit ). if AC < £ then
ofn & cond=1
Th end if
en, fiter < fiter+1, Oiter +— Oitery1,iter < iter +1

oc S M A N . end while

i) i i) . .
—_— = Wi, T — w i | . return fiter 1, Ojter+1
0fn i;;l ( : kZl

In the same, we have for tHeth derivative ac-

cording to®, Yh=1,...,M. 5 RESULTS
acr _ 1 N (th’Ae)? i _ py@n+ho), j)f Several experiments were conducted to assess the ef-
06, 2Aq k; K K k ficiency of the proposed method oD and D data.

The tilt angles used forD2 tests are between70°
wherewl((G“*A&’)’j,wf(eh’Ae“ are the projection coeffi- and 70 with a 2’ tilt step. For each angle a random
cients according t6h + Ag, 6 — A, g here is the fi-  error in[—1.5° 1.5°] is added. For the[3 tests, We
nite difference used in the gradient calculation. which used a different set of angles, one similar to the set

leads to, used in cryo-ET. The boundaries are the same, but the
tilt step is different. The step used betweeb0® and
acr 1 (N (6 -00) (O 00) 5¢°is 5° and it is_ 2 for the others. One can notes that
56— A (Z (W T g TR ) the number of tilt angles for theDBcase is less than
h 9 \k=1 the 2D, which makes the refinement harder. Along

N the projection noise, we used three sets of tilt angles:
x (TG - z w i ) the real one, one with absolute value of the random
k=1 error< 1° and one with random erret 2°.
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To measure the quality of reconstruction, we pro-
pose two evaluation criteria. The first is the cross-
correlation coefficient (equation (8)). It is a criterion
to measure the degree of similarity between the orig-
inal image and the reconstructed image. This coef-
ficient is equal to 1 when the reconstructed image
coincides exactly with the original image and zero S
otherwise. The second criterion ormalizedRoot Orlentations o;in®
Mean S}uareError (NRME) defined by the equa- Figure 4: Error enhancement between the Original tilt an-
tion (9). Unlike the correlation coefficient, the zero of 91€s and the corrected ones for one of the test images.
the NRMSE means a better result. We DERMSE to
measure the quality of angles correction produced by
our approach. The equation (10) shows kheasure
of Angle Correction MAC). More theMAC value is
close to zero, the more the angles found by our ap-
proach are corrects.
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For all the tested resolutions, the error that re-
mains after optimization is under 30% of wrong pix-
els and under 20% of wrong projection angles. In our
future work, we will investigate deeper the relation
between the image size and the number of iterations
to reach the minimum. We notice also that more the
gray-levels we use, more the discrete research space

c ZE l(fk_ (f))(ﬂ< — M(?)) @) is connected and more the method is robust to noise.
orr =
\/Zk_ (fi—M(f)2 3N 1(fk _ (A))z Table 1: Evaluation of 2 synthetic data.
Noise variance 0 2 4 6 8
35, (6i—6)2 Corr 0.97| 0.93| 0.88| 0.87| 0.83
= 5 MAC 0.09| 0.12| 0.15| 0.18| 0.19
NRMSE = S _ 9
max©) —min(O©) ©
NRMSE: s — NRMSE i Sinogram Our method
MAC =1_ init final (10)
With NRM SEjit andNRMSEjing are respectively ©
the NRMSE between the true angles, the angles be- <
fore the optimization and the angles after the opti- |l
mization. Thus, if the angles after the optimization &
are totally correctetlRM SE+ing Will be zero, which ©
means thévIAC will be zero also. However, if the er- g —

rors are not corrected or even are amplified, Nh&C ) ] ) )
will be greater than 1. Figure 5: The sinogram of a single image is corrupted with

The D experiments involve 1222 synthetic Gaussian noise of different variana@sThe reconstruction

by SIRT (Penczek, 2010) and our method is shown for each
gray-level images randomly generated at different gise jevel.

resolutionsN x Nwith N = 32, 64, 128 256, 512. A

sample of the synthetic images used are showninthe The 3D experiments were done on synthetic
figure 3. The same number of iterations are applied and real data. A set of 3D synthetic gray-level
on all the experiments images. volumes were created with different resolutions
(N= 16, 32 64, 128). Fig. 7 shows a3 volume
with its results. The real data are projections of the
Orf-parapoxvirus: Fig. 6: presents some of those pro-
jections.

Figure 3: D synthetic images.

All the projections were corrupted with different
levels of Gaussian noise and a random error has

been assigned to each of the tilt angles (some Sample‘Iq:igure 6: Orf-parapoxvirus projections respectively adeo

are shown in Fig. 5). _ ing to the angles -60 -40°, -10°, 20°, and 50.
The mean results of the synthetic data are gathered

in Tab. 1 and the tilt angles refinements of one of the ~ The mean results according to deferent angular er-
tests are presented in Fig. 4. ror (AE) and noise variance sing the same evalua-
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6 CONCLUSION

In this paper, we have described a method to refine
the reconstruction of an object from a set of its to-
mographic projections and simultaneously correct the
errors over the used tilt angles. The starting point of
the proposed method is an approximation of the ob-
tion measures used for th®2valuation are givenin  ject (provided by some reconstruction algorithm) to-
the Tab. 2 and Tab. 3. gether with a set of uncertain tilt angles used to ac-
In this two table, one can notice the promising re- quire the projections. Then, considering both the an-
sults, the correlation is very high over all the testing 9les and the values of the reconstructed volume as
seniors. The same for tidAC results that are low parameters, we minimize the Euclidean distance be-
for the most of the testing seniors. We notice also, fween our ground truth (the original tomographic pro-
that when we use the true angles, they are slightly cor-jections) and the re-projections of the estimated object

Figure 7: Reconstruction of a synthetic 3Bft: 3D volume
(N = 32), center: with our method andight: with SIRT.

rupted by our algorithm. according to the current corrected set of angles. For
_ the optimization process, a non-linear conjugate gra-
Table 2:Corr results for ® synthetic data. dient algorithm is used. Our experiments shows that
AE ® | <10 | <o the proposed method improves the reconstruction of
g = = the object compared to using SIRT directly. Further
0.5 0.97] 0.89 | 0.88 improvements of the reconstruction can still be ob-
2 0.90] 0.84 | 0.85 tained in the frame of our method. In our future work,
5 0881 0.77 1 0.75 we plan also to incorporate the other transform pa-
rameters of the alignment process, also, the correction
Table 3:MAC results for ® synthetic data. of the contrast transfer function in the optimization
AE process.
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