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Abstract: Complex cells in biological visual vision are well known to be nonlinear. In this paper, it is demonstrated that 
these nonlinear complex cells can be modelled under some certain conditions by a biologically inspired model 
which is nonlinear in nature. Our model consists of cascaded neural layers accounting for anatomical evidence 
in biological early visual visions. In the model proposed in this paper, the axons associated with the complex 
cells are considered to operate nonlinearly. We also consider the second order interaction receptive maps as 
directional derivatives of the complex cell's kernel along the direction of orientation tuning. Our numerical 
results are similar to the biologically recorded data reported in the literature. 

1 INTRODUCTION 

The concept of visual receptive fields is introduced in 
(Hartline 1938) as a region in visual field in which if 
visual stimuli are presented, the corresponding cell 
responds. The sub-regions associated with ON and 
OFF responses are then discovered in (Kuffler, 1953). 
Hubel and Wiesel introduce the orientation tuning of 
neurons in the primary visual cortex (Hubel and 
Wiesel, 2005). The receptive mapping techniques 
based on white noise stimuli are then exploited in 
(DeAngelis et al., 1995; DeAngelis and Anzai, 2004). 
Motion perception based on energy models is also 
investigated in (Adelson and Bergen, 1985) by using 
oriented filters in the space-time domain. In fact, 
biological experiments quantitatively indicate that the 
linear visual receptive fields are Gaussian-related 
kernels. In a mathematical setting, scale-space theory 
presents a general framework for early visual systems 
by postulating a set of axioms which an early visual 
system is expected to possess. Such a framework then 
leads to Gaussian-related kernels characterizing any 
linear visual system including early biological visual 
systems when they behave linearly (see e.g. Weickert 
et al., 1999; Lindeberg, 2011; Lindeberg, 2013; ter 
Haar Romeny et al., 2001; ter Haar Romeny, 2003; 
Koenderink, 1988; Florack, 1997). On the other hand, 
a model based on the anatomical and physiological 
properties of biological visual systems is proposed in 
(Mahmoodi, 2015) to derive Gaussian-related kernels 
in spatial as well as spatio-temporal domains. The 

model presented in (Mahmoodi, 2015) is not linear in 
nature. Therefore the conditions under which this 
system become linear is discussed in (Mahmoodi, 
2015). Under such conditions, linear Gaussian related 
filters are derived (Mahmoodi, 2015). In such a 
model, the functionalities of Lateral Geniculate 
Nucleus (LGN) cells and simple cells such as linear 
isotropic separable, non-isotropic separable and non-
separable (velocity-adapted) cells, with Gaussian 
related receptive fields can be explained (Mahmoodi, 
2015). In this paper, the nonlinearity of this model is 
also considered and it is demonstrated that under 
certain conditions, the behaviour of nonlinear 
complex cells may be attributed to this non linearity 
of the model. Here our contribution is to explain the 
nonlinear nature of complex cells by using the 
nonlinear model of early visual system proposed in 
(Mahmoodi, 2015). We also demonstrate that the 
second order interactions of receptive maps for 
complex cells may be explained as directional 
derivatives of the neuron's kernel along the direction 
of orientation tuning. The structure of the rest of the 
paper is as follows. In section 2, our nonlinear model 
is explained. Section 3 presents the numerical 
analyses and results and finally conclusions are drawn 
in section 4.    

2 MODEL 

The nonlinear model proposed in (Mahmoodi, 2015) 

162
Mahmoodi, S. and Saba, N.
Nonlinear Model for Complex Neurons in Biological Visual Visions.
DOI: 10.5220/0005692601620167
In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016) - Volume 4: BIOSIGNALS, pages 162-167
ISBN: 978-989-758-170-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



behaves linearly under some certain conditions. The 
linear mode of this nonlinear model is therefore fully 
investigated in (Mahmoodi, 2015). Linear Gaussian-
related kernels associated with linear Lateral 
Geniculate Nucleus (LGN) cells and simple cells in 
strait cortex are derived for when the model behaves 
linearly. Complex cells on the other hand are 
nonlinear. Here we exploit the nonlinearity of the 
model presented in (Mahmoodi, 2015) to explain the 
nonlinear behaviour of the complex cells. According 
to the model presented in (Mahmoodi, 2015), neurons 
in early biological visual system are connected in 
layers which are cascaded from retina to striate 
cortex.  

A layer of neurons is shown in Figure (1-top). 
These neurons are cascaded in a way that the axons 
of the neurons in the previous layer are connected to 
the dendrites of the neurons in the current layer. A 2D 
illustration of these cascaded layers are depicted in 
figure (1-bottom).  

Each horizontal line in this figure, represents a 
neural layer and vertical layers represent axons to 
connect a layer (a horizontal line) to the next one 
(another horizontal line above the previous line).     It 
is believed that most complex cells have a linear-
nonlinear (L-N) structure. The linear part of these 
cells is simply a linear Gaussian-related kernel 
(DeAngelis and Anzai, 2004). The first step is 
therefore to find a formula to explain the input-output 
relationship of the nonlinear part of these complex 
cells. Axons transmitting neural spikes from a neuron 
to another one are modelled as transmission lines. If 
neuron A sends n spikes through its axon to neuron 
B. The potential received in the dendrites of neuron B 
is calculated as (see Mahmoodi, 2015 for more 
details): 
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where  

nT = the time the nth spike is released from 

neuron A 
t = the time that a spike reaches to neuron B from 

neuron A, 
N = the total numbers of spikes, 
z = the length of axon, 
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Figure 1: (top) the configuration of neurons in a layer with 
respect to spatial coordinates x and y (bottom) the 2D 
representation of the configuration of neurons in the 
cascaded layers of neurons. 

nT can be written as the summation of all time 

intervals between consecutive spikes, i.e.: 
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where T is the average time interval between 
consecutive spikes. Let us consider the case where a 
series of spikes are transmitted through axon from 
neuron A to neuron B in a time period much less than 
the time required for spikes to travel from neuron A 
to neuron B, i.e. tTn )( max

n
. By replacing (2) in 

(1) and assuming that tTn )( max
n

 and therefore 

ignoring the second term in (1), one can write: 
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Equation (3) can be rewritten as: 
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It is also reasonable to assume  the average time 
interval between consecutive spikes is too small, i.e. 

1Ta . Equation (4) therefore is approximated as: 
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According to classical rectification model for neural 
firing rate (Carandini and Fester, 2000), the input 
potential of neuron A is proportional to firing rate and 
therefore N. Equation (5) determines the input-output 
relationship of a cell behaving nonlinearly. For small 
values of potentials, N is very small and therefore 

0),( tzwo  

According to classical rectification model 
(Carandini and Fester, 2000), N increases linearly 
with respect to input potential 

inV , i.e. 
inkVN     

Therefore for large positive potentials, the input-
output relationship of such a nonlinear cell will look 
like a half rectified power function as reported in 
(DeAngelis and Anzai, 2004) and shown in figure (2-
bottom).  

3 NUMERICAL RESULTS 

Figure (2-top) shows the input-output relationship for 
a nonlinear cell according to equation (5) and as an 
example for k=5, i.e. for inVN 5 . The similarity 

between figure (2-top) and figure (2-bottom) as 
reported in (DeAngelis and Anzai, 2004) is 
interesting and important.  

The linear part of a complex cell is simply the sum 
of three cells with linear isotopic kernels such as the 
one shown in figure (1-bottom).The outputs of these 
three cells are summed by another cell whose axon 
behave nonlinearly governed by equation (5), i.e.: 
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where ),( yxhn
 is the isotropic kernel for layer n and 

)(t is the impulse response of the cells' axons 

behaving linearly (Mahmoodi, 2015). The outputs of 

these three cells are summed by another cell 
according to equation (6).  
 

 

 

Figure 2: (top) The input-output relationship calculated 
based on equation (5) and for k=5, (bottom) Biologically 
recorded input-output relationship according to (DeAngelis 
and Anzai 2004). 

The impulse response of the axon behaving 
nonlinearly for this cell is represented by ),( tzv . The 

spatio-temporal profile of a complex cell consisting 
of three simple cells with linear isotropic kernels for 
a single stimuli (nonlinear case) is shown in figure (3-
top). This is similar to the biological recorded data 
shown in figure (3-bottom) in (DeAngelis and Anzai, 
2004).  

The response of this nonlinear complex cell for 
the case where two simultaneous and spatially 
separated stimuli (second order interactions) are 
presented in the visual field, is shown in figure (4-
top).On the other hand, there are some other complex 
cells described by equation (7): 
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Figure 3: (top) The spatio-temproal profile of a nonlinear 
complex cell for a single stimulus. (bottom) The 
biologically recorded spatio-temporal profile according to 
(DeAngelis and Anzai, 2004). 

The neural configuration of equation (7) is 
depicted in figure (1-top). In this configuration, the 
nonlinear-behaving axon of the cell summing the 
outputs of the three cells is represented by ),( tzv  in 

equation (7). In this paper, we hypothesize that the 
receptive map in the case of the second order 
interactions is equivalent to directional derivatives 
along the direction of the orientation tuning of the 
kernel ),,( tyx in equation (6) or (7). For a complex 

cell whose kernel is represented by equation (7), this 
second order interactions is described by: 
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where )sin()cos(  jin


 is along the 

direction of orientation tuning of the cell. The 

directional derivative of equation (8) for o45 is 
calculated in figure (4-top).  

 

 

Figure 4: (top) A nonlinear receptive field map calculated 
by using equations (7) and (8) (bottom) the biologically 
recorded second order interactions of a receptive map for a 
complex cell as reported in (DeAngelis and Anzai, 2004). 

The similarity between the map calculated in 
figure (4) and the biologically recorded data in figure 
(4-bottom) as reported in (DeAngelis and Anzai, 
2004) is interesting. 

A fourth order directional derivative in space x 
and time t for a complex cell represented by equation 
(6) is calculated in figure (5-top). The biologically 
recorded result shown as the second order interaction 
of a spatio-temporal profile of a complex cell shown 
in figure (5-bottom) as reported in (DeAngelis and 
Anzai, 2004) is similar to our result depicted in figure 
(5-top).  
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 Figure 5: (top) Fourth order directional derivative of a 
spatio-temporal (x-t) receptive map, (bottom) second order 
interactions for x-t receptive map of a complex cell as 
reported in (DeAngelis and Anzai, 2004).    

As can be seen from figure (5-top), there are five 
lobes (three positive and two negative lobes) among 
which the middle lobe is the strongest. This is similar 
to the biologically recorded data shown in figure (5-
bottom) as reported in (DeAngelis and Anzai, 2004). 
This second order interaction map is reminiscent of 
the space-time inseparable linear maps predicting the 
direction selectivity of complex cells. It is noted that 
the fourth order directional derivatives should be 
calculated along the tilt of space-time response 
pattern. 

4 CONCLUSIONS 

A nonlinear model based on the model presented in 
(Mahmoodi, 2015) to explain the nonlinear behaviour 
of complex cells is proposed here. According to our 
model, the nonlinearity of the complex cells may be 
routed from the fact that the axons of neurons behave 
nonlinearly under certain conditions. These 

conditions are explained here. In this paper, some 
approximations to this nonlinear model of neurons are 
made to demonstrate that the complex cells behave 
like half rectified power functions corresponding to 
biologically recorded data. It is then shown here that 
the space-time calculated receptive map in our model 
for the complex cells when a single stimulus is 
presented to the neuron, is similar to the biological 
receptive field of the complex cells. We then 
hypothesize that the second order interactions of 
complex cells recorded in biology may be equivalent 
to the directional derivatives of the visual receptive 
map of the complex cells. Our results demonstrate 
that the directional derivatives of the space or space-
time visual receptive maps of complex cells show 
similar response patterns to the biologically recorded 
second order interactions confirming our hypothesis. 

REFERENCES       

Adelson E, Bergen J 1985. Spaio-temporal Energy Models 
for the Perception of Motion. Journal of Optical Society 
of America A, Vol. 2, pp. 284-299. 

Carandini M, Ferster D 2000. Membrane Potential and 
Firing Rate in Cat Primary Visual Cortex. Journal of 
Neuroscience, Vol. 20, No. 1, pp. 470-484. 

DeAngelis GC, Anzai A 2004. A Modern View of the 
Classical Receptive Field: Linear and non-Linear 
Spatio-temporal Processing by V1 Neurons. In L.M. 
Chalupa, and J.S. Werner (eds.), The Visual 
Neurosciences, Vol 1, MIT Press, Cambridge, pp. 
704-719. 

DeAngelis DC, Ohzawa I, Freeman RD 1995. Receptive-
field Dynamics in the Central Visual Pathways. Trends 
in Neurosciences, Vol. 18, pp:451-457. 

Florack, L 1997. Image Structure. Series in Mathematical 
Imaging and Vision, Springer, Dordrecht. 

Koenderink JJ 1988. Scale-Time, Biological Cybernetic, 
Vol. 58, pp. 159-162. 

Hartline HK 1938. The Response of Single Optic Nerve 
Fibres of the Vertebrate Eye to Illumination of the 
Retina. American Journal of Physiology, Vol. 121, pp. 
400-415. 

Hubel DH, Wiesel TN 2005. Brain and Visual Perception: 
the Story of a 25-year collaboration. Oxford University 
Press, Oxford. 

Kuffler SW 1953. Discharge Patterns and Functional 
Organization of Mammalian Retina. Journal of 
Neurophysiology, Vol. 16, No. 1, pp. 37-68. 

Lindeberg T 2011. Generalized Gaussian Scale-Space 
Axiomatic Comprising Linear Scale-Space, Affine 
Scale-Space and Spatio-Temporal Scale-Space. 
Journal of Mathematical Imaging and Vision, Vol. 40, 
pp: 36-81. 

Lindeberg T 2013. A Computational Theory of Visual 
Receptive Fields. Biological Cybernetics, Vol. 107, pp: 

BIOSIGNALS 2016 - 9th International Conference on Bio-inspired Systems and Signal Processing

166



589-635. 
Mahmoodi, S., 2015. Linear Neural Circuitry Model for 

Visual Receptive Fields. Journal of Mathematical 
Imaging and Vision. 

ter Haar Romeny B 2003. Front-End Vision and Multi-
Scale Image Analysis. Springer Dordrecht. 

ter Haar Romeny B, Florack L, Nielsen M 2001. Scale-time 
Kernels and Models, In: Scale-Space and Morphology,  
Proceedings of Scale-Space’01, Vancouver, Canada, 
LNCS, Springer, Berlin.  

Weickert J, Ishikawa S, Imiya A (1999) Linear Scale Space 
has First been proposed in Japan, Journal of 
Mathematical Imaging and Vision, Vol. 10, pp. 237-
252. 

   
 

Nonlinear Model for Complex Neurons in Biological Visual Visions

167


