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Abstract: We introduce a new one-parameter family of divergence measures, called bounded Bhattacharyya distance
(BBD) measures, for quantifying the dissimilarity between probability distributions. These measures are
bounded, symmetric and positive semi-definite and do not require absolute continuity. In the asymptotic
limit, BBD measure approaches the squared Hellinger distance. A generalized BBD measure for multiple
distributions is also introduced. We prove an extension of a theorem of Bradt and Karlin for BBD relating
Bayes error probability and divergence ranking. We show that BBD belongs to the class of generalized Csiszar
f-divergence and derive some properties such as curvature and relation to Fisher Information. For distributions
with vector valued parameters, the curvature matrix is related to the Fisher-Rao metric. We derive certain
inequalities between BBD and well known measures such as Hellinger and Jensen-Shannon divergence. We
also derive bounds on the Bayesian error probability. We give an application of these measures to the problem
of signal detection where we compare two monochromatic signals buried in white noise and differing in
frequency and amplitude.

1 INTRODUCTION

Divergence measures for the distance between two
probability distributions are a statistical approach to
comparing data and have been extensively studied in
the last six decades (Kullback and Leibler, 1951; Ali
and Silvey, 1966; Kapur, 1984; Kullback, 1968; Ku-
mar et al., 1986). These measures are widely used in
varied fields such as pattern recognition (Basseville,
1989; Ben-Bassat, 1978; Choi and Lee, 2003), speech
recognition (Qiao and Minematsu, 2010; Lee, 1991),
signal detection (Kailath, 1967; Kadota and Shepp,
1967; Poor, 1994), Bayesian model validation (Tumer
and Ghosh, 1996) and quantum information theory
(Nielsen and Chuang, 2000; Lamberti et al., 2008).
Distance measures try to achieve two main objectives
(which are not mutually exclusive): to assess (1) how
“close” two distributions are compared to others and
(2) how “easy” it is to distinguish between one pair
than the other (Ali and Silvey, 1966).

There is a plethora of distance measures available

to assess the convergence (or divergence) of proba-
bility distributions. Many of these measures are not
metrics in the strict mathematical sense, as they may
not satisfy either the symmetry of arguments or the
triangle inequality. In applications, the choice of the
measure depends on the interpretation of the metric in
terms of the problem considered, its analytical prop-
erties and ease of computation (Gibbs and Su, 2002).
One of the most well-known and widely used di-
vergence measures, the Kullback-Leibler divergence
(KLD)(Kullback and Leibler, 1951; Kullback, 1968),
can create problems in specific applications. Specif-
ically, it is unbounded above and requires that the
distributions be absolutely continuous with respect
to each other. Various other information theoretic
measures have been introduced keeping in view ease
of computation ease and utility in problems of sig-
nal selection and pattern recognition. Of these mea-
sures, Bhattacharyya distance (Bhattacharyya, 1946;
Kailath, 1967; Nielsen and Boltz, 2011) and Chernoff
distance (Chernoff, 1952; Basseville, 1989; Nielsen
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and Boltz, 2011) have been widely used in signal
processing. However, these measures are again un-
bounded from above. Many bounded divergence mea-
sures such as Variational, Hellinger distance (Bas-
seville, 1989; DasGupta, 2011) and Jensen-Shannon
metric (Burbea and Rao, 1982; Rao, 1982b; Lin,
1991) have been studied extensively. Utility of these
measures vary depending on properties such as tight-
ness of bounds on error probabilities, information the-
oretic interpretations, and the ability to generalize to
multiple probability distributions.

Here we introduce a new one-parameter (α) fam-
ily of bounded measures based on the Bhattacharyya
coefficient, called bounded Bhattacharyya distance
(BBD) measures. These measures are symmetric,
positive-definite and bounded between 0 and 1. In
the asymptotic limit (α→±∞) they approach squared
Hellinger divergence (Hellinger, 1909; Kakutani,
1948). Following Rao (Rao, 1982b) and Lin (Lin,
1991), a generalized BBD is introduced to capture
the divergence (or convergence) between multiple dis-
tributions. We show that BBD measures belong to
the generalized class of f-divergences and inherit use-
ful properties such as curvature and its relation to
Fisher Information. Bayesian inference is useful in
problems where a decision has to be made on clas-
sifying an observation into one of the possible array
of states, whose prior probabilities are known (Hell-
man and Raviv, 1970; Varshney and Varshney, 2008).
Divergence measures are useful in estimating the er-
ror in such classification (Ben-Bassat, 1978; Kailath,
1967; Varshney, 2011). We prove an extension of
the Bradt Karlin theorem for BBD, which proves the
existence of prior probabilities relating Bayes error
probabilities with ranking based on divergence mea-
sure. Bounds on the error probabilities Pe can be
calculated through BBD measures using certain in-
equalities between Bhattacharyya coefficient and Pe.
We derive two inequalities for a special case of BBD
(α = 2) with Hellinger and Jensen-Shannon diver-
gences. Our bounded measure with α = 2 has been
used by Sunmola (Sunmola, 2013) to calculate dis-
tance between Dirichlet distributions in the context of
Markov decision process. We illustrate the applicabil-
ity of BBD measures by focusing on signal detection
problem that comes up in areas such as gravitational
wave detection (Finn, 1992). Here we consider dis-
criminating two monochromatic signals, differing in
frequency or amplitude, and corrupted with additive
white noise. We compare the Fisher Information of
the BBD measures with that of KLD and Hellinger
distance for these random processes, and highlight the
regions where FI is insensitive large parameter devia-
tions. We also characterize the performance of BBD

for different signal to noise ratios, providing thresh-
olds for signal separation.

Our paper is organized as follows: Section I is
the current introduction. In Section II, we recall the
well known Kullback-Leibler and Bhattacharyya di-
vergence measures, and then introduce our bounded
Bhattacharyya distance measures. We discuss some
special cases of BBD, in particular Hellinger distance.
We also introduce the generalized BBD for multi-
ple distributions. In Section III, we show the posi-
tive semi-definiteness of BBD measure, applicability
of the Bradt Karl theorem and prove that BBD be-
longs to generalized f-divergence class. We also de-
rive the relation between curvature and Fisher Infor-
mation, discuss the curvature metric and prove some
inequalities with other measures such as Hellinger
and Jensen Shannon divergence for a special case of
BBD. In Section IV, we move on to discuss applica-
tion to signal detection problem. Here we first briefly
describe basic formulation of the problem, and then
move on computing distance between random pro-
cesses and comparing BBD measure with Fisher In-
formation and KLD. In the Appendix we provide the
expressions for BBD measures , with α = 2, for some
commonly used distributions. We conclude the paper
with summary and outlook.

2 DIVERGENCE MEASURES

In the following subsection we consider a measurable
space Ω with σ-algebra B and the set of all probability
measures M on (Ω,B). Let P and Q denote probabil-
ity measures on (Ω,B) with p and q denoting their
densities with respect to a common measure λ. We
recall the definition of absolute continuity (Royden,
1986):
Absolute Continuity: A measure P on the Borel
subsets of the real line is absolutely continuous with
respect to Lebesgue measure Q, if P(A) = 0, for ev-
ery Borel subset A ∈ B for which Q(A) = 0, and is
denoted by P << Q.

2.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence (KLD) (or rela-
tive entropy) (Kullback and Leibler, 1951; Kullback,
1968) between two distributions P,Q with densities p
and q is given by:

I(P,Q)≡
∫

p log
(

p
q

)
dλ. (1)

The symmetrized version is given by

J(P,Q)≡ (I(P,Q)+ I(Q,P))/2
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(Kailath, 1967), I(P,Q) ∈ [0,∞]. It diverges if
∃ x0 : q(x0) = 0 and p(x0) 6= 0.

KLD is defined only when P is absolutely contin-
uous w.r.t. Q. This feature can be problematic in nu-
merical computations when the measured distribution
has zero values.

2.2 Bhattacharyya Distance

Bhattacharyya distance is a widely used measure
in signal selection and pattern recognition (Kailath,
1967). It is defined as:

B(P,Q)≡− ln
(∫ √

pqdλ
)
=− ln(ρ), (2)

where the term in parenthesis ρ(P,Q) ≡ ∫ √
pqdλ

is called Bhattacharyya coefficient (Bhattacharyya,
1943; Bhattacharyya, 1946) in pattern recognition,
affinity in theoretical statistics, and fidelity in quan-
tum information theory. Unlike in the case of KLD,
the Bhattacharyya distance avoids the requirement of
absolute continuity. It is a special case of Chernoff
distance

Cα(P,Q)≡− ln
(∫

pα(x)q1−α(x)dx
)
,

with α = 1/2. For discrete probability distribu-
tions, ρ ∈ [0,1] is interpreted as a scalar product of
the probability vectors P = (

√
p1,
√

p2, . . . ,
√

pn) and
Q = (

√
q1,
√

q2, . . . ,
√

qn). Bhattacharyya distance
is symmetric, positive-semidefinite, and unbounded
(0 ≤ B ≤ ∞). It is finite as long as there exists some
region S⊂ X such that whenever x∈ S : p(x)q(x) 6= 0.

2.3 Bounded Bhattacharyya Distance
Measures

In many applications, in addition to the desirable
properties of the Bhattacharyya distance, bounded-
ness is required. We propose a new family of bounded
measure of Bhattacharyya distance as below,

Bψ,b(P,Q)≡− logb(ψ(ρ)) (3)

where, ρ = ρ(P,Q) is the Bhattacharyya coefficient,
ψb(ρ) satisfies ψ(0) = b−1 , ψ(1) = 1. In particular
we choose the following form :

ψ(ρ) =

[
1− (1−ρ)

α

]α

b =

(
α

α−1

)α
, (4)

where α ∈ [−∞,0)∪ (1,∞]. This gives the measure

Bα(ρ(P,Q))≡− log
(1− 1

α )
−α

[
1− (1−ρ)

α

]α
, (5)

which can be simplified to

Bα(ρ) =
log
[
1− (1−ρ)

α

]

log
[
1− 1

α
] . (6)

It is easy to see that Bα(0) = 1, Bα(1) = 0.

2.4 Special Cases

1. For α = 2 we get,

B2(ρ) =− log22

[
1+ρ

2

]2

=− log2

(
1+ρ

2

)
.

(7)
We study some of its special properties in Sec.3.7.

2. α→ ∞

B∞(ρ) =− loge e−(1−ρ) = 1−ρ = H2(ρ), (8)

where H(ρ) is the Hellinger distance (Basseville,
1989; Kailath, 1967; Hellinger, 1909; Kakutani,
1948)

H(ρ)≡
√

1−ρ(P,Q). (9)

3. α =−1

B−1(ρ) =− log2

(
1

2−ρ

)
. (10)

4. α→−∞

B−∞(ρ) = loge e(1−ρ) = 1−ρ = H2(ρ). (11)

We note that BBD measures approach squared
Hellinger distance when α→ ±∞. In general, they
are convex (concave) when α > 1 (α < 0) in ρ, as
seen by evaluating second derivative

∂2Bα(ρ)
∂ρ2 =

−1

α2 log
(
1− 1

α
)(

1− 1−ρ
α

)2 =

=

{
> 0 α > 1
< 0 α < 0 .

(12)

From this we deduce Bα>1(ρ)≤H2(ρ)≤Bα<0(ρ) for
ρ ∈ [0,1]. A comparison between Hellinger and BBD
measures for different values of α are shown in Fig.
1.
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Figure 1: [Color Online] Comparison of Hellinger and
bounded Bhattacharyya distance measures for different val-
ues of α.

2.5 Generalized BBD Measure

In decision problems involving more than two ran-
dom variables, it is very useful to have divergence
measures involving more than two distributions (Lin,
1991; Rao, 1982a; Rao, 1982b). We use the general-
ized geometric mean (G) concept to define bounded
Bhattacharyya measure for more than two distribu-
tions. The Gβ({pi}) of n variables p1, p2, . . . , pn with
weights β1,β2, . . . ,βn, such that βi ≥ 0, ∑i βi = 1, is
given by

Gβ({pi}) =
n

∏
i=1

pβi
i .

For n probability distributions P1,P2, . . . ,Pn , with
densities p1, p2, . . . , pn , we define a generalized Bhat-
tacharyya coefficient, also called Matusita measure of
affinity (Matusita, 1967; Toussaint, 1974):

ρβ(P1,P2, . . . ,Pn) =
∫

Ω

n

∏
i=1

pβi
i dλ. (13)

where βi ≥ 0, ∑i βi = 1. Based on this, we define the
generalized bounded Bhattacharyya measures as:

Bβ
α(ρβ(P1,P2, . . . ,Pn))≡

log(1− 1−ρβ
α )

log(1−1/α)
(14)

where α∈ [−∞,0)∪(1,∞]. For brevity we denote it as
Bβ

α(ρ). Note that, 0≤ ρβ≤ 1 and 0≤Bβ
α(ρ)≤ 1, since

the weighted geometric mean is maximized when all
the pi’s are the same, and minimized when any two
of the probability densities pi’s are perpendicular to
each other.

3 PROPERTIES

3.1 Symmetry, Boundedness and
Positive Semi-definiteness

Theorem 3.1. Bα(ρ(P,Q)) is symmetric, positive
semi-definite and bounded in the interval [0,1] for
α ∈ [−∞,0)∪ (1,∞].

Proof. Symmetry: Since ρ(P,Q) = ρ(Q,P), it fol-
lows that

Bα(ρ(P,Q)) = Bα(ρ(Q,P)).

Positive-semidefinite and boundedness: Since
Bα(0) = 1, Bα(1) = 0 and

∂Bα(ρ)
∂ρ

=
1

α log(1−1/α) [1− (1−ρ)/α]
< 0

for 0≤ ρ≤ 1 and α ∈ [−∞,0)∪ (1,∞], it follows that

0≤ Bα(ρ)≤ 1. (15)

3.2 Error Probability and Divergence
Ranking

Here we recap the definition of error probability and
prove the applicability of Bradt and Karlin (Bradt and
Karlin, 1956) theorem to BBD measure.
Error Probability: The optimal Bayes error proba-
bilities (see eg: (Ben-Bassat, 1978; Hellman and Ra-
viv, 1970; Toussaint, 1978)) for classifying two events
P1,P2 with densities p1(x) and p2(x) with prior prob-
abilities Γ = {π1,π2} is given by

Pe =
∫

min[π1 p1(x),π2 p2(x)]dx. (16)

Error Comparison: Let pβ
i (x) (i = 1,2) be param-

eterized by β (Eg: in case of Normal distribution
β = {µ1,σ1;µ2,σ2} ). In signal detection literature,
a signal set β is considered better than set β′ for the
densities pi(x) , when the error probability is less for
β than for β′ (i.e. Pe(β)< Pe(β′)) (Kailath, 1967).

Divergence Ranking: We can also rank the param-
eters by means of some divergence D. The signal
set β is better (in the divergence sense) than β′, if
Dβ(P1,P2)> Dβ′(P1,P2).

In general it is not true that Dβ(P1,P2) >
Dβ′(P1,P2) =⇒ Pe(β) < Pe(β′). Bradt and Karlin
proved the following theorem relating error probabil-
ities and divergence ranking for symmetric Kullback
Leibler divergence J:
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Theorem 3.2 (Bradt and Karlin (Bradt and Karlin,
1956)). If Jβ(P1,P2)> Jβ′(P1,P2), then ∃ a set of prior
probabilities Γ = {π1,π2} for two hypothesis g1,g2,
for which

Pe(β,Γ)< Pe(β′,Γ) (17)

where Pe(β,Γ) is the error probability with parameter
β and prior probability Γ.

It is clear that the theorem asserts existence, but
no method of finding these prior probabilities. Kailath
(Kailath, 1967) proved the applicability of the Bradt
Karlin Theorem for Bhattacharyya distance measure.
We follow the same route and show that the Bα(ρ)
measure satisfies a similar property using the follow-
ing theorem by Blackwell.

Theorem 3.3 (Blackwell (Blackwell, 1951)) .
Pe(β′,Γ) ≤ Pe(β,Γ) for all prior probabilities Γ if
and only if

Eβ′ [Φ(Lβ′)|g]≤ Eβ[Φ(Lβ)|g],
∀ continuous concave functions Φ(L), where
Lβ = p1(x,β)/p2(x,β) is the likelihood ratio and
Eω[Φ(Lω)|g] is the expectation of Φ(Lω) under the
hypothesis g = P2.

Theorem 3.4. If Bα(ρ(β)) > Bα(ρ(β′)), or equiva-
lently ρ(β)< ρ(β′) then ∃ a set of prior probabilities
Γ = {π1,π2} for two hypothesis g1,g2, for which

Pe(β,Γ)< Pe(β′,Γ). (18)

Proof. The proof closely follows Kailath (Kailath,
1967). First note that

√
L is a concave function of

L (likelihood ratio) , and

ρ(β) = ∑
x∈X

√
p1(x,β)p2(x,β)

= ∑
x∈X

√
p1(x,β)
p2(x,β)

p2(x,β)

= Eβ

[√
Lβ|g2

]
. (19)

Similarly
ρ(β′) = Eβ′

[√
Lβ′ |g2

]
(20)

Hence, ρ(β)< ρ(β′)⇒

Eβ

[√
Lβ|g2

]
< Eβ′

[√
Lβ′ |g2

]
. (21)

Suppose assertion of the stated theorem is not true,
then for all Γ, Pe(β′,Γ)≤ Pe(β,Γ). Then by Theorem
3.3, Eβ′ [Φ(Lβ′)|g2]≤Eβ[Φ(Lβ)|g2] which contradicts
our result in Eq. 21.

3.3 Bounds on Error Probability

Error probabilities are hard to calculate in general.
Tight bounds on Pe are often extremely useful in prac-
tice. Kailath (Kailath, 1967) has shown bounds on Pe
in terms of the Bhattacharyya coefficient ρ:

1
2

[
2π1−

√
1−4π1π2ρ2

]
≤ Pe ≤

(
π1−

1
2

)
+
√

π1π2ρ, (22)

with π1 +π2 = 1. If the priors are equal π1 = π2 =
1
2 ,

the expression simplifies to

1
2

[
1−
√

1−ρ2

]
≤ Pe ≤

1
2

ρ. (23)

Inverting relation in Eq. 6 for ρ(Bα), we can get the
bounds in terms of Bα(ρ) measure. For the equal prior
probabilities case, Bhattacharyya coefficient gives a
tight upper bound for large systems when ρ→ 0 (zero
overlap) and the observations are independent and
identically distributed. These bounds are also useful
to discriminate between two processes with arbitrar-
ily low error probability (Kailath, 1967). We suppose
that tighter upper bounds on error probability can be
derived through Matusita’s measure of affinity (Bhat-
tacharya and Toussaint, 1982; Toussaint, 1977; Tous-
saint, 1975), but is beyond the scope of present work.

3.4 F-divergence

A class of divergence measures called f-divergences
were introduced by Csiszar (Csiszar, 1967; Csiszar,
1975) and independently by Ali and Silvey (Ali and
Silvey, 1966) (see (Basseville, 1989) for review).
It encompasses many well known divergence mea-
sures including KLD, variational, Bhattacharyya and
Hellinger distance. In this section, we show that
Bα(ρ) measure for α ∈ (1,∞], belongs to the generic
class of f-divergences defined by Basseville (Bas-
seville, 1989).

F-divergence (Basseville, 1989). Consider a measur-
able space Ω with σ-algebra B . Let λ be a measure on
(Ω,B) such that any probability laws P and Q are ab-
solutely continuous with respect to λ, with densities p
and q. Let f be a continuous convex real function on
R+, and g be an increasing function on R. The class
of divergence coefficients between two probabilities:

d(P,Q) = g
(∫

Ω
f
(

p
q

)
qdλ

)
(24)

are called the f-divergence measure w.r.t. functions
( f ,g) . Here p/q = L is the likelihood ratio. The term
in the parenthesis of g gives the Csiszar’s (Csiszar,
1967; Csiszar, 1975) definition of f-divergence.
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The Bα(ρ(P,Q)) , for α ∈ (1,∞] measure can be writ-
ten as the following f divergence:

f (x) =−1+
1−√x

α
, g(F) =

log(−F)

log(1−1/α)
, (25)

where,

F =
∫

Ω

[
−1+

1
α

(
1−
√

p
q

)]
qdλ

=
∫

Ω

[
q
(
−1+

1
α

)
− 1

α
√

pq
]

dλ

= −1+
1−ρ

α
. (26)

and

g(F) =
log(1− 1−ρ

α )

log(1−1/α)
= Bα(ρ(P,Q)). (27)

3.5 Curvature and Fisher Information

In statistics, the information that an observable ran-
dom variable X carries about an unknown parameter θ
(on which it depends) is given by the Fisher informa-
tion. One of the important properties of f-divergence
of two distributions of the same parametric family
is that their curvature measures the Fisher informa-
tion. Following the approach pioneered by Rao (Rao,
1945), we relate the curvature of BBD measures to
the Fisher information and derive the differential cur-
vature metric. The discussions below closely follow
(DasGupta, 2011).

Definition. Let { f (x|θ);θ ∈ Θ ⊆ R}, be a family of
densities indexed by real parameter θ, with some reg-
ularity conditions ( f (x|θ) is absolutely continuous).

Zθ(φ)≡ Bα(θ,φ) =
log(1− 1−ρ(θ,φ)

α )

log(1−1/α)
(28)

where ρ(θ,φ) =
∫√

f (x|θ) f (x|φ)dx

Theorem 3.5. Curvature of Zθ(φ)|φ=θ is the Fisher
information of f (x|θ) up to a multiplicative constant.

Proof. Expand Zθ(φ) around theta

Zθ(φ) = Zθ(θ)+(φ−θ)
dZθ(φ)

dφ
+

(φ−θ)2

2
d2Zθ(φ)

dφ2 + . . . (29)

Let us observe some properties of Bhattacharyya co-
efficient : ρ(θ,φ) = ρ(φ,θ), ρ(θ,θ) = 1, and its
derivatives:

∂ρ(θ,φ)
∂φ

∣∣∣
φ=θ

=
1
2

∂
∂θ

∫
f (x|θ)dx = 0, (30)

∂2ρ(θ,φ)
∂φ2

∣∣∣
φ=θ

=− 1
4

∫ 1
f

(
∂ f
∂θ

)2

dx+
1
2

∂2

∂θ2

∫
f dx

=− 1
4

∫
f (x|θ)

(
∂ log f (x|θ)

∂θ

)2

dx

=− 1
4

I f (θ). (31)

where I f (θ) is the Fisher Information of distribution
f (x|θ)

I f (θ) =
∫

f (x|θ)
(

∂ log f (x|θ)
∂θ

)2

dx. (32)

Using the above relationships, we can write down
the terms in the expansion of Eq. 29 Zθ(θ) =

0 , ∂Zθ(φ)
∂φ

∣∣∣
φ=θ

= 0, and

∂2Zθ(φ)
∂φ2

∣∣∣
φ=θ

=C(α)I f (θ)> 0, (33)

where C(α) = −1
4α log(1−1/α) > 0

The leading term of Bα(θ,φ) is given by

Bα(θ,φ)∼
(φ−θ)2

2
C(α)I f (θ). (34)

3.6 Differential Metrics

Rao (Rao, 1987) generalized the Fisher information
to multivariate densities with vector valued parame-
ters to obtain a “geodesic” distance between two para-
metric distributions Pθ,Pφ of the same family. The
Fisher-Rao metric has found applications in many ar-
eas such as image structure and shape analysis (May-
bank, 2004; Peter and Rangarajan, 2006) , quantum
statistical inference (Brody and Hughston, 1998) and
Blackhole thermodynamics (Quevedo, 2008). We de-
rive such a metric for BBD measure using property of
f-divergence.

Let θ,φ ∈ Θ ⊆ Rp, then using the fact that
∂Z(θ,φ)

∂θi

∣∣∣
φ=θ

= 0, we can easily show that

dZθ =
p

∑
i, j=1

∂2Zθ
∂θi∂θ j

dθidθ j + · · ·=
p

∑
i, j=1

gi jdθidθ j + . . . . (35)

The curvature metric gi j can be used to find the
geodesic on the curve η(t), t ∈ [0,1] with

C = η(t) : η(0) = θ η(1) = φ. (36)

Details of the geodesic equation are given in many
standard differential geometry books. In the con-
text of probability distance measures reader is re-
ferred to (see 15.4.2 in A DasGupta (DasGupta, 2011)
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for details) The curvature metric of all Csiszar f-
divergences are just scalar multiple KLD measure
(DasGupta, 2011; Basseville, 1989) given by:

g f
i j(θ) = f ′′(1)gi j(θ). (37)

For our BBD measure

f ′′(x) =

(
−1+

1−√x
α

)′′
=

1
4αx3/2

f̃ ′′(1) = 1/4α. (38)

Apart from the −1/ log(1− 1
α ), this is same as C(α)

in Eq. 34. It follows that the geodesic distance for our
metric is same KLD geodesic distance up to a multi-
plicative factor. KLD geodesic distances are tabulated
in DasGupta (DasGupta, 2011).

3.7 Relation to Other Measures

Here we focus on the special case α = 2, i.e. B2(ρ)
Theorem 3.6.

B2 ≤ H2 ≤ log4 B2 (39)

where 1 and log4 are sharp.

Proof. Sharpest upper bound is achieved via taking
supρ∈[0,1)

H2(ρ)
B2(ρ)

. Define

g(ρ) ≡ 1−ρ
− log2 (1+ρ)/2

. (40)

We note that g(ρ) is continuous and has no singulari-
ties whenever ρ ∈ [0,1). Hence

g′(ρ) =
1−ρ
1+ρ + log( 1+ρ

2 )

log2 ρ+1
2

log2≥ 0.

It follows that g(ρ) is non-decreasing and hence
supρ∈[0,1)g(ρ) = limρ→1 g(ρ) = log(4). Thus

H2/B2 ≤ log4. (41)

Combining this with convexity property of Bα(ρ) for
α > 1, we get

B2 ≤ H2 ≤ log4 B2

Using the same procedure we can prove a generic ver-
sion of this inequality for α ∈ (1,∞] , given by

Bα(ρ)≤ H2 ≤−α log
(

1− 1
α

)
Bα(ρ) (42)

Jensen-Shannon Divergence: The Jensen differ-
ence between two distributions P,Q, with densities
p,q and weights (λ1,λ2); λ1 +λ2 = 1, is defined as,

Jλ1,λ2
(P,Q) = Hs(λ1 p+λ2q)−λ1Hs(p)−λ2Hs(q), (43)

where Hs is the Shannon entropy. Jensen-Shannon di-
vergence (JSD) (Burbea and Rao, 1982; Rao, 1982b;
Lin, 1991) is based on the Jensen difference and is
given by:

JS(P,Q) =J1/2,1/2(P,Q)

=
1
2

∫ [
p log

(
2p

p+q

)

+q log
(

2q
p+q

)]
dλ (44)

The structure and goals of JSD and BBD measures
are similar. The following theorem compares the two
metrics using Jensen’s inequality.

Lemma 3.7 Jensen’s Inequality: For a convex func-
tion ψ, E[ψ(X)]≥ ψ(E[X ]).

Theorem 3.8 (Relation to Jensen-Shannon mea-
sure). JS(P,Q)≥ 2

log2 B2(P,Q)− log2

We use the un-symmetrized Jensen-Shannon met-
ric for the proof.

Proof.

JS(P,Q) =
∫

p(x) log
2p(x)

p(x)+q(x)
dx

=−2
∫

p(x) log

√
p(x)+q(x)√

2p(x)
dx

≥−2
∫

p(x) log

√
p(x)+

√
q(x)√

2p(x)
dx

(since
√

p+q≤√p+
√

q)

=EP

[
−2log

√
p(X)+

√
q(X)√

2p(X)

]

By Jensen’s inequality
E[− log f (X)]≥− logE[ f (X)], we have

EP

[
−2log

√
p(X)+

√
q(X)√

2p(X)

]
≥

−2logEP

[√
p(X)+

√
q(X)√

2p(X)

]
.
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Hence,

JS(P,Q) ≥ −2log
∫

p(x)

(√
p(x)+

√
q(x)

)

√
2p(x)

dx

= −2log

(
1+

∫√
p(x)q(x)
2

)
− log2

= 2
(

B2(p(x),q(x))
log2

)
− log2

=
2

log2
B2(P,Q)− log2. (45)

4 APPLICATION TO SIGNAL
DETECTION

Signal detection is a common problem occurring in
many fields such as communication engineering, pat-
tern recognition, and Gravitational wave detection
(Poor, 1994). In this section, we briefly describe the
problem and terminology used in signal detection. We
illustrate though simple cases how divergence mea-
sures, in particular BBD can be used for discrimi-
nating and detecting signals buried in white noise of
correlator receivers (matched filter). For greater de-
tails of the formalism used we refer the reader to
review articles in the context of Gravitational wave
detection by Jaranowski and Królak(Jaranowski and
Królak, 2007) and Sam Finn (Finn, 1992).

One of the central problem in signal detection is to
detect whether a deterministic signal s(t) is embedded
in an observed data x(t), corrupted by noise n(t). This
can be posed as a hypothesis testing problem where
the null hypothesis is absence of signal and alternative
is its presence. We take the noise to be additive , so
that x(t) = n(t)+ s(t). We define the following terms
used in signal detection: Correlation G (also called
matched filter) between x and s, and signal to noise
ratio ρ (Finn, 1992; Budzyński et al., 2008).

G = (x|s), ρ =
√
(s,s), (46)

where the scalar product (.|.) is defined by

(x|y) := 4ℜ
∫ ∞

0

x̃( f )ỹ∗( f )
Ñ( f )

d f . (47)

ℜ denotes the real part of a complex expression, tilde
denotes the Fourier transform and the asterisk * de-
notes complex conjugation. Ñ is the one-sided spec-
tral density of the noise.
For white noise, the probability densities of G when

respectively signal is present and absent are given by
(Budzyński et al., 2008)

p1(G) =
1√
2πρ

exp
(
− (G−ρ2)2

2ρ2

)
, (48)

p0(G) =
1√
2πρ

exp
(
− G2

2ρ2

)
(49)

4.1 Distance between Gaussian
Processes

Consider a stationary Gaussian random process X,
which has signals s1 or s2 with probability densities
p1 and p2 respectively of being present in it. These
densities follow the form Eq. 48 with signal to noise
ratios ρ2

1 and ρ2
2 respectively. The probability den-

sity p(X) of Gaussian process can modeled as limit
of multivariate Gaussian distributions. The diver-
gence measures between these processes d(s1,s2) are
in general functions of the correlator (s1− s2|s1− s2)
(Budzyński et al., 2008). Here we focus on distin-
guishing monochromatic signal s(t) = Acos(ωt + φ)
and filter sF(t) = AF cos(ωF t + φ) (both buried in
noise), separated in frequency or amplitude.

The Kullback-Leibler divergence between the sig-
nal and filter I(s,sF) is given by the correlation (s−
sF |s− sF):

I(s,sF) =(s− sF |s− sF) = (s|s)+(sF |sF)−2(s|sF)

=ρ2 +ρ2
F −2ρρF [〈cos(∆ωt)〉cos(∆φ)

−〈sin(∆ωt)〉sin(∆φ)], (50)

where 〈〉 is the average over observation time [0,T ].
Here we have assumed that noise spectral density
N( f ) = N0 is constant over the frequencies [ω,ωF ].
The SNRs are given by

ρ2 =
A2T
N0

, ρ2
F =

A2
F T
N0

. (51)

(for detailed discussions we refer the reader to
Budzynksi et. al (Budzyński et al., 2008)).

The Bhattacharyya distance between Gaussian
processors with signals of same energy is ( Eq 14 in
(Kailath, 1967)) just a multiple of the KLD B = I/8.
We use this result to extract the Bhattacharyya coeffi-
cient :

ρ(s,sF) = exp
(
− (s− sF |s− sF)

8

)
(52)

4.1.1 Frequency Difference

Let us consider the case when the SNRs of signal and
filter are equal, phase difference is zero, but frequen-
cies differ by ∆ω. The KL divergence is obtained by
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evaluating the correlator in Eq. 50

I(∆ω) = (s− sF |s− sF) = 2ρ2
(

1− sin(∆ωT )
∆ωT

)
.

(53)
by noting 〈cos(∆ωt)〉 = sin(∆ωT )

∆ωT and 〈sin(∆ωt)〉 =
1−cos(∆ωT )

∆ωT . Using this, the expression for BBD family
can be written as

Bα(∆ω) =
log
(

1− 1
α

[
1− e−

ρ2
4

(
1− sin(∆ωT )

∆ωT

)])

log
(
1− 1

α
) .

(54)
As we have seen in section 3.4, both BBD and KLD
belong to the f-divergence family. Their curvature for
distributions belonging to same parametric family is a
constant times the Fisher information (FI) (see Theo-
rem: 3.5). Here we discuss where the BBD and KLD
deviates from FI, when we account for higher terms
in the expansion of these measures.

The Fisher matrix element for frequency gω,ω =

E
[( ∂ logΛ

∂ω
)2
]
= ρ2T 2/3 (Budzyński et al., 2008),

where Λ is the likelihood ratio. Using the relation for
line element ds2 = ∑i, j gi jdθidθ j and noting that only
frequency is varied, we get

ds =
ρT ∆ω√

3
. (55)

Using the relation between curvature of BBD measure
and Fisher’s Information in Eq.34, we can see that for
low frequency differences the line element varies as:

√
2Bα(∆ω)

C(α)
∼ ds.

Similarly
√

dKL ∼ ds at low frequencies. However, at
higher frequencies both KLD and BBD deviate from
the Fisher information metric. In Fig. 2, we have plot-
ted ds,

√
dKL and

√
2Bα(∆ω)/C(α) with α = 2 and

Hellinger distance (α→∞) for ∆ω ∈ (0,0.1). We ob-
serve that till ∆ω = 0.01 (i.e. ∆ωT ∼ 1), KLD and
BBD follows Fisher Information and after that they
start to deviate. This suggests that Fisher Informa-
tion is not sensitive to large deviations. There is not
much difference between KLD, BBD and Hellinger
for large frequencies due to the correlator G becom-
ing essentially a constant over a wide range of fre-
quencies.

4.1.2 Amplitude Difference

We now consider the case where the frequency and
phase of the signal and the filter are same but they dif-
fer in amplitude ∆A (which reflects in differing SNR).

Figure 2: Comparison of Fisher Information, KLD, BBD
and Hellinger distance for two monochromatic signals dif-
fering by frequency ∆ω, buried in white noise. Inset shows
wider range ∆ω ∈ (0,1) . We have set ρ = 1 and chosen
parameters T = 100 and N0 = 104.

Figure 3: Comparison of Fisher information line element
with KLD, BBD and Hellinger distance for signals differing
in amplitude and buried in white noise. We have set A = 1,
T = 100 and N0 = 104.

The correlation reduces to

(s− sF |s− sF) =
A2T
N0

+
(A+∆A)2T

N0
−2

A(A+∆A)T
N0

=
(∆A)2T

N0
. (56)

This gives us I(∆A) = (∆A)2T
N0

, which is the same
as the line element ds2 with Fisher metric ds =√

T/2N0∆A. In Fig. 3, we have plotted ds,
√

dKL

and
√

2Bα(∆ω)/C(α) for ∆A ∈ (0,40). KLD and FI
line element are the same. Deviations of BBD and
Hellinger can be observed only for ∆A > 10.

Discriminating between two signals s1,s2 requires
minimizing the error probability between them. By
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Theorem 3.4, there exists priors for which the prob-
lem translates into maximizing the divergence for
BBD measures. For the monochromatic signals dis-
cussed above, the distance depends on parameters
(ρ1,ρ2,∆ω,∆φ). We can maximize the distance for a
given frequency difference by differentiating with re-
spect to phase difference ∆φ (Budzyński et al., 2008).
In Fig. 4, we show the variation of maximized BBD
for different signal to noise ratios (ρ1,ρ2), for a fixed
frequency difference ∆ω = 0.01. The intensity map
shows different bands which can be used for setting
the threshold for signal separation.

Detecting signal of known form involves minimiz-
ing the distance measure over the parameter space of
the signal. A threshold on the maximum “distance”
between the signal and filter can be put so that a detec-
tion is said to occur whenever the measures fall within
this threshold. Based on a series of tests, Receiver Op-
erating Characteristic (ROC) curves can be drawn to
study the effectiveness of the distance measure in sig-
nal detection. We leave such details for future work.

Figure 4: BBD with different signal to noise ratio for a
fixed. We have set T = 100 and ∆ω = 0.01.

5 SUMMARY AND OUTLOOK

In this work we have introduced a new family of
bounded divergence measures based on the Bhat-
tacharyya distance, called bounded Bhattacharyya
distance measures. We have shown that it belongs
to the class of generalized f-divergences and inher-
its all its properties, such as those relating Fishers In-
formation and curvature metric. We have discussed
several special cases of our measure, in particular
squared Hellinger distance, and studied relation with
other measures such as Jensen-Shannon divergence.
We have also extended the Bradt Karlin theorem on
error probabilities to BBD measure. Tight bounds on

Bayes error probabilities can be put by using proper-
ties of Bhattacharyya coefficient.

Although many bounded divergence measures
have been studied and used in various applications, no
single measure is useful in all types of problems stud-
ied. Here we have illustrated an application to signal
detection problem by considering “distance” between
monochromatic signal and filter buried in white Gaus-
sian noise with differing frequency or amplitude, and
comparing it to Fishers Information and Kullback-
Leibler divergence.

A detailed study with chirp like signal and colored
noise occurring in Gravitational wave detection will
be taken up in a future study. Although our measures
have a tunable parameter α, here we have focused on
a special case with α = 2. In many practical appli-
cations where extremum values are desired such as
minimal error, minimal false acceptance/rejection ra-
tio etc, exploring the BBD measure by varying α may
be desirable. Further, the utility of BBD measures is
to be explored in parameter estimation based on min-
imal disparity estimators and Divergence information
criterion in Bayesian model selection (Basu and Lind-
say, 1994). However, since the focus of the current
paper is introducing a new measure and studying its
basic properties, we leave such applications to statis-
tical inference and data processing to future studies.
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APPENDIX

BBD Measures of Some Common Distributions.
Here we provide explicit expressions for BBD B2, for
some common distributions. For brevity we denote
ζ≡ B2.
• Binomial :

P(k) =
(n

k

)
pk(1− p)n−k, Q(k) =

(n
k

)
qk(1−q)n−k.

ζbin(P,Q) =− log2

(
1+[
√

pq+
√
(1− p)(1−q)]n

2

)
. (57)

• Poisson :

P(k) =
λk

pe−λp

k! , Q(k) =
λk

qe−λq

k! .

ζpoisson(P,Q) =− log2

(
1+ e−(

√
λp−
√

λq)
2/2

2

)
. (58)

• Gaussian :

P(x) =
1√

2πσp
exp

(
− (x− xp)

2

2σ2
p

)
,

Q(x) =
1√

2πσq
exp

(
− (x− xq)

2

2σ2
q

)
.

ζGauss(P,Q) = 1− log2

[
1+

2σpσq

σ2
p +σ2

q
exp

(
− (xp− xq)

2

4(σ2
p +σ2

q)

)]
. (59)

• Exponential : P(x) = λpe−λpx, Q(x) = λqe−λqx.

ζexp(P,Q) =− log2

[
(
√

λp +
√

λq)
2

2(λp +λq)

]
. (60)

• Pareto : Assuming the same cut off xm,

P(x) =

{
αp

x
αp
m

xαp+1 for x≥ xm

0 for x < xm,
(61)

Q(x) =

{
αq

x
αq
m

xαq+1 for x≥ xm

0 for x < xm.
(62)

ζpareto(P,Q) =− log2

[
(
√αp +

√αq)
2

2(αp +αq)

]
. (63)
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