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Abstract: Several data mining methods have been applied to explore biological data and understand the mechanisms 
that regulate genetic and metabolic diseases. The underlying hypothesis is that the identification of signatures 
can help the clinical identification of diseased tissues. Under this principle many different methodologies have 
been tested mostly using unsupervised methods. A common trend consists in combining the information 
obtained from gene expression and protein-protein interaction networks analyses or, more recently, building 
series of complex networks to model system dynamics. Despite the positive results that these works present, 
they typically fail to generalize out of sample datasets. In this paper we describe a supervised classification 
approach, with a new methodology for extracting the network topology dynamics embedded in a disease 
system, to improve the capacity of cancer prediction, using exclusively the topological properties of biological 
networks as features. Four microarrays datasets were used, for testing and validation, three from breast cancer 
experiments and one from a liver cancer experiment. The obtained results corroborate the potential of the 
proposed methodology to predict a certain type of cancer and the necessity of applying different classification 
models to different types of cancer.  

1 INTRODUCTION 

Cancer is a complex genetic disease that affects an 
increasing number of citizens all over the world. In 
2015, more than 1.6 million new cancer cases are 
expected in the United States, from which around 
15% correspond to breast cancer (Siegel et al., 2015). 
Understanding the underlying biological mechanisms 
behind this disease has been the goal of many and 
continuous research initiatives. 

One strategy to study cancer is using microarrays, 
a high-throughput technology that measures gene 
expression, allowing the parallel analysis of genes in 
several samples. Different individuals or different 
conditions (healthy and non-healthy cells of the same 
individual) originate distinct microarray samples with 
gene expression values. These different samples can 
reveal signatures that help to distinguish cancer from 
non-cancer tissues. 

In a network-based approach, bio-entities such as 
genes and proteins can be represented as nodes and 
their relationships as edges. Using this approach we 

can model biological processes that can be analysed 
using graph and network methods. The construction 
of network-based models to study complex 
phenomena, like cancer diseases, allows the capture 
of the embedded systems dynamics. This dynamics 
can be captured by constructing series of different 
complex networks through time, through different 
stages and through different traits. The study of the 
topological properties of these complex networks 
allows understanding specific structures, signatures 
and similarities.  

This paper presents a methodology to construct 
protein-protein interaction networks to capture the 
existent system dynamics beneath their topology. 
These networks, here named Sample-Series 
Networks (SSN), are constructed using a group of 
cancer and healthy microarray samples. Information 
features are exclusively obtained through the analysis 
of the topological properties of these networks and 
without any other biological information. Using the 
obtained set of topological features a supervised 
approach is then used to classify between cancer and 
non-cancer tissues samples. This work aims to 
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address several questions, namely: are there 
evidences of signatures beneath the SSN that allow us 
to classify samples as cancer or non-cancer? Which 
topological measures give better results as 
classification features among the several groups 
considered? Does a classification model distinguish 
different types of cancers? 

Tests have been made in four gene expression 
microarray experiments, three from breast cancer and 
one from liver cancer. 

2 BACKGROUND 

Anomalies in a gene, protein or other bio-entity can 
cause diseases and since the arrival of the next-
generation sequencing (NGS), that are found more 
evidences of human genes being correlated to 
diseases. Data from November 6th, 2015 obtained in 
the Online Mendelian Inheritance in Man database 
(OMIM) (Amberger et al., 2015) shows that there are 
5597 phenotypes for which the molecular basis is 
known and 3453 genes with phenotype-causing 
mutation. Most disease genes are not essential, being 
essential genes typically organized as hubs in a 
complex network (Barabási et al., 2011, Jonsson and 
Bates, 2006). 

Biological networks are not random, they have 
clustered groups of bio-entities, like genes or 
proteins. They are also sparsely connected, which is 
considered an evolutionary advantage for preserving 
robustness to random failures (Barabasi and Oltvai, 
2004). Also, it is known that genes and proteins that 
are involved in the same phenotype are network 
neighbours (Oti et al., 2006) and that a disease 
phenotype can be associated to interactions in a 
biological complex network that models these 
biological processes (Menche et al., 2015).The 
comparison of networks can use global and local 
topological measures. Both are used in (Pržulj et al., 
2004) to show that the structure of yeast PPI networks 
is closer to the geometric random graph model 
relatively to graphlet frequency. In (Pržulj, 2007) a 
new network similarity measure is defined based on 
the graphlet degree distribution as a generalization of 
the degree distribution.  

Genomic changes that are translated to proteins 
can alter biological functions and a system-based 
approach modelled through complex networks can 
assist the discovery of signatures related to disease 
mechanisms, by analysing their topology (Vidal et al., 
2011, Barabási et al., 2011, Arrais and Oliveira, 2011, 
Farkas et al., 2011). 

Cliques help to understand the mechanisms 
involved in cancer, since they are fully connected 
subnetworks more conserved in biological networks. 
In cliques, genes are functionally related and highly 
expressed. In (Pradhan et al., 2012) it is proposed a 
topological and biological feature-based network 
approach, integrating the expression data, along with 
network topological information and biological 
information. Cliques are scored based on these 
information and are considered as gene signatures for 
the colorectal cancer (CRC).  

Sets of biological complex networks can be 
constructed across multiple conditions, like species, 
time, and evolutionary states, traits or even samples, 
as the novel approach used in this paper, building 
dynamic models of the studied system. 

A systems biology approach can be used to 
interpret biological data. The (Trapé and Gonzalez-
Angulo, 2012) review addresses the contributions of 
systems biology. DNA, RNA and protein changes 
data are integrated to understand breast cancer 
metastasis process. (Sonachalam et al., 2012) shows 
how to build a PPI network representative of the 
colorectal cancer (CRC) where nodes are 
genes/proteins obtained from Gene Set Enrichment 
Analysis (GSEA). (Barter et al., 2014) compares 
single-gene, gene-set and two PPI network-based 
methods, using gene expression microarrays data, 
applied to melanoma and ovarian cancer. In single-
gene, features are the expression values of 
informative genes identified via differential 
expression analysis. In the gene-set method, genes are 
grouped into sets using biological knowledge, which 
are used as features for classification. In the first 
network-based method features are the most 
informative individual genes selected using the PPI 
network, while in the second network-based method, 
features are identified or are extracted from them 
considering the edges or are sub-networks hub genes. 
Three classifiers were used, namely Random Forest 
(RF), Diagonal Linear Discriminant Analysis and 
Support Vector Machines (SVM), with 5-fold cross 
validation. It concludes that including network 
information may lead to the identification of more 
stable gene expression signatures. 

(Dominietto et al., 2015), shows how to integrate 
imaging data into networks to define tumor 
fingerprints, through both network topology and the 
detection of dynamic connectivity patterns. 

In (Chuang et al., 2007) PPI subnetwork markers 
are found to distinguish between metastatic and non-
metastatic tumors, using a score function. Candidate 
subnetworks are built starting with a single protein 
and are expanded using the PPI network, until the 
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score stops to increase. The activity scores calculated 
from the average of the expression levels of each 
subnetwork were used as feature values. The 
classifiers used were based on logistic regression and 
SVM using 5-fold cross validation. In (Chen and 
Yang, 2014), normal, benign and malignant states of 
breast cancer are differentiated, building a gene 
regulatory network representative of each state and 
comparing their network topological properties (in 
and out-degree, betweenness, cluster coefficient and 
closeness). Gene ranking was made selecting 53 hub 
genes. (Wang et al., 2015) review describes pathway 
and network-based approaches applied to cancer 
biomarker discovery, in particular to the liver and 
hepatocellular carcinoma (HCC). In (Ou-Yang et al., 
2014) dynamic PPI networks are constructed from 
time-course gene expression data and PPI data, 
extracting stable and dynamic interactions along time 
to predict temporal protein complexes. An approach. 
using differential co-expression analysis and PPI 
networks for study human HCC progression that uses 
subnetworks for each of the five stages of this 
carcinoma can be found in (Yu et al., 2013). 

Data mining classification techniques have been 
used to look for signatures in cancer diseases. A large 
number of variables can be used to characterize 
cancer and non-cancer biological datasets, so it is 
necessary to choose the most relevant. There are 
several feature selection algorithms and a review is 
presented in (Saeys et al., 2007), including the 
ReliefF feature selection method  (Kononenko, 1994) 
used in this paper. In (Nancy and alias Balamurugan, 
2013), the ReliefF feature selection method  is 
claimed to be the best method among several tested 
for cancer classification using gene expression data. 
Also ReliefF algorithm is efficient, and adequate 
when there is much feature interaction, ranking well 
the quality of features when there is a strong 
dependency between them (Robnik-Šikonja and 
Kononenko, 2003). 

In (Furey et al., 2000), a score is calculated for the 
expression values of genes, to select those with 
highest scores as features in the classification 
withhold-one-out cross validation. Tests were made 
and the best results were obtained with 50 genes. 
(Ramani and Jacob, 2013) uses a Bayesian Network 
Learning (BNL) prediction to classify lung cancer 
tumors as Small Cell Lung Cancer (SCLC), Non-
Small Cell Lung Cancer (NSCLC) and COMMON 
classes, using the structural and physicochemical 
properties of protein sequences obtained from genes 
using microarray analysis. Several feature selection 
methods were used with different prediction 
techniques. Best results were obtained using BNL 

with Gain Ratio. A model for predicting the survival 
rate of patients affected by lung cancer, applying 
different feature selection algorithms, can be found in 
(Dezfuly and Sajedi, 2015). The classification 
algorithms used were: Decision Tree (DT), BNL and 
Neural Network (NN).  

A new network-based supervised classification 
method to predict cancer, named NBC and using only 
gene expression levels is presented in (Ay et al., 
2014). It was applied to different datasets, (lung, 
breast, leukaemia and colon cancers) using five 
classification algorithms, namely SVM, KNN, NBL, 
C4.5 and RF with 10-fold cross validation and with 
five feature selection methods. A gene-association 
network was created for each class, where nodes are 
genes and edges represent the correlation between 
their expression levels. High accuracy classification 
was obtained with less than 100 genes. 

3 METHODS 

This paper describes a system-based approach to 
classify between cancer and non-cancer tissues and 
can contribute to find signatures that distinguish 
disease biological processes from healthy biological 
processes, using the topological properties of 
networks and considering the network topological 
dynamics embedded in the disease system. 

A network-based method is used, by constructing 
a set of PPI networks, one for each sample belonging 
to the SSN. The ReliefF algorithm (Kononenko, 
1994) is used to rank a subset of genes. In each SSN 
network, nodes are proteins coded by a subset of the 
most expressed genes of the top ReliefF genes and 
edges indicate that the proteins coded by those genes 
interact physically. A score was used as a threshold 
for the PPI interactions. 

Network topological properties were used as 
features in the supervised binary classification 
methodology and their values were obtained from the 
topological analysis of each SSN network. 

These classification models were evaluated using 
the statistical measures, accuracy, precision, recall, 
F1-score and area under the ROC curve. 

Four datasets were used, three from breast cancer 
microarray experiments and one from a liver cancer 
microarray experiment. Three types of tests were 
made: using 5 fold cross-validation; using data 
obtained from two of the breast cancer datasets as 
train set, and data obtained from the other breast 
cancer dataset as test set; and using data obtained 
from the three breast cancer datasets to train the 
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dataset and, for testing, using data obtained from the 
liver cancer dataset.  

3.1 Gene Expression Microarray Data 
Sets 

The experiments were obtained from ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/): E-GEOD-
65194 (178 samples, where 167 are from breast 
cancer tissue cells), E-GEOD-54002 (433 samples, 
where 417 are from breast cancer tissue cells), E-
GEOD-29044 (124 samples, where 75 are from breast 
cancer tissue cells) and E-MTAB-950 (276 samples, 
where 179 are from liver cancer tissue cells). To 
assure probes and samples uniformity all experiments 
share the same array design A-AFFY-44 and all 
samples were labelled as belonging to one of the two 
classes, Cancer or Healthy. The 54673 genes of the 
experiments were sorted by decreasing values of 
ReliefF (Kononenko, 1994), an algorithm that can be 
applied to continuous and discrete values. For each 
experiment the top ReliefF 100 genes were selected 
and merged in one matrix of 735 samples and 276 
genes for breast cancer and one matrix of 124 samples 
and 276 genes for the liver cancer. The PPI SSN was 
obtained from the 100 most expressed genes from 
each sample of the previous matrixes. The number 
100 genes belongs to the typical interval of 50 to 150 
number of genes used for binary classifications 
studies (Ay et al., 2014). 

3.2 Protein-protein Interaction 
Networks 

DAVID and UNIPROT were primarily used (Dennis 
et al., 2003, Consortium, 2014) to obtain the mapping 
of identifiers from probeset ids and gene names to 
proteins. The human PPI dataset was obtained from 
STRING, an online database resource with several 
distinct types and sources of PPI information. Using 
this dataset, several networks were constructed, one 
for each sample, representing the entire set of PPI for 
all different samples. Only PPIs with score greater or 
equal to 300 were considered. These networks were 
constructed as undirected, unweight and with no self-
edges. 

3.3 Classification Methods 

The set of supervised learning algorithms used were 
the KNN classifier, the SVM classifier implemented 

using an RBF kernel, and the RF, all with default 
parameters. 

Classification results were obtained using Orange 
through scripting in Python and through visual 
programming in Orange Canvas (Demsar et al., 
2007). 

The statistical measures used to evaluate the 
performance of the binary classification models were, 
the classification accuracy (CA), the precision 
(Precision), the recall (Recall), the F1-score (F1) and 
the area under the ROC Curve (AUC) (Sokolova and 
Lapalme, 2009), where TP (true positive) is the 
number of correctly predicted samples that belong to 
the class, TN (true negative) is the number of 
correctly predicted samples that do not belong to the 
class, FP (false positive) is the number of wrongly 
predicted samples that belong to the class and FN 
(false negative) is the number of wrongly predicted 
samples that do not belong to the class. 

Accuracy (CA) calculates the proximity of 
measurement results to the true value and gives the 
global efficacy of a classifier. 

CA = (TP+TN) / (P+N) (1)

Precision (Precision) specifies the positive labels 
given by the classifier that are correct. 

Precision = TP / (TP+FP) (2)

Recall or sensitivity shows the efficacy of a 
classifier to identify positive labels. 

Recall = TP/P = TP / (TP+FN). (3)

F1-score (F1) is the harmonic mean of precision 
and recall and is between 0 and 1, being 1 the best 
value.  

F1 = 2 x (Precision x Recall) / 
(Precision + Recall) (4)

Area under the ROC curve (AUC) is the 
classifier’s capacity to avoid false classification. 

AUC = 1/2 ((TP / (TP+FN))  
+ (TN / (FP + TN)) (5)

Three strategies were used, the first one with 
classification results obtained by 5 fold cross- 
validation and the others two using a separate test 
data, one from the same type of cancer and the other 
from a different type of cancer. 
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Figure 1: SSN network-based features, where ns is the number of samples and nf is the number of features. 

3.4 Network-based Approach 

An undirected and unweighted graph G can be 
defined as a pair G = (V, E) where V is a set of 
vertices representing the nodes and E is a set of edges 
representing the connections between the nodes i and 
j. The number of nodes of a graph G is denoted by N 
and the number of edges of a graph is denoted by L. 

Given a graph G = (V, E) the adjacency matrix 
representation consists of an N x N matrix A = [aij], 
such that aij = 1 if (i, j) belongs to E or aij = 0 
otherwise. For undirected graphs the matrix is 
symmetric. 

Descriptors obtained from the  analysis of the SSN 
topologies were calculated using the package 
NetworkX from Python (Schult and Swart, 2008), the 
R package QuACN (Mueller et al., 2011) and the 
gtrieScanner (Ribeiro and Silva, 2014) software. 

The following methodology was used to obtain 
SSN network-based features (Figure 1): 

Step 1: Obtain the e matrixes, for e=1,…, ne, 
where ne is the number of microarray experiments, 
nse is the number of samples of the experiment e and 
ng is the number of genes. 

EXPe= [expij], i=1,…, nse; j=1, …, ng (6)

Step 2: Obtain the lists of the top genes ranked by 
decreasing order of ReliefF 

LTGRe, for e=1,..., ne (7)

Step 3: Obtain the union of the previous lists, for 
a threshold value, thr_rf that defines the number of 
top elements of the lists to be considered. 

LUNION = UNION (LTGRe), for 
e=1,...,ne (8)

Step 4: Obtain the submatrices of EXPe, for e=1, 
..., ne, obtained in step 1., for the genes selected in 
step 3. 

SEXP = [sexpij], for i=1,..., sume(nse); 
j=1,…, thr_rf (9)

Step 5: Obtain the lists of the top thr_me most 
expressed genes in SEXP, for each sample from e 
experiments, for e=1,…, ne. 

LGME= [lgmeij], for i=1,..., sume(nse); 
j=1, .., thr_me (10)

Step 6: Obtain the lists of the proteins encoded by 
the genes of the LGME matrix, P(LGME) for each 
sample of the experiments e, for e=1, ..., ne. 

LPME= P(LGME)i, for i=1,..., sume(nse) (11)

Step 7: Obtain the SSN, the PPI human interaction 
sub-networks induced by LPME. 

SSN= [ssni], for i=1,..., sume(nse); e=1,…, 
ne (12)
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Table 1: Group D0 of topological network-based descriptors. 

D0.1: Number of nodes D0.9: Size of the largest clique 
D0.2: Number of edges D0.10: Number of maximal cliques 
D0.3: Density D0.11: Degree assortativity coefficient 
D0.4: Number of connected components D0.12: Estrada index 
D0.5: Number of nodes of the largest component D0.13: Graph transitivity 
D0.6: Number of edges of the largest component D0.14: Average clustering coefficient 
D0.7: Diameter of the largest component D0.15: Average shortest path length 
D0.8: Global clustering coefficient  

Table 2: Groups D1, D2 and D3 of topological network-based descriptors. 

D1.1: Wiener D2.1: Total adjacency D3.1: Medium articulation 
D1.2: Harary D2.2: Zagreb 1 D3.2: Efficiency 
D1.3: BalabanJ D2.3: Zagreb 2 D3.3: Graph index complexity 
D1.4: Mean distance deviation D2.4: Modified Zagreb D3.4: Off diagonal 
D1.5: Compactness D2.5: Augmented Zagreb D3.5: Spanning tree sensitivity STS 
D1.6: Product of row sums D2.6: Variable Zagreb D3.6: Spanning tree sensitivity STSD 
D1.7: Hyper distance path index D2.7: Randic  
D1.8: Dobrynin eccentricity graph D2.8: Complexity index B  
D1.9: Dobrynin avgecc of G D2.9: Normalized edge complexity  
D1.10: Dobrynin eccentric graph D2.10: Atom bond connectivity  
D1.11: Dobrynin graph integration D2.11: Geometric arithmetic 1  
D1.12: Dobrynin unipolarity D2.12: Geometric arithmetic 2  
D1.13: Dobrynin variation D2.13: Geometric arithmetic 3  
D1.14: Dobrynin centralization D2.14: Narumi Katayama  
D1.15: Dobrynin average distance   
D1.16: Dobrynin mean distance 

vertex deviation   

 
Step 8: Calculate the five groups of topological 

properties for each ssn belonging to SSN, where the 
number of features, nf, is the number of descriptors 
used. 

FEAT= [featij], for i=1,…, sume(nse); 
j=1,..., nf; e=1,..., ne (13)

Several topological measures were included to 
capture the structural complexity of the biological 
networks. Hereafter are referred the five groups of 
descriptors used.  

A first group of 15 descriptors, named D0, 
calculated using NetworkX (Table 1). A second group 
of 16 descriptors, named D1 that uses distances 
between nodes to capture the structural complexity of 
the network, a third group, named D2, of 14 
descriptors and a forth group of 6 more recent 
descriptors, named D3, all of them calculated using 
QuACN (Table 2). A fifth group , named D4, of 58 
descriptors, where the first 29 are corresponding to 
the relative frequency values of 3 to 5 nodes 
subgraphs if they are a motif and zero if they are not 
a motif and the last 29 are the correspondent z-score 
values, which were calculated using 1000 random 
networks (Table 3).  

These descriptors were calculated using the 
gtriesScanner software. A motif is a subgraph that is 
frequent compared to their frequency in a set of 
similar random networks. In this paper a subgraph is 
considered a motif (Milo et al., 2002), if the 
frequency of the subgraph in the network is superior 
to 4, the difference between the frequency in the 
network (f) and the average frequency in 1000 similar 
random networks (avgfr) is greater or equal to 0.10 of 
the average frequency in those random networks, and 
|z-score| > 2, where z-score = (f - avgfr) / sd, with sd 
as the standard deviation. 

Table 3: Group D4 of topological network-based 
descriptors. 

D4.1_j: 3_j_fr 
j=1,… 2 

D4.4_j: 3_j_zsc 
j=1,… 2 

D4.2_j: 4_j_fr 
j=1,… 6 

D4.5_j: 4_j_zsc 
j=1,… 6 

D4.3_j: 5_j_fr 
j=1,… 21 

D4.6_j: 5_j_zsc 
j=1,… 21 

To build the binary classification models three 
different supervised learning algorithms were used, 
namely the KNN, SVM with RBF kernel and RF 
classifiers, all with default parameters. All of the  

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

212



Table 4: Statistical evaluation (CA, Precision, Recall, F1 and AUC) of the binary classification C - Cancer and H- Healthy 
for the cases C1, C2, C3 and C4 using the three classifiers KNN, SVM and RF, for all of the network-based features and for 
the group of network-based features D4 for the class C. 

 

 
classifiers used gave similar results, with a slight 

advantage in some statistical measures for RF when 
using information from breast cancer datasets. 

The statistical measures used to evaluate the 
performance of the binary classification models were 
the CA, the Precision, the Recall, the F1 and the AUC 
and values were obtained using three strategies, with 
different sets of features groups.  

The first strategy, named Case 1 (C1), used 5 fold 
cross-validation on the network-based features values 
calculated from the three breast cancer microarray 
datasets. 

The second strategy included two types of tests 
that were named Case 2 (C2) and Case 3 (C3) and 
here two of the breast cancer datasets were used to 
calculate network-based features values for the 
training dataset and the remaining one was used to 
calculate the network-based features values for the 
test dataset. In C2, the training set used E_GEOD-
65194 and E-GEOD-54002 microarray datasets and 
the test set used E_GEOD-29044 dataset and in C3, 
the training set used E_GEOD-54002 and E-GEOD-
29044 datasets and the test set used E_GEOD-65194 
microarray dataset. 

The third strategy, named Case 4 (C4), used data 
from the three breast cancer microarray datasets for 
the training dataset and the liver microarray dataset 
was used for the test dataset. 

The two sets of features, whose results are shown 
in Table 4, are the set of all of the network-based 
features (groups D0 to D4) and the set of network-
based features of the group D4. In the case C1, 5-fold 
cross validation was used, with results, above 0.95, 
for all the statistical measures considered. To test if 
the classification obtained in C1 was suffering from 
over fitting, different datasets were used as a train set 
and as test set, the cases C2 and C3. The results 
obtained were, for example for CA, above 0.80 for C2 
and above 0.92 for C3, which evidence good 
performance of the classifier. The difference between 

the values of C2 and C3 may be explained by the 
imbalance between cancer and non-cancer samples.  

To check if the classification models with datasets 
of one type of cancer can be generalized for another 
cancer type, the classification model was trained with 
data from three breast cancer datasets and tested with 
data obtained from a liver cancer dataset, in case C4. 
Values obtained and shown in Table 4 are still 
positive, probably due to the fact of all being cancer 
diseases, but worse than the previous ones. 

To analyse which of the network-based features 
contributed more for the classification model a 
ranking list of features was done. Table 5 shows the 
top 5 ranking of the network-based features.  

From the analysis of which features are more 
informative, it can be stated that the most relevant 
features belong mainly to group D0 and group D4. 
When all groups of topological features are used as 
features variables, it can be seen that the size of the 
largest clique and the number of nodes are better 
ranked. Motifs of size 4 and 5 are the most 
informative motifs. 

Table 5: Top five ranking of network-based features. 

 

4 CONCLUSIONS 

The statistical evaluation results were obtained using 
only topological properties as features variables, 

C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4
KNN 0.98 0.80 0.97 0.61 0.98 0.76 0.98 0.64 0.97 0.97 0.99 0.88 0.98 0.85 0.99 0.75 0.96 0.86 0.94 0.55
SVM 0.96 0.81 0.96 0.62 0.99 0.78 0.99 0.70 0.97 0.95 0.96 0.72 0.98 0.86 0.98 0.71 0.98 0.94 0.98 0.64
RF 0.96 0.88 0.98 0.60 0.98 0.88 0.98 0.69 0.98 0.93 1.00 0.69 0.98 0.90 0.99 0.69 0.98 0.94 0.99 0.60
KNN 0.95 0.76 0.92 0.58 0.98 0.73 0.95 0.67 0.97 0.95 0.97 0.68 0.97 0.83 0.96 0.67 0.96 0.82 0.93 0.56
SVM 0.96 0.81 0.96 0.62 0.98 0.79 0.97 0.76 0.97 0.93 0.99 0.60 0.98 0.85 0.98 0.67 0.97 0.87 0.99 0.62
RF 0.96 0.85 0.98 0.57 0.97 0.84 0.98 0.64 0.98 0.93 1.00 0.79 0.98 0.89 0.99 0.71 0.97 0.93 0.99 0.51

D0+D1+D2+ D3+D4

D4

F1 AUC
Cancer

CA Precision Recall

Tests 1st 2nd 3rd 4th 5th

D0+D1+D2+D3+D4 (case 1) D0.9 D0.5 D0.1 D3.2 D4.3_1

D0+D1+D2+D3+D4 (case 2) D4.2_6 D0.1 D0.5 D0.6 D0.2

D0+D1+D2+D3+D4 (case 3) D0.9 D0.4 D4.2_2 D0.13 D0.1

D0+D1+D2+D3+D4 (case 4) D0.9 D0.5 D0.1 D3.2 D4.3_1

D4 (case 1) D4.3_1 D4.1_1 D4.1_6 D4.2_6 D4.5_3

D4 (case 2) D4.2_6 D4.3_17 D4.3_4 D4.3_2 D4.3_1

D4 (case 3) D4.3_18 D4.3_19 D4.2_5 D4.3_17 D4.2_2

D4 (case 4) D4.3_1 D4.1_1 D4.2_1 D4.2_6 D4.5_3
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measured in the SSN, which are PPI networks built 
from the expressed genes without any other biological 
information. The results seem to indicate that there 
are signatures embedded in the topology dynamics, 
modelled through the SSN, which can distinguish 
cancer from non-cancer cells for each type of cancer. 

This new methodology of creating SSN allows the 
capture of the topology dynamics of the system 
through the set of samples and allows data to be 
reduced and be computationally manageable, keeping 
the more informative data, which is supported by the 
good results obtained. We consider that this novel 
approach is worth and gives different contributions 
compared to previous works, namely: the number of 
considered topological properties is much higher; the 
exclusive use of topological properties (global and 
local) with good binary classification results 
obtained; the topological dynamics of the system 
captured through each sample, different from other 
works that use time or states for example, which can 
contribute to the capture of different signatures. 

The results obtained show that classification 
models should be different according to the cancer 
disease type considered. More, the knowledge of 
which features are more informative can be used, in 
the future, to look for signatures based in these 
features that could help in the identification of certain 
cancer types. Two of the most discriminative features 
obtained were the size of the largest clique and motifs 
of size 4 and 5. Cliques being fully connected 
subnetworks where genes are functionally related and 
highly expressed were considered by some 
researchers as gene signatures (Pradhan et al., 2012).  
The relative frequency and z-score of some motifs as 
local topological properties measures, showed to be 
discriminatory features, indicating that there are clues 
that some small subnetworks could help to distinguish 
cancer samples. Adding more biological information 
to the more discriminative features found in the 
classification, may reveal important signatures like 
subgraphs markers of cancer diseases. This approach 
also seems worth to be further explored. 

Finally the proposed methodology for creating 
SSN is a novel contribution that can be extended to 
other types of networks, besides PPIs, adding 
information that can differentiate samples and capture 
their topological dynamics helping to uncover new 
signatures that can be biologically relevant for the 
identification of diseases.  

ACKNOWLEDGEMENTS 

This work   has   received   support   from   the   RD-

CONNECT European project (EC contract number 
305444). 

REFERENCES 

Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. 
F. & Hamosh, A., 2015. Omim. Org: Online Mendelian 
Inheritance In Man (Omim®), An Online Catalog Of 
Human Genes And Genetic Disorders. Nucleic Acids 
Research, 43, D789-D798. 

Arrais, J. P. & Oliveira, J. L., 2011. Using Biomedical 
Networks To Prioritize Gene-Disease Associations. 
Open Access Bioinformatics, 1, 123-130. 

Ay, A., Gong, D. & Kahveci, T., 2014. Network-Based 
Prediction Of Cancer Under Genetic Storm. Cancer 
Informatics, 13, 15. 

Barabási, A.-L., Gulbahce, N. & Loscalzo, J., 2011. 
Network Medicine: A Network-Based Approach To 
Human Disease. Nature Reviews. Genetics, 12, 56-68. 

Barabasi, A.-L. & Oltvai, Z. N., 2004. Network Biology: 
Understanding The Cell's Functional Organization. 
Nature Reviews Genetics, 5, 101-113. 

Barter, R., Schramm, S.-J., Mann, G. & Yang, Y. H., 2014. 
Network-Based Biomarkers Enhance Classical 
Approaches To Prognostic Gene Expression 
Signatures. Bmc Systems Biology, 8, S5. 

Chen, D. & Yang, H., 2014. Comparison Of Gene 
Regulatory Networks Of Benign And Malignant Breast 
Cancer Samples With Normal Samples. Genetics And 
Molecular Research: Gmr, 13, 9453. 

Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. & Ideker, T., 
2007. Network�Based Classification Of Breast Cancer 
Metastasis. Molecular Systems Biology, 3, 140. 

Consortium, T. U., 2014. Activities At The Universal 
Protein Resource (Uniprot). Nucleic Acids Research, 
42, D191-D198. 

Demsar, J., Zupan, B. & Leban, G., 2007. Orange: From 
Experimental Machine Learning To Interactive Data 
Mining. White Paper, Faculty Of Computer And 
Information Science, University Of Ljubljana (2004). 

Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., 
Gao, W., Lane, H. C. & Lempicki, R. A., 2003. David: 
Database For Annotation, Visualization, And 
Integrated Discovery. Genome Biol, 4, P3. 

Dezfuly, M. & Sajedi, H,. 2015. Predict Survival Of 
Patients With Lung Cancer Using An Ensemble Feature 
Selection Algotithm And Classification Methods In 
Data Mining. Journal Of Information, 1, 1-11. 

Dominietto, M., Tsinoremas, N. & Capobianco, E., 2015. 
Integrative Analysis Of Cancer Imaging Readouts By 
Networks. Molecular Oncology, 9, 1-16. 

Farkas, I. J., Korcsmáros, T., Kovács, I. A., Mihalik, Á., 
Palotai, R., Simkó, G. I., Szalay, K. Z., Szalay-Beko, 
M., Vellai, T. & Wang, S., 2011. Network-Based Tools 
For The Identification Of Novel Drug Targets. Sci 
Signal, 4, Pt3. 

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., 
Schummer, M. & Haussler, D. 2000. Support Vector 

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

214



Machine Classification And Validation Of Cancer 
Tissue Samples Using Microarray Expression Data. 
Bioinformatics, 16, 906-914. 

Jonsson, P. F. & Bates, P. A., 2006. Global Topological 
Features Of Cancer Proteins In The Human 
Interactome. Bioinformatics, 22, 2291-7. 

Kononenko, I. Estimating Attributes: Analysis And 
Extensions Of Relief.  Machine Learning: Ecml-94, 
1994. Springer, 171-182. 

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, 
M., Loscalzo, J. & Barabási, A.-L., 2015. Uncovering 
Disease-Disease Relationships Through The 
Incomplete Interactome. Science, 347, 1257601. 

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., 
Chklovskii, D. & Alon, U., 2002. Network Motifs: 
Simple Building Blocks Of Complex Networks. Science, 
298, 824-827. 

Mueller, L., Kugler, K., Graber, A., Emmert-Streib, F. & 
Dehmer, M., 2011. Structural Measures For Network 
Biology Using Quacn. Bmc Bioinformatics, 12, 492. 

Nancy, S. G. & Alias Balamurugan, S. A., 2013. A 
Comparative Study Of Feature Selection Methods For 
Cancer Classification Using Gene Expression Dataset. 
Journal Of Computer Applications (Jca), 6, 2013. 

Oti, M., Snel, B., Huynen, M. A. & Brunner, H. G., 2006. 
Predicting Disease Genes Using Protein–Protein 
Interactions. Journal Of Medical Genetics, 43, 691-
698. 

Ou-Yang, L., Dai, D.-Q., Li, X.-L., Wu, M., Zhang, X.-F. 
& Yang, P., 2014. Detecting Temporal Protein 
Complexes From Dynamic Protein-Protein Interaction 
Networks. Bmc Bioinformatics, 15, 335. 

Pradhan, M. P., Nagulapalli, K. & Palakal, M. J., 2012. 
Cliques For The Identification Of Gene Signatures For 
Colorectal Cancer Across Population. Bmc Systems 
Biology, 6, S17. 

Pržulj, N., 2007. Biological Network Comparison Using 
Graphlet Degree Distribution. Bioinformatics, 23, 
E177-E183. 

Pržulj, N., Corneil, D. G. & Jurisica, I., 2004. Modeling 
Interactome: Scale-Free Or Geometric? 
Bioinformatics, 20, 3508-3515. 

Ramani, R. G. & Jacob, S. G., 2013. Improved 
Classification Of Lung Cancer Tumors Based On 
Structural And Physicochemical Properties Of Proteins 
Using Data Mining Models. Plos One, 8, E58772. 

Ribeiro, P. & Silva, F,. 2014. G-Tries: A Data Structure For 
Storing And Finding Subgraphs. Data Mining And 
Knowledge Discovery, 28, 337-377. 

Robnik-Šikonja, M. & Kononenko, I., 2003. Theoretical 
And Empirical Analysis Of Relieff And Rrelieff. 
Machine Learning, 53, 23-69. 

Saeys, Y., Inza, I. & Larrañaga, P., 2007. A Review Of 
Feature Selection Techniques In Bioinformatics. 
Bioinformatics, 23, 2507-2517. 

Schult, D. A. & Swart, P. Exploring Network Structure, 
Dynamics, And Function Using Networkx.  Proceedings 
Of The 7th Python In Science Conferences (Scipy 
2008), 2008. 11-16. 

Siegel, R. L., Miller, K. D. & Jemal, A., 2015. Cancer 
Statistics, 2015. Ca: A Cancer Journal For Clinicians, 
65, 5-29. 

Sokolova, M. & Lapalme, G., 2009. A Systematic Analysis 
Of Performance Measures For Classification Tasks. 
Information Processing & Management, 45, 427-437. 

Sonachalam, M., Shen, J., Huang, H. & Wu, X., 2012. 
Systems Biology Approach To Identify Gene Network 
Signatures For Colorectal Cancer. Frontiers In 
Genetics, 3. 

Trapé, A. P. & Gonzalez-Angulo, A. M., 2012. Breast 
Cancer And Metastasis: On The Way Toward 
Individualized Therapy. Cancer Genomics - 
Proteomics, 9, 297-310. 

Vidal, M., Cusick, M. E. & Barabasi, A.-L., 2011. 
Interactome Networks And Human Disease. Cell, 144, 
986-998. 

Wang, J., Zuo, Y., Man, Y.-G., Avital, I., Stojadinovic, A., 
Liu, M., Yang, X., Varghese, R. S., Tadesse, M. G. & 
Ressom, H. W., 2015. Pathway And Network 
Approaches For Identification Of Cancer Signature 
Markers From Omics Data. Journal Of Cancer, 6, 54. 

Yu, H., Lin, C.-C., Li, Y.-Y. & Zhao, Z., 2013. Dynamic 
Protein Interaction Modules In Human Hepatocellular 
Carcinoma Progression. Bmc Systems Biology, 7, S2. 

Prediction of Cancer using Network Topological Features

215


