On TLS 1.3
Early Performance Analysis in the 1oT Field

Simone Bossi!, Tea Anselmo? and Guido Bertoni?
LDepartment of Computer Science, Universita degli studi di Milano, Milan, Italy
2STMicroelectronics, Via Olivetti 2, Agrate B.za, Italy

Keywords:

Abstract:

TLS 1.3, Authenticated Encryption, IoT, Performance Analysis, Data Security.

The TLS 1.3 specifications are subject to change before the final release, and there are still details to be

clarified, but yet some directions have been stated. In the IoT scenario, where devices are constrained, it is
important and critical that the added security benefits of the new TLS 1.3 does not increase complexity and
power consumption significantly compared to TLS 1.2. This paper provides an overview of the novelties intro-
duced in TLS 1.3 draft finalized to improve security and latency of the protocol: the reworked handshake flows
and the newly adopted cryptographic algorithms are analyzed and compared in terms of security and latency
to the current TLS in use. In particular, the analysis is focused on performance and memory requirements
overhead introduced by the TLS 1.3 current specifications, and the final section reports simulation results of a
commercial cryptographic library running on a low end device with an STM32 microcontroller.

1 INTRODUCTION

The emerging technology of the Internet of Things
(IoT) is having a huge impact on the generated data
volume, on network traffic and the way of handling
them. We are experiencing an extraordinary diffusion
of smartphones and tablets, of new devices such as
wearables, environmental sensors, smart-home sys-
tems. They are all part of a vast set of devices requir-
ing a connection - possibly even to the Internet - for
purposes of data communication, remote monitoring,
management, and accounting. In this complex and
intricate context of technologies and protocols, it is
unanimously recognized that security is a key enabler
for success of IoT and for end user acceptance. In
particular, securing the communications that involve
constrained low-end devices is an hard task since the
enhancements of security network protocols always
introduce additional workload and memory require-
ments.

The paper focuses on the TLS (Transport Layer
Security) protocol because it is probably the most
popular security network protocol in the plethora of
existing protocols, and because a new version, TLS
1.3 (Rescorla, 2015), is under development (still a
draft) to respond to security issues and needs. TLS is
implemented on top of the transport layer and used to
secure a wide range of TCP/IP protocols as for exam-

Bossi, S., Anselmo, T. and Bertoni, G.
On TLS 1.3 - Early Performance Analysis in the loT Field.
DOI: 10.5220/0005688901170125

ple HTTP (Rescorla, 2000), FTP (Ford-Hutchinson,
2005), SMTP (Hoffman, 2002), and XMPP (Saint-
Andre, 2011).

The main purpose of the TLS protocol is to pro-
vide communication security in terms of privacy and
authenticity between hosts communicating over inse-
cure channels. In order to achieve this goal TLS pro-
vides three sub-protocols: handshake, record and alert
protocols. We will focus our analysis on handshake
and record layers which make use of cryptographic
primitives.

This paper will treat the main novelties introduced
in the TLS 1.3 draft and discussed by the TLS work-
ing group in the mailing list, focusing on performance
and memory requirements of constrained devices, and
supporting the analysis with test results.

The reminder of this paper is organized as fol-
lows. Section 2 compares the message flows of TLS
1.2 and 1.3 handshake protocols explaining the main
differences proposed in the draft. Section 3 gives an
overview on the record layer focusing on Authenti-
cated Encryption problematic, current solutions, and
its adoption in TLS. Section 4 summarizes the state of
the art security requirements for algorithms employed
in the protocol in terms of key sizes. In Section 5 and
6 we present and comment our work of analysis and
benchmark respectively on TLS 1.2 handshake and
TLS 1.3 additional overhead. Finally Section 7 de-

117

In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 117-125

ISBN: 978-989-758-167-0

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

Client Server
ClientHello _
ServerHello
Certificate*
CertificateRequest*
CertificateVerify*
<«—— ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
[Finished] R
ChangeCipherSpec
D — [Finished]
[ApplicationData] «———— [ApplicationData]
TLS 1.2 \

Figure 1:

Client Server
ClientHello
+ KeyShare _
ServerHello
+ KeyShare

{EncryptedExtensions}
{ServerConfiguration*}
{Certificate*}
{CertificateRequest*}
{CertificateVerify*}

— {Finished}
{Certificate*}
{CertificateVerify*}
{Finished} _—
[ApplicationData] [ApplicationDatal
1 TLS 1.3 Y

Message flow comparison between TLS 1.2 and 1.3 for a full handshake. + indicates extensions sent in the

previously noted message, * indicates optional or situation-dependent messages, {} indicates messages protected using keys
derived from the ephemeral secret, and [] indicates messages protected using keys derived from the master secret.

scribes use cases for TLS on IoT devices motivating
the choice of the discussed algorithms in different sit-
uations and gives some concluding remarks.

2 TLS HANDSHAKE PROTOCOL

The handshake protocol determines the agreement of
cryptographic algorithms, the mutual setting of com-
mon cryptographic parameters, including the keys
that will be used to encrypt the communication and to
authenticate the involved parties. Beside traditional
purposes of the TLS protocol (Dierks and Rescorla,
2008), which are cryptographic security, interoper-
ability and extensibility, the main goals defined for
the new TLS version 1.3 concern the reduction of the
n-RTT (number of Round Trip Time) required for the
handshake, and the encryption of the sensitive infor-
mation exchanged in this phase. Figure 1 provides a
comparative view of the TLS 1.2 handshake and the
novel TLS 1.3 scheme as is in current protocol draft.
The new proposed handshake flow provides a 1-RTT
full handshake solution against the 2-RTT of the pre-
vious version. The rearranged flow includes the trans-
mission of the client key parameters during its first
flight within the new extension KeyShare, thus antic-
ipating the shared key computation on the server side
just after its KeyShare packet. At this point, the server
can already compute the shared secret (or premaster
secret), derive the Ephemeral Secret (ES) and start to
encrypt all remaining handshake traffic. Furthermore
the ServerConfiguration packet will be introduced for
the purpose of enabling O-RTT exchange upon subse-
quent connections. However our performance analy-
sis is focused on the full handshake which represents
the worst case.

Among the new security features proposed in the

118

draft (Rescorla, 2015), it’s also worth noting that all
non-ephemeral key exchange algorithms (including
RSA) have been removed from the cipher suites. The
aim here is to provide Perfect Forward Secrecy (PFS),
that guarantees the agreed key will not be compro-
mised even when agreed keys derived from the same
long-term keying material in a subsequent run are
compromised.

All these security enhancements necessarily
comes with an increased workload for both the client
and the server. In Section 5 we present our analysis
methodology and results for the handshake protocol.

3 TLS RECORD PROTOCOL

The record protocol takes as input uninterpreted data
from higher layers, fragments it into blocks of maxi-
mum 2'# bytes, and applies the symmetric encryption
algorithm as established in the initial handshake. In
TLS 1.3, as opposed to previous versions, all symmet-
ric ciphers are modeled as ”Authenticated Encryption
with Additional Data” (McGrew, 2008). In the rest of
this section we summarize the properties of authenti-
cated encryption and the solutions developed over the
time.

3.1 Authenticated Encryption

In the context of communication over unsecure chan-
nels, the need for privacy and authenticity led to the
rise of scrappy combination of separate encryption
and message authentication techniques. As a result
the confusion in the user community brought to a
number of security break, as for example the break
of WEP protocol in 802.11 (Borisov et al., 2001).

To overcome these flaws there have been various

attempts to give a standardized way to combine Mes-
sage authentication codes (MAC) and ciphers, in or-
der to provide Authenticated Encryption (AE) through
a “generic composition” design. The main ap-
proaches are MAC-and-Encrypt M&E), MAC-then-
Encrypt (MMtE), and Encrypt-then-MAC (EtM). In
M&E, adopted by the SSH protocol (Ylonen and Lon-
vick, 2006), the original message is encrypted and au-
thenticated through the MAC function, and the con-
catenation of ciphertext and authentication tag are
given as output. MtE instead appends authentication
tag to the plaintext and then encrypt the whole. This
is the approach used by TLS 1.2 and prior (Dierks
and Rescorla, 2006), (Dierks and Rescorla, 2008). Fi-
nally EtM differs from the previous since it does not
authenticate the plaintext, but, as the name suggests,
it first encrypts the message, then calculates the au-
thentication tag over the ciphertext and outputs the
concatenation of ciphertext and tag. Old versions of
the IPSec protocol implement EtM ((Kent and Atkin-
son, 1998)). A detailed analysis on the security of au-
thenticated encryption schemes designed by generic
composition is presented in (Bellare and Namprem-
pre, 2000). The paper acknowledges the EtM as the
only secure strategy against both privacy and integrity
attacks providing the proof for this case, and counter-
examples for M&E and MtE. This analysis has been
also confirmed by (Krawczyk, 2001), and a series of
attacks has exploited the weaknesses of MtE such as
(Al Fardan and Paterson, 2013),(Moller et al., 2014),
(Degabriele and Paterson, 2010), and M&E (Bellare
et al., 2004).

Alongside with these threats that afflicts AE ci-
phers built on the generic composition paradigm, the
need to handle associated-data when using AE modes
became clear. This is particularly useful in network
communications where there are non-sensitive data
(e.g. IP addresses, headers, etc.) that does not re-
quire privacy protection, but rather authentication.
In (Rogaway, 2002) this problematic is formalized
and named authenticated-encryption with associated-
data (AEAD). The paper investigates the importance
and the goals of AEAD ciphers, providing a provable-
security treatment. Furthermore solutions to the prob-
lem of translating an AE-scheme to an AEAD-scheme
are presented.

3.2 Authenticated Encryption in TLS

Even if AEAD ciphers are allowed (Salowey et al.,
2008), as previously mentioned the TLS protocol
version 1.2 mandates an MtE construction based
on AES128-CBC cipher and HMAC authentica-
tion. Since this strategy has been proved not to

On TLS 1.3 - Early Performance Analysis in the IoT Field

be secure over the time ((Bellare and Namprempre,
2000), (Krawczyk, 2001), (Al Fardan and Paterson,
2013),(Moller et al., 2014), (Degabriele and Paterson,
2010)) the TLS working group has provided a way to
negotiate the use of EtM mechanism via specification
in HelloExtensions (Gutmann, 2014).

In the new TLS version 1.3 the intent is to provide
authenticated encryption only via AEAD ciphers. At
the time of writing, the main symmetric ciphers in-
cluded are AES operated in the Galois Counter Mode
(GCM) (McGrew and Viega, 2004)(Dworkin, 2007),
and Chacha20-Poly1305 (Nir and Langley, 2015)
which is a construction of Chacha20 cipher (Bern-
stein, 2008) and Poly1305 message authentication
code (Bernstein, 2005). Chacha20-Poly1035 AEAD
cipher has been employed since 2014 by some famous
and widely used web services like Google, Cloud-
Flare and openSSH claiming its high throughput and
security. In particular Google and CloudFlare make
use of this cipher in HTTPS connections even if it was
not yet referred into IANA registered cipher list for
TLS, since the cipher suite description for the proto-
col is today still in draft (Langley et al., 2015). Actu-
ally an approved RFC (Nir and Langley, 2015) for this
AEAD cipher gives a generic implementation guide
for IETF protocols.

An important feature used to promote Chacha20
is the possibility of being constant time by design. In
facts, as highlighted in Section 5 of (Nir and Langley,
2015), all the operations involved in Chacha20 are ad-
ditions, XORs and fixed rotations, which can be easily
implemented in constant time in software. Cryptanal-
ysis on Chacha20 can be found in (Aumasson et al.,
2007), (Ishiguro, 2012), (Shi et al., 2013).

In Section 6.3 we report our benchmarks for
AES128-GCM and Chacha20-Poly1305 AEAD ci-
phers.

4 THE SECURITY LEVEL OF A
TLS CONNECTION

In this section we will discuss how to establish the
security level of a TLS connection in relation to the
negotiated cipher suite.

In (Barker et al., 2012) the authors provide a
global view of the security strength and a key-size
comparison between different public and private key
algorithms binding them to the bit of security they
give as summarized in Table 1. We can note that in or-
der to provide 128 bit-security, the equivalent of AES-
128, we have to choose at least a 3072-bit key for
asymmetric ciphers like RSA or DH, and only a 256-
bit key for ECC. Since in a TLS connection the master

119

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

600 M RSA Encryption

0 Scalar Multiplication

RSA Decryption
& ECDSA Sig. Generation

B Exponentiation
ECDSA Sig. Verification

500

400

300

Million clock cycles
N
o
o

100 I I
0

ﬂﬂﬁ%ﬁhﬂ

Server Client |Server| Client |Server Client Server Client Server Client Server‘client Server | Client Server Client Server Client

DH ANON DH RSA DHE RSA RSA RSA

ECDH ANON | ECDH ECDSA | ECDHRSA ECDHE ECDSA ECDHE RSA ‘

DH 2048 - ECC 256 - RSA 2048 - One way

Figure 2: Benchmark of TLS 1.2 full handshake with one-way authentication.

Table 1: Comparable strengths.

Bits of | Symmetric key | FFC/ ECC
security algorithms IFC
80 2TDEA 1,024 | 160-223
112 3TDEA 2,048 | 224-255
128 AES-128 3,072 | 256-383
192 AES-192 7,680 | 384-511
256 AES-256 15,360 512+

secret used to generate the symmetric key is negoti-
ated by employing public key algorithms, the security
level of the connection is indeed upper bounded by
the asymmetric cipher employed which can represent
the bottle neck in terms of computational effort and
memory requirements especially for IoT devices.

In the third part of the same NIST special publi-
cation (Barker et al., 2015), the authors describe the
recommended key size for key establishment as RSA
2048, DH 2048 and ECDH P-256 or P-384. Note that
for RSA 2048 and DH 2048 the equivalent symmet-
ric key size is 112 bit, and in the case of ECC is 128
bit, thus employing a stronger symmetric cipher is not
enough to provide more security to the connection,
but also key sizes for asymmetric algorithms have to
be incremented. This is the case, for example, of
Chacha20-Poly1305 which is designed to provide 256
bit-security, but if the shared secret is negotiated with
asymmetric algorithms like ECC 256, RSA 2048 or
DH 2048, the security level of the connection is only
128 bit.

S TLS 1.2: HANDSHAKE
PERFORMANCE ANALYSIS

We started our work of analysis by performing bench

120

marks for the TLS version 1.2. We build our test-
ing environment by connecting our STM32F217IG!
with an Intel Pentium M powered PC running Linux
Ubuntu 12.04 LTS by an Ethernet cable. For crypto-
graphic primitives and TLS implementation we em-
ployed the wolfSSL library > version 3.4.6 on the
device and the OpenSSL library * version 1.0.2a on
the PC. All the measurements reported in this article
refers to the device side.

A previous similar work in which handshake per-
formance are analyzed is (Koschuch et al., 2012), and
this section can be an extension of Koschuch et al. pa-
per, considering the new security standards discussed
in Section 4. In fact it is important to note that in
the choice of key sizes we followed the NIST recom-
mendation reported in (Barker et al., 2015). In this
respect, it is emphasised that due to the recent finding
reported in (Adrian et al., 2015), the recommended
key size for Diffie-Hellman key exchange algorithm
has grown from 1024, which was used by millions
of TLS, SSH, and VPN servers, to 2048. Figure
2 and 3 depict the clock cycles needed to complete
an handshake when different cipher suites are nego-
tiated, respectively for one way and mutual authen-
tication schemes, while Table 6 in Appendix reports
the values of memory usage. In case of one-way au-
thentication, Figure 2 shows that the Diffie-Hellman
exponentiation (see DH_RSA) is about 2.5 slower
than the ECC (NIST P-256) scalar multiplication (e.g.
ECDH_RSA), and when it comes to the ephemeral
version, as in DH_ANON or DHE_RSA, an additional
scalar multiplication is required for the key gener-
ation, increasing clock cycles of key exchange at a
comparable level with RSA private key operations.

1WWW.St.COIl’l

2www.wolfssl.com
3www.openssl.org

On TLS 1.3 - Early Performance Analysis in the IoT Field

600 [RSA Encryption
@ Scalar Multiplication

RSA Decryption
& ECDSA Sig. Generation

M Exponentiation
ECDSA Sig. Verification

500

400

300

200

100

Million clock cycles

Server = Client | Server | Client

DH RSA DHE RSA RSA RSA

Server = Client = Server

ECDH ECDSA

Client | Server | Client Server Client | Server | Client

ECDH RSA ECDHE ECDSA ECDHE RSA

DH 2048 - ECC 256 - RSA 2048 - Mutual

Figure 3: Benchmark of TLS 1.2 full handshake with mutual authentication.

Another aspect to be considered is the memory re-
quirement: we observed that a Diffie-Hellman solu-
tion requires almost 1.5 times more RAM than the re-
lated ECC version. In particular, the DHE_RSA con-
figuration demands the highest workload and memory
occupation both for server and client, instead switch-
ing to Elliptic Curve induces a sensible reduction even
with the ephemeral version.

When mutual authentication is employed (Figure
3), the client is required to perform private-key oper-
ations, and the clock cycles are mostly equivalent for
client and server. In this case is even more evident
the benefit of an Elliptic Curve solution. Compar-
ing the ECDHE_ECDSA case with RSA_RSA one,
we note that the former provide higher security by
granting Perfect Forward Secrecy (PES), and requires
less computational effort and RAM for both client
and server. Finally if we compare it with DHE_RSA,
which also provides PFS, the ECC version requires
half the time and less than 1.5 times the RAM. We
also recall that, as discussed in Section 4, ECC P-256
provides 128 bit of security while DH 2048 and RSA
2048 only 112.

6 TLS 1.3 OVERHEAD ANALYSIS

Our aim is to evaluate the extent to which the novel-
ties expected in TLS version 1.3 can impact on hand-
shake and record protocols. For the evaluations pre-
sented in Subsections 6.2 and 6.3 we extended the
wolfSSL library with our own cryptographic library
by including the support for our new generation hard-
ware accelerators.

100 Key generation 1 Make shared secret
90 - MSig. Generation [Sig. Verification I—
80
70
60
» 50
2]
E 40
o
< 30
o
< 20
5 10
s b 7 U
NIST P-256 Curve 25519 NIST P-256 Ed 25519
kx Sign

Figure 4: Elliptic curves benchmark.

6.1 On Ed25519 and Curve25519

Another important discussion among TLS experts
concerns the adoption of new Elliptic Curves algo-
rithms, in particular Curve25519 (Bernstein, 2006)
for key exchange, and Ed25519 (Bernstein et al.,
2012) for signature. The internet drafts that illustrate
the use of such algorithms in TLS can be found at
(Josefsson and Pegourie-Gonnard, 2015) and (Josef-
sson and Mavrogiannopoulos, 2015). These curves
provide at least 128 bit security as NIST P-256, so
we made some speed test and memory requirements
comparison between them.

Figure 4 highlights that Curve25519 is 6 times
faster than P-256 in a typical ephemeral key exchange
which involves two exponentiations, one for generat-
ing the public key, and the other for shared key com-
putation. Very impressive is the gap between NIST P-
256 and Ed25519, in fact the latter is about 15 times
faster in signature generation, and almost 8 times in
signature verification. Another advantage of these
new algorithms is the memory required at run-time,
which is approximately a third for the key exchange,

121

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

and about half for signature (Table 4 in the Appendix).
If we take into account flash memory requirements
like code size and constant data we note that NIST
P-256 requires a little less than 20 KB for both key
exchange and signature against the 70 KB needed by
Curve25519 and Ed25519.

6.2 Handshake Encryption

As discussed in Section 2, the new TLS version 1.3
will introduce a new handshake flow in which all
packets exchanged after the ServerKeyShare will be
encrypted. This additional layer of encryption, in par-
ticular, allows the server to encrypt the response to
any client’s extensions which are not necessary to es-
tablish the Cipher Suite. The questions we want to
answer are: a) how much this security improvement
affects the time required for complete the handshake?
b) Can this represent a problem for IoT devices?

Table 2: Overhead introduced for handshake encryption.

. SW HW
Certificate type clock cycles | clock cycles
ECDSA 1,531,996 23,354
RSA 2,772,785 42,268

In order to evaluate the introduced overhead we
simulated the encryption of a full TLS 1.2 handshake
with AES128-GCM. Obviously the packets that re-
quire much workload are those who contain certifi-
cates, and, as reported in Table 2, the type of the cer-
tificates exchanged can impact on the computation.
In fact the encryption of a certificate containing an
RSA key requires almost double effort with respect to
the one containing an ECC key. The Table further-
more illustrates the difference between clock cycles
needed by software and hardware-accelerated imple-
mentations of the cipher.

Anyway even in the worst case (handshake involv-
ing an RSA-based certificate and no accelerators), the
number of clock cycles is less than 3 Million. Com-
paring this value with the hundreds of millions clock
cycles needed to carry out an handshake is clear that
this additional layer does not introduce a sensible
overhead and does not represent a bottle neck.

6.3 Application Data Encryption

The last evaluation is focused on application data en-
cryption. Once the handshake is terminated, almost
all the delay introduced by the TLS protocol towards
a traditional non-secure socket is due to authenticated
encryption. Hence the choice of symmetric cipher and

122

authentication function is fundamental for both pro-
viding a security level commensurate with the asym-
metric algorithm employed in the handshake, and en-
suring throughput as high as possible.

In this section we present a performance analysis
of AES128-GCM, Chacha20-Poly1305 and AES128-
CBC-SHA which is the mandatory cipher for TLS 1.2
and relays on HMAC-SHA1 for the authentication,
adopting a MtE strategy.

Table 3: Throughput comparison (Bytes/second) between
Software and Hardware implementations of authenticated
ciphers at 120MHz.

. SW HW
Algorithm throughput | throughput
AES128-CBC+HMAC | 578,726 6,142,506
AES128-GCM 304,216 8,757,487
Chacha20-Poly1305 771,962 NA

Table 3 reports the throughput of the ciphers at
120MHz encrypting packet of 15Kb. From the ta-
ble it is evident that the software implementation of
AES128 operated in GCM mode is almost 2 times
slower than the CBC+HMAC version and 2.5 times
than Chacha20-Poly1305. If we take a look at the
hardware implementations the GCM mode of opera-
tion has the advantage that the authentication can be
done in parallel with the encryption and the algorithm
becomes faster than the CBC + HMAC variant.

With regard to memory requirements reported
in Table 5 in the Appendix, we highlight that the
tested software implementations requirements are:
for AES128-GCM 16,4Kb of RAM and 14Kb of
flash, for AES128-CBC 4.5Kb of RAM and 14.8Kb
of flash, and for Chacha20-Poly1305 604 bytes of
RAM and 3.3Kb of flash. Using the hardware accel-
erator makes possible to remove the software imple-
mentations of AES, HMAC and SHA1 and this results
in improved code size for the AES-based ciphers,
even less than the Chacha20-Poly1305 requirements.
The reader should note that we are comparing algo-
rithms of different key sizes. In fact, Chacha20 pro-
vides 256-bit security against the 128-bit of AES128-
GCM and AES128-CBC.

7 DISCUSSION AND
CONCLUSIONS

We can figure out two scenarios where IoT devices
are employed in which different configuration can
give their best. A first typical situation is video-
surveillance in which high throughput is required and
cryptography can really be a bottleneck. For this

kind of application a device external-powered and
equipped with cryptographic hardware accelerators
is preferable, and a hardware-accelerated cipher like
AES128-GCM should be employed. Otherwise in sit-
uations where battery life and economic factors are
more important than throughput (e.g. wearables or
environmental sensors), and amount of data to trans-
mit are generally limited, it is reasonable to employ
devices without criptographic hardware accelerators,
and resources even more limited. Under these con-
ditions a cipher like Chacha20-Poly1305 can be to-
day a more suitable solution as it requires less re-
sources both in space and clock cycles than the soft-
ware AES-based implementations, allowing to save
memory and reduce power consumption. Today AES-
GCM and Chacha20-Poly1305 are the only two op-
tions as AEAD available in TLS. This might change
in the coming years thanks to a competition called
CAESAR*. In this competition there is an effort from
researchers in evaluating new advanced AEAD ci-
phers.

In our analysis we focused on performances and
memory requirements overhead introduced by the
proposals in the TLS 1.3 draft, and we observed that
even where the new security standards introduce an
higher workload there is always an alternative that
best matches IoT requirements.

The basic TLS 1.3 handshake flows introduce
some new message types, as ServerConfiguration and
EncryptedExtensions, and the encryption of sensitive
handshake information, covering nearly two-thirds of
the handshake messages. This solutions may bur-
den low end devices. But on the side of crypto-
graphic computations, the preference for AEAD ci-
phers and the adoption of new signature algorithms,
as Curve25519 and Ed25519, may balance the in-
crease in complexity, as shown by the simulation re-
sults of a commercial cryptographic library over an
STM32 microcontroller.

Furthermore we provided use cases that let us con-
clude that the protocol still remain suitable for differ-
ent classes of IoT devices.

REFERENCES

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P,
Green, M., Halderman, J. A., Heninger, N., Springall,
D., Thomé, E., Valenta, L., et al. (2015). Imperfect
forward secrecy: How diffie-hellman fails in practice.
Al Fardan, N. J. and Paterson, K. G. (2013). Lucky thirteen:
Breaking the tls and dtls record protocols. In Security

4competitions.cr.yp.to/caesar.html

On TLS 1.3 - Early Performance Analysis in the IoT Field

and Privacy (SP), 2013 IEEE Symposium on, pages
526-540. IEEE.

Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W.,
and Rechberger, C. (2007). New features of
latin dances: Analysis of salsa, chacha, and
rumba. Cryptology ePrint Archive, Report 2007/472.
http://eprint.iacr.org/.

Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., Gal-
lagher, P. D., et al. (2012). Recommendation for key
management — part 1: General. NIST special publica-
tion, 800:57. Revision 3.

Barker, E., Burr, W., Jones, A., Polk, T., Rose, S., Smid,
M., and Dang, Q. (2015). Recommendation for key
management — part 3: Application-specific key man-
agement guidance. NIST special publication, 800:57.
Revision 1.

Bellare, M., Kohno, T., and Namprempre, C. (2004). Break-
ing and provably repairing the ssh authenticated en-
cryption scheme: A case study of the encode-then-
encrypt-and-mac paradigm. ACM Transactions on In-
formation and System Security (TISSEC), 7(2):206—
241.

Bellare, M. and Namprempre, C. (2000). Authenticated en-
cryption: Relations among notions and analysis of the
generic composition paradigm. In Advances in Cryp-
tology—ASIACRYPT 2000, pages 531-545. Springer.

Bernstein, D. J. (2005). The polyl305-aes message-
authentication code. In Fast Software Encryption,
pages 32—49. Springer.

Bernstein, D. J. (2006). Curve25519: new diffie-hellman
speed records. In Public Key Cryptography-PKC
2006, pages 207-228. Springer.

Bernstein, D. J. (2008). Chacha, a variant of salsa20. In
Workshop Record of SASC, volume 8.

Bernstein, D. J., Duif, N., Lange, T., Schwabe, P., and Yang,
B.-Y. (2012). High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77-89.

Borisov, N., Goldberg, 1., and Wagner, D. (2001). Intercept-
ing mobile communications: the insecurity of 802.11.
In Proceedings of the 7th annual international con-
ference on Mobile computing and networking, pages
180-189. ACM.

Degabriele, J. P. and Paterson, K. G. (2010). On the (in)
security of ipsec in mac-then-encrypt configurations.
In Proceedings of the 17th ACM conference on Com-
puter and communications security, pages 493-504.
ACM.

Dierks, T. and Rescorla, E. (2006). The transport layer secu-
rity (tls) protocol version 1.1. RFC 4346, RFC Editor.
http://www.rfc-editor.org/rfc/rfc4346.txt.

Dierks, T. and Rescorla, E. (2008). The transport layer secu-
rity (tIs) protocol version 1.2. RFC 5246, RFC Editor.
http://www.rfc-editor.org/rfc/rfc5246.txt.

Dworkin, M. (2007). Recommendation for block cipher
modes of operation: Galois/Counter Mode (GCM)
and GMAC. US Department of Commerce, National
Institute of Standards and Technology.

Ford-Hutchinson, P. (2005). Securing ftp with tls. RFC
4217, RFC Editor. http://www.rfc-editor.org/rfc/
rfc4217.txt.

123

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

Gutmann, P. (2014). Encrypt-then-mac for transport
layer security (tls) and datagram transport layer se-
curity (dtls). RFC 7366, RFC Editor. http:/
www.rfc-editor.org/rfc/rfc7366.txt.

Hoffman, P. (2002). Smtp service extension for secure smtp
over transport layer security. RFC 3207, RFC Editor.
http://www.rfc-editor.org/rfc/rfc3207.txt.

Ishiguro, T. (2012). Modified version of” latin dances re-
visited: New analytic results of salsa20 and chacha”.
IACR Cryptology ePrint Archive, 2012:65.

Josefsson, S. and Mavrogiannopoulos, N. (2015). Using
eddsa with ed25519/ed448 in the internet x.509 pub-
lic key infrastructure. Internet-Draft draft-josefsson-
pkix-eddsa-04, IETF Secretariat. http://www.ietf.org/
internet-drafts/draft-josefsson-pkix-eddsa-04.txt.

Josefsson, S. and Pegourie-Gonnard, M. (2015).
Curve25519 and curve448 for transport layer security
(tls). Internet-Draft draft-ietf-tls-curve25519-01,
IETF Secretariat. http://www.ietf.org/internet-drafts/
draft-ietf-tls-curve25519-00.txt.

Kent, S. and Atkinson, R. (1998). Ip encapsulating
security payload (esp). RFC 2406, RFC Editor.
http://www.rfc-editor.org/rfc/rfc2406.txt.

Koschuch, M., Hudler, M., and Kriiger, M. (2012). The
price of security: A detailed comparison of the
tls handshake performance on embedded devices
when using elliptic curve cryptography and rsa. In
e-Business and Telecommunications, pages 71-83.
Springer.

Krawczyk, H. (2001). The order of encryption and authenti-
cation for protecting communications (or: How secure
is ss1?). In Advances in Cryptology—CRYPTO 2001,
pages 310-331. Springer.

Langley, A., Chang, W.-T., Mavrogiannopoulos, N.,
Strombergson, J., and Josefsson, S. (2015).
Chacha20-poly1305 cipher suites for transport layer
security (tls). Internet-Draft draft-ietf-tls-chacha20-
poly1305-03, IETF Secretariat. http://www.ietf.org/
internet-drafts/draft-ietf-tls-chacha20-poly 1305-
03.txt.

McGrew, D. (2008). An interface and algorithms for
authenticated encryption. RFC 5116, RFC Editor.
http://www.rfc-editor.org/rfc/rfc5116.txt.

McGrew, D. and Viega, J. (2004). The galois/counter
mode of operation (gcm). Submission to NIST. http://
csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
gem/gem-spec. pdf.

Moller, B., Duong, T., and Kotowicz, K. (2014). This poo-
dle bites: Exploiting the ssl 3.0 fallback.

Nir, Y. and Langley, A. (2015). Chacha20 and poly1305
for ietf protocols. RFC 7539, RFC Editor. http://
www.rfc-editor.org/rfc/rfc7539.txt.

Rescorla, E. (2000). Http over tls. RFC 2818, RFC Editor.
http://www.rfc-editor.org/rfc/rfc2818.txt.

Rescorla, E. (2015). The transport layer security (tls) proto-
col version 1.3. Internet-Draft draft-ietf-tls-tls13-10,
IETF Secretariat. http://www.ietf.org/internet-drafts/
draft-ietf-tls-tls13-10.txt.

Rogaway, P. (2002). Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM con-

124

ference on Computer and communications security,
pages 98-107. ACM.

Saint-Andre, P. (2011). Extensible messaging and pres-
ence protocol (xmpp): Core. RFC 6120, RFC Editor.
http://www.rfc-editor.org/rfc/rfc6120.txt.

Salowey, J., Choudhury, A., and McGrew, D. (2008).
Aes galois counter mode (gcm) cipher suites for tls.
RFC 5288, RFC Editor. http://www.rfc-editor.org/
rfc/rfc5288.txt.

Shi, Z., Zhang, B., Feng, D., and Wu, W. (2013). Im-
proved key recovery attacks on reduced-round salsa20
and chacha. In Proceedings of the 15th Interna-
tional Conference on Information Security and Cryp-
tology, ICISC’12, pages 337-351, Berlin, Heidelberg.
Springer-Verlag.

Ylonen, T. and Lonvick, C. (2006). The secure shell (ssh)
transport layer protocol. RFC 4253, RFC Editor.
http://www.rfc-editor.org/rfc/rfc4253.txt.

APPENDIX

This Appendix reports the space requirements for el-
liptic curves primitives when performing signature
and key exchange, AEAD ciphers software and -
where is possible - hardware implementations, and
negotiated cipher suite for completing a full TLS 1.2
handshake.

On TLS 1.3 - Early Performance Analysis in the IoT Field

Table 4: Space requirements for elliptic curves expressed in bytes.

Algorithm Stack Heap Total RAM | Code Const. data Total FLASH
NIST P-256 Key exchange | 2,188 7,108 9,296
NIST P-256 Signature 2052 9316 Tid6s | 810 3520 19,330
Curve25519 2,948 144 3,092
Ed25519 5,356 96 5,452 39,122 32,155 71,277
Table 5: Space requirements for authenticated ciphers expressed in bytes.
Algorithm Stack Heap Total RAM | Code Const. data Total FLASH
Chacha20-poly 1305 604 0 604 3,300 52 3,352
AES128-GCM SW 4,804 11,644 16,448 3,288 10,846 14,134
AES128-CBC-HMAC-SHA1 SW | 1,004 3,841 4,845 4,502 10,360 14,862
AES128-GCM HW 440 0 440 978 0 978
AES128-CBC-HMAC-SHA1 HW | 712 0 712 2,180 10 2,190
Table 6: Space requirements for TLS 1.2 full handshake expressed in KBytes.
. . . Client Server
Cipher suite | Authentication |~ e Tol RAM | Stack Heap Total RAM
DH ANON None 2.64 1953 22.17 275 2277 25.52
One way 391 21.27 25.18 275 2279 25.54
DHRSA Mutual 391 2247 2638 | 396 2313 27.09
One way 391 2148 25.39 275 2278 25.53
DHE RSA Mutual 392 2437 2829 | 396 2464 286
One way 391 13.55 17.46 275 18.55 21.3
SESREA Mutual 391 21.16 25.07 396 2041 24.37
ECDH ANON None 2,53 10.37 12.80 2.69 1236 15.05
One way 3,58 13.73 17.31 2.81 11.38 14.19
ECDH ECDSA Mutual 363 1461 1824 | 363 1467 183
One way 391 1341 17.32 275 11.86 14.61
ECDH RSA Mutual 392 1462 1854 | 396 1569 1965
One way 3,58 13.79 17.37 275 12.06 14.81
ECDHE ECDSA |y 1gual 358 1467 1825 | 363 1498 1861
One way 391 13.66 17.57 2.75 19.1 21.85
ECDHE RSA Mutual 391 21.27 25.18 396 19.1 23.06

125

