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Abstract: Wearable inertial systems often require many sensing units in order to reach an accurate extraction of 
temporal gait parameters. Reconciling easy and fast handling in daily clinical use and accurate extraction of 
a substantial number of relevant gait parameters is a challenge. This paper describes the implementation of a 
new accelerometer-based method that accurately and precisely detects gait events/parameters from 
acceleration signals measured from only two accelerometers attached on the heels of the subject’s usual 
shoes. The first step of the proposed method uses a gait segmentation based on the continuous wavelet 
transform (CWT) that provides only a rough estimation of motionless periods defining relevant local 
acceleration signals. The second step uses the CWT and a novel piecewise-linear fitting technique to 
accurately extract, from these local acceleration signals, gait events, each labelled as heel strike (HS), toe 
strike (TS), heel-off (HO), toe-off (TO), or heel clearance (HC). A stride-by-stride validation of these 
extracted gait events was carried out by comparing the results with reference data provided by a kinematic 
3D analysis system (used as gold standard) and a video camera. The temporal accuracy ± precision of the 
gait events were for HS: 7.2 ms ± 22.1 ms, TS: 0.7 ms ± 19.0 ms, HO: −3.4 ms ± 27.4 ms, TO: 
2.2 ms ± 15.7 ms, and HC: 3.2 ms ± 17.9 ms. In addition, the occurrence times of right/left stance, swing, 
and stride phases were estimated with a mean error of −6 ms ± 15 ms, −5 ms ± 17 ms, and −6 ms ± 17 ms, 
respectively. The accuracy and precision achieved by the extraction algorithm for healthy subjects, the 
simplification of the hardware (through the reduction of the number of accelerometer units required), and 
the validation results obtained, convince us that the proposed accelerometer-based system could be extended 
for assessing pathological gait (e.g., for patients with Parkinson’s disease). 

1 INTRODUCTION 

Wearable inertial systems have been proposed to 
measure gait events and to estimate temporal gait 
parameters (e.g., Willemsen et al. 1990; Aminian et 
al., 1999; Selles et al., 2005; Lee et al. 2007; 
Godfrey et al., 2008). Compared to conventional gait 
analysis techniques, such as optoelectronic motion 
capture systems and instrumented walkways, these 
systems are not limited to controlled laboratory 
environment; they can handle gait analysis in an 
entirely natural setting with the possibility to obtain 

gait parameters over longer walking distances (e.g., 
Khandelwal and Wickström 2014). The hardware 
part of inertial systems, such as accelerometer units, 
includes low-cost, small, and lightweight sensing 
units with generally low power consumption (e.g., 
Stamatakis et al., 2011). With an appropriate 
algorithm, these inertial systems are particularly 
suitable for assessing gait in a clinical environment 
(e.g., Salarian et al., 2004; Rueterbories et al., 2010). 

Yet, these systems often need many sensing units 
to achieve reasonable accuracy and precision in the 
extraction of gait events/parameters. Arranging these 

Boutaayamou, M., Denoël, V., Brüls, O., Demonceau, M., Maquet, D., Forthomme, B., Croisier, J-L., Schwartz, C., Verly, J. and Garraux, G.
Extraction of Temporal Gait Parameters using a Reduced Number of Wearable Accelerometers.
DOI: 10.5220/0005696900570066
In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016) - Volume 4: BIOSIGNALS, pages 57-66
ISBN: 978-989-758-170-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

57



sensor units on lower limbs (e.g., feet) in a manner 
that is acceptable for clinical gait analysis remains a 
challenge. 

We have previously developed and validated a 
signal processing algorithm to automatically extract 
gait events in healthy walking – labelled as heel 
strike (HS), toe strike (TS), heel-off (HO), and toe-
off (TO) – from acceleration signals measured by 
four accelerometer units attached to heels and toes 
(Boutaayamou et al., 2015a). The algorithm 
exploited distinctive and remarkable features in 
these acceleration signals to identify and extract gait 
events with good accuracy and precision. 

In this paper, we present a new signal processing 
algorithm that extracts the same gait events from 
only two accelerometers, i.e., one on each shoe, at 
the level of the heel. Our approach to the 
aforementioned problem consists therefore in 
reducing the number of accelerometer units by 
eliminating the two units on the toes. We also extend 
the previous algorithm to detect a new gait event, 
i.e., the time of heel clearance (HC) which is an 
important gait event that can refine the swing phase. 
In addition, we consider the validation on a stride-
by-stride basis of the proposed algorithm on a group 
of healthy people during normal walking. In this 
validation, we compare the results (i.e., measured 
gait events and calculated temporal gait parameters 
of interest) to reference data provided by a kinematic 
3D system (used as gold standard) and a video 
camera. 

2 METHOD 

2.1 Wearable Accelerometer System 

Acceleration signals during walking were recorded 
by a wearable, wireless accelerometer-based 
hardware system which includes several small three-
axis accelerometer units (2 cm x 1 cm x 0.5 cm), a 
transmitter module, and a receiver module 
(Stamatakis et al., 2011; Boutaayamou et al., 2015a) 
(Figure 1). This system can measure accelerations 
up to ±12 g (where g = 9.81 m/s² is value of the 
gravitational acceleration) along its three sensitive 
axes: x (horizontal), y (transverse), and z (vertical). 
In this study, two accelerometer units were tightly 
attached on the right and left feet, i.e., one on each 
shoe at the level of the heel. The right and left 
accelerometers were synchronized. Accelerometers 
were connected to the transmitter module positioned 
on the waist. The wires between accelerometers and 
 

(a) (b) 

Figure 1: (a) The wearable accelerometer-based hardware 
system. (b) Schematic illustration of the placement of a 
wearable accelerometer (either for right or left foot) and 
the direction of axes. 

the transmitter module were tightly strapped around 
the legs so as to avoid disturbing the subject 
movements. Acceleration signals were recorded at 
200 Hz. All data were analyzed using Matlab 7.6.0 
(MathWorks, Natick, MA, USA). 

2.2 Subjects and Gait Tests Procedure 

Gait signals were recorded during walking tests 
performed by seven young and healthy subjects 
without any previous injury of the lower limbs 
((mean ± standard deviation) age = 27 ± 2.6 years; 
height = 181 ± 7 cm; weight = 78 ± 9 kg). All of 
them provided informed consent. The gait tests 
procedure of this study is similar to the one reported 
in (Boutaayamou et al., 2015a). Before we started 
the measurements, subjects took sufficient time to 
get used to the instrumentation tools and the 
experimental procedure. During the tests, they were 
asked to walk on a 12–m long track, at their 
preferred, self-selected, usual speed. Each subject 
performed several gait tests of 60 s. Subjects wore 
their own regular shoes. All of the walking tests 
were performed at the Laboratory of Human Motion 
Analysis of the University of Liège, Belgium. 

2.3 Wavelet Analysis: Segmentation of 
Acceleration Signals 

In the present study, we use a segmentation method 
that we have previously developed (Boutaayamou et 
al., 2015b) to identify gait patterns from only heel 
acceleration signals, thereby reducing the number of 
wearable accelerometers and allowing for a robust 
extraction of the gait events/parameters (see Sec. 
2.4). This segmentation method is based on the 
continuous wavelet transform (CWT) to isolate (1) 
time intervals where the heel acceleration is close to 
zero, from (2) time intervals the accelerometers are 
moving. The wavelet coefficient C(a,b) of the  CWT 
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Figure 2: Rough estimation of heel flat/non-flat phases 
using the gait segmentation based on the continuous 
wavelet transform. 

of a signal s(t) is defined as ܥ(ܽ, ܾ) = 1ඥ|ܽ|න ାஶ∗߰	(ݐ)ݏ
ିஶ ൬ݐ − ܾܽ ൰݀ݐ , (1)

where a (≠0) and b (∈ℝ) are the scale and location 
parameters, respectively, ߰∗ is the complex 
conjugate of the mother wavelet function ߰, and t is 
the time. Compressing a (small values of a) tracks 
high frequencies changes whereas stretching a (large 
values of a) tracks low frequencies. C(a,b) thus 
measures the similarity between the signal s(t) and 
the scaled and shifted versions of ߰, with larger 
values indicating higher similarity. The wavelet 
(Mexican hat) is chosen here as the mother 
wavelet ߰. 

The detailed description of the developed 
segmentation method is not the focus of this study. 
Rather, we consider the results of its application to 
the vertical acceleration signal measured at the level 
of the heel. We therefore obtain a “heel binary 
function” that roughly estimate heel flat phases 
(motionless periods) and heel non-flat phases. A 
typical result of the binary function is shown in 
Figure 2 (dashed lines). The segmentation method 
has the advantage that it avoids to look directly for 
specific gait events. The segmentation only 
determine rough heel flat/non-flat phases in which 
gait events of interest can be further extracted with 
good accuracy. 

2.4 New Signal Processing Algorithm 

In order to estimate precisely gait parameters such as 
the durations of the stance, swing, and stride phases 
during a gait cycle (i.e., the duration of a stride), it is 
necessary to detect, for each foot, the precise 
moments of gait events of interest during the same 
gait cycle. These gait events are characterized by 
distinctive and remarkable features on heel 

acceleration signals. Depending on the nature of 
these features, a suitable method is employed in the 
present study to accurately extract gait events. For 
clarity, we consider only one foot. It is obvious that 
the algorithm could be applied in the same way for 
both feet. 

Times of occurrence of HSaccel, TSaccel, HOaccel, 
TOaccel, and HCaccel are identified mainly from the 
acceleration signals in sagittal plane, i.e., with 
respect to the x-axis and z-axis accelerations denoted 
by zሷ௛ and xሷ ௛, respectively. The subscripts accel, ref, 
and h refer to our method, to the reference methods, 
and to the heel, respectively.  

2.4.1 Gait Events Identification 

We now describe the main steps of the detection 
following the chronological occurrence order of 
healthy gait events (i.e., not the order that the 
algorithm follows to extract these events). 

a) The time of the heel strike event: HSaccel 
In the present study, we adapt the method 

described in (Boutaayamou et al., 2015a) to detect 
HSaccel as follows: 
• At HSaccel, the heel acceleration signal ݖሷ௛ is subject 

to abrupt changes (Figure 3a). To detect HSaccel, 
we only consider the segment defined as the 
second half of the heel non-flat phase. In this 
segment, HSaccel is identified using the magnitude 
of zሷ௛ filtered with a 4th-order zero-lag Butterworth 
high-pass filter (cutoff frequency=10 Hz). HSaccel 
is detected as the time of occurrence of the 
maximum value of the magnitude of this filtered ݖሷ௛ (Figure 3a). As pointed out in (Boutaayamou et 
al., 2015a), the determination of HSaccel is robust 
with respect to this filtering step, since HSaccel 
occurs rapidly with a frequency larger than 10 Hz. 

b) The time of the toe strike event: TSaccel 
TSaccel can be extracted from the heel 

acceleration signal as the accelerometer is sensitive 
enough to measure the acceleration movement of the 
foot when the toe hits the ground. The main steps to 
estimate TSaccel are as follows: 
• As TSaccel occurs after HSaccel and before HOaccel, 

we seek TSaccel in the segment [HSaccel, 0.4*HSaccel 
+0.6* HOaccel] (the procedure for extracting HOaccel 
is explained in c)). TSaccel is automatically detected 
using xሷ ௛ and zሷ௛ restricted to this segment. The 
resulting local signals are then filtered with a 4th- 
order zero-lag Butterworth low-pass filter (cutoff 
frequency = 20 Hz), and integrated twice in order 
to calculate their associated position signals. The 
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Extraction of Temporal Gait Parameters using a Reduced Number of Wearable Accelerometers

59



drift related to this double integration is limited 
since the latter is performed in a small time 
interval. We then apply a piecewise-linear fitting 
method to each of these position signals. This 
method estimates a location of convex curvature in 
a signal using two linear segment that best fit this 
signal in the least-square sense (Appendix) 
(Boutaayamou et al., 2015a). The times of 
resulting convex curvatures in the two position 
signals are denoted t1 and t2. It is then assumed that 
TSaccel is estimated as the mean of t1 and t2 
(Figure 3b). 

c) The time of the heel-off event: HOaccel 
HOaccel is automatically detected in the segment 

that lies between 125 ms after HSaccel and 70 ms 
before TOaccel (the extraction method of TOaccel is 
described in d)). We adapt the method presented in 
(Boutaayamou et al., 2015a) to detect HOaccel from zሷ௛ as follows: 
• We consider the local signal obtained from the 

restriction of zሷ௛ to the previous segment. This 
local signal is then filtered with a 4th-order zero-
lag Butterworth low-pass filter (cutoff 
frequency = 20 Hz). This filtering step does not 
alter the physical significance of the local signal 
(Boutaayamou et al., 2015a). Since this signal 
corresponds to a slow movement (some 
milliseconds before and after HOaccel), there is no 
critical peak to be detected that could be removed 
erroneously in this filtering step (Boutaayamou et 
al., 2015a). A double integration of this local 
acceleration signal is then performed to calculate 
the corresponding position signal. The drift that 
could be generated from this double integration is 
negligible since the latter is carried out in a small 
time interval. We apply the aforementioned 
piecewise-linear fitting method twice to the 
resulting local position signal in order to estimate 
successive locations of convex curvature in this 
local position signal. The time of the last location 
of convex curvature is our estimate of HOaccel 
(Figure 3c). 

d) The time of the toe-off event: TOaccel 
• At TOaccel, the direction of motion of the ankle 

joint changes from plantarflexion to dorsiflexion in 
the sagittal plane (Whittle, 1996). It is assumed 
that TOaccel corresponds to the time when a zero 
crossing of the vertical heel acceleration signal 
occurs after the beginning of the non-flat 
phase (Figure 3d). 

e) The time of the heel clearance event: HCaccel 

• HCaccel is defined as the moment when the 
minimum clearance between the heel 
accelerometer and the ground is achieved during 
the swing phase. We consider distinctive vertical 
heel acceleration features that indicate where 
HCaccel can be found in the time and frequency 
domains. These features are rather sharp negative 
peaks in zሷ௛ (Figure 3e) involving some mid 
frequencies. In order to extract HCaccel, we apply 
the CWT (see Sec. 2.3) to the local signal defined 
as the restriction of zሷ௛ to the neighbourhood of 
these features. The CWT is indeed adapted for 
identifying HCaccel because it allows detection of a 
specified frequency at a specified time. The 
previous local signal is then decomposed into 
wavelet packages. The wavelet (Mexican hat) is 
used as the mother wavelet to extract HCaccel as it 
is similar to the pattern of the aforementioned 
features. A typical result is depicted in Figure 3e. 

2.4.2 Extraction of Temporal Gait 
Parameters 

Temporal gait parameters, such as durations of the 
stance, swing, and stride phases, are calculated on 
the basis of the previous gait events as follows: 

• Right stance duration (time between right HS 
(HSright) and right TO (TOright) during stride i) 

Right stance = TOright ( i ) – HSright ( i ) . 

• Left stance duration (time between left HS (HSleft) 
and left TO (TOleft) during stride i) 

Left stance = TOleft ( i ) – HSleft ( i ) . 

• Right swing duration (time between HSright of 
stride i+1 and TOright of stride i) 

Right swing = HSright ( i+1 ) – TOright ( i ) . 

• Left swing duration (time between HSleft of 
stride i+1 and TOleft of stride i) 

Left swing = HSleft ( i+1 ) – TOleft ( i ) . 

• Right stride duration (time between two 
consecutive right HSs) 

Right stride = HSright ( i+1 ) – HSright ( i ) . 

• Left stride duration (time between two consecutive 
left HSs) 

Left stride = HSleft ( i+1 ) – HSleft ( i ) . 
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(a)                                                                                                (b) 

  
(c)                                                                                                 (d) 

 
(e) 

Figure 3: Vertical heel acceleration signal (i.e., zሷ௛ measured by our accelerometer system) and reference kinematic signals 
(i.e., the vertical heel position z௛ and the vertical toe position z௧ measured by the Codamotion system). The gait events, i.e., 
(a) HS, (b) TS, (c) HO, (d) TO, and (e) HC, detected by our method and by reference methods are shown on each signal 
during typical consecutive strides. 

2.5 Stride-by-stride Validation Method 

2.5.1 Reference Data 

A kinematic 3D analysis system (Codamotion 
system; Charnwood Dynamics; Rothley, UK) and a 
video camera provided reference data to validate, on 
a stride-by-stride basis, the gait parameters/events 
determined by our method. 

The kinematic system is based on active optical 

technology; it can accurately measure the 3D 
positions of active markers placed in the body 
locations of interest. We collected kinematic data at 
the level of the heel and the toe of each foot at 
400 Hz. The heel marker was placed upon the heel 
accelerometer. The video camera (30 fps) was 
placed close to the track such that the pointing 
direction is approximately perpendicular to the 
sagittal plan. 

Kinematic data were used to validate, on a stride-
by-stride basis, the gait events HSaccel, TSaccel, 
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ż̇h
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Table 1: The results of our method are compared to the results of reference methods considering several consecutive strides. 
This evaluation is given as the accuracy (mean of the differences), the precision (std. dev. of the differences), limits of 
agreement, 95% confidence interval (CI) of the differences, and 95% CI of the lower and upper limits of agreement. 

 Accuracy (ms) 
(precision (ms))

Limits of  
agreements (ms) 

95% CI of the 
differences (ms) 

95% CI of the 
lower limits (ms)

95% CI of the 
upper limits (ms) 

No. of 
events

HS 			7.2	(22.1) ሾ−36.2		50.7] ሾ 5.6 8.8] ሾ−38.9 − 33.5] ሾ47.9			53.4] 771 

TS 			0.7(19.0) ሾ−36.6			38.0] ሾ−0.9 2.3] ሾ−39.3 − 33.9] ሾ35.3			40.7] 567 

HO −3.4	(27.4) ሾ−57.2		50.3] ሾ−8.2 1.3] ሾ−66.5 − 49.9] ሾ43.1			59.7] 126 

TO 			2.2	(15.7) ሾ−28.6			33.0] ሾ 1.1 3.3] ሾ−30.5 − 26.8] ሾ31.2		34.9] 819 

HC 			3.2	(17.9) ሾ	−31.9			38.3] ሾ 1.9 4.4] ሾ−34.7 − 30.5] ሾ36.9			41.1] 839 
 

TOaccel, and HCaccel. Reference gait events HSref and 
TOref, were obtained by the kinematic method 
reported in (Boutaayamou et al., 2014). HSref and 
TOref were extracted solely from measured heel and 
toe coordinates during overground walking (Figures 
3a and 3d). TSref was extracted from the vertical toe 
position signal (Boutaayamou et al., 2015a) in each 
gait cycle (Figure 3b). HCref was detected as the time 
of the local maximum of heel clearance (Figure 3e). 
The video camera provided HOref. 

2.5.2 Evaluation Method 

We evaluated the level of agreement between our 
method and the reference methods by quantifying 
the accuracy, precision, absolute error, and intraclass 
correlation coefficient (ICC). Accuracy and 
precision were computed as the mean and standard 
deviation (std. dev.), respectively, of the differences 
between the gait events for each stride, i.e., 
HSaccel – HSref, TSaccel – TSref, HOaccel – HOref, 
TOaccel – TOref, and HCaccel – HCref. The absolute 
error was calculated as the mean and std. dev. of 
absolute values of the previous differences. The ICC 
evaluates the statistical agreement between our 
method and the reference methods. A Bland-Altman 
analysis was also carried out. 

3 RESULTS 

Table 1 provides a quantitative one-by-one 
comparison of gait events. Because of the limited 
number of extracted reference events and the 
variation of some reference patterns among subjects, 
the sample size for the compared gait events was not 
always the same but ranged between 126 and 839 
events. During some gait tests, we observed that 
some markers – used to record reference kinematic 
signals – detached from the shoes. We therefore 
excluded the associated gait events from the 

analysis. In addition, we emphasize that HOref was 
obtained only by the video camera. The extraction of 
HOref is thus limited to one stride during a given gait 
test. The total number of HOref (here 126) is 
therefore much smaller than that of HSref, TSref, 
TOref, and HCref. The four latter reference data were 
indeed extracted from consecutive strides. 

The accuracy and precision of gait events 
detection ranged from −3.4 ms to 7.2 ms, and 
15.7 ms to 27.4 ms, respectively. Given the 
sampling frequency of 200 Hz of the recorded heel 
accelerations for both feet, the accuracy and the 
precision of detection are less than durations of 2 
frames (10 ms) and 6 frames (30 ms), respectively. 

Figure 4 shows the Bland-Altman plots of gait 
events differences. We observe small systematic 
biases in accordance with the accuracy of detection 
provided in Table 1. The proposed method tends to 
detect earlier gait events except for HO. In addition, 
the limits of agreement (i.e., mean ± 1.96 std. dev.) 
and their associated 95% confidence interval exhibit 
small variations in the times of gait events (Table 1). 

Table 2 shows the results of durations of stance, 
swing, and stride phases calculated by our method 
and by the reference method (i.e., provided by the 
Codamotion system) for the right and left feet. These 
temporal parameters could be estimated with a mean 
absolute error less than 15 ms. The ICC coefficient 
was larger than 0.95 for both stance time and stride 
time, and larger than 0.87 for swing time. 

Figure 5 shows the Bland-Altman plots of the 
temporal parameters for the right and left feet. Most 
differences of these temporal parameters are within 
the 1.96 std. dev. lines. 

4 DISCUSSION 

We have presented a new signal processing 
algorithm that extracts relevant temporal gait 
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                                              (a)                                                                                                (b) 

  
                                              (c)                                                                                                (d) 

 
(e) 

Figure 4: Bland−Altman plots of the gait events, i.e., (a) HS, (b) TS, (c) HO, (d) TO, and (e) HC, measured using our 
method and reference methods, with mean (dash-dotted line in the middle) of differences HSaccel – HSref, TSaccel – TSref, 
HOaccel – HOref, TOaccel – TOref, and HCaccel – HCref. 95% of these differences are between the lines ± 1.96 std. dev. (dashed 
lines). (o) and (+) refer to gait events measured at the right foot and those measured at the left foot, respectively. 

parameters/events from only two accelerometers 
attached to the right and left feet, i.e., one on each 
shoe at the level of the heel. 

The new algorithm is versatile enough to detect 
gait events. The algorithm is based on the CWT and 
an original piecewise-linear fitting method. Those 
methods allow for an automatic and robust 
extraction of gait events from relevant local 
acceleration signals. The algorithm was validated by 

comparing results obtained by our method to those 
obtained by a kinematic 3D system (used as gold 
standard) and a video camera. The experimental 
results show a good agreement between our 
algorithm and the reference, and demonstrate an 
accurate and precise detection of HS, TS, HO, TO, 
and HC in a group of healthy people during normal 
walking. In addition, the algorithm computes the 
time of stance, swing, and stride phases with a  good
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Table 2: Results of right/left stance, swing, and stride phase durations calculated by our method are compared to those 
obtained by a reference kinematic system, Codamotion, used as gold standard. This comparison is given as the difference of 
the estimated values (mean error), the mean of the absolute error (abs. error), and the intraclass correlation 
coefficient (ICC). 

Gait  
parameters 

Foot Accelerometers Codamotion Mean error Abs. error ICC No. of 
strides

Stance time (s) 

Right 0.670	 േ 0.047 0.674 േ 0.055 −0.004 േ 0.016 0.012 േ 0.011 0.95 188 

Left 0.656	 േ 0.052 0.662 േ 0.055 −0.006 േ 0.015 0.012 േ 0.010 0.95 220 
Right 

and left 0.662	 േ 0.050 0.668 േ 0.055 −0.006 േ 0.015 0.012 േ 0.010 0.95 408 

Swing time (s) 

Right 0.404	 േ 0.042 0.399 േ 0.035 0.005 േ 0.018 0.014 േ 0.012 0.89 336 

Left 0.418	 േ 0.038 0.413 േ 0.035 0.005 േ 0.018 0.014 േ 0.011 0.87 383 
Right 

and left 0.412	 േ 0.041 0.407 േ 0.035 −0.005 േ 0.017 0.014 േ 0.011 0.88 719 

Stride time (s) 

Right 1.080	 േ 0.092 1.083 േ 0.092 −0.003 േ 0.016 0.012 േ 0.011 0.98 181 

Left 1.081	 േ 0.090 1.089 േ 0.098 −0.008 േ 0.018 0.015 േ 0.013 0.98 227 
Right 

and left 1.080	 േ 0.090 1.087 േ 0.095 −0.006 േ 0.017 0.013 േ 0.012 0.98 408 

 

  
(a)                                                                                             (b) 

 
(c) 

Figure 5: Bland−Altman plots of the temporal gait parameters, i.e., (a) stance time, (b) swing time, and (c) stride time 
estimated during consecutive strides by our method and the gold standard method. (o) and (+) refer to right and left gait 
parameters, respectively. 
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(i.e., −6 ms ± 17 ms) compared to (Rampp et al., 
2015) (i.e., 2 ms ± 68 ms) and to (Salarian et al., 
2004) (i.e., 2.2 ms ± 23.2 ms). In addition, the 
accuracy of swing time in (Rampp et al., 2015) (i.e., 
−8 ms ± 45 ms) is similar to our results but the 
precision is improved in our method (i.e., 
−5 ms ±17 ms). Compared to commercial trunk 
accelerometer systems (e.g., (Auvinet et al., 1999)), 
which only provide global gait features, our system 
is capable to extract stride-by-stride parameters. The 
stride-by-stride extraction may be a huge advantage 
in the gait analysis of some specific population such 
as Parkinson’s disease patients who experience 
freezing of gait, a sudden and brief episodic 
alteration of strides regulation. 

Participants did not complain about the hardware 
system during the gait tests. They all reported that 
wires and accelerometers did not interfere with their 
gait. Since only two accelerometers were attached to 
heels and wires were behind the legs of the 
participants during walking, these participants did 
not notice or complain about the system. 

It is noteworthy that all accelerometers of the 
used hardware system were synchronized. The 
algorithm can thus extract other important gait 
parameters such as the times of initial double 
support, terminal double support, double support, 
and right/left steps. 

Based on TS and HO, the algorithm can extract 
the durations of the sub-phases of the stance phase, 
namely: (1) loading response duration (time from 
HS of one foot to TS of the same foot); (2) foot-flat 
duration (time from TS of one foot to HO of the 
same foot); and (3) push-off duration (time from HO 
of one foot to TO of the same foot). In addition, HC 
can be used to refine the swing phase duration. 

The proposed ambulatory accelerometer system 
was capable of measuring temporal gait parameters 
in a very large number of strides without the need of 
controlled laboratory conditions. We believe that our 
novel accelerometer-based system offers 
perspectives for use in a routine clinical practice to 
deal with abnormal gait (e.g., gait of patients with 
Parkinson’s disease). 

5 CONCLUSIONS 

We presented a new signal processing algorithm that 
reduces the number of wearable accelerometers for 
estimating temporal gait parameters. The advantages 
of this method can be summarized as follows: 
• Only two accelerometers are required, i.e., one for 

each shoe at the level of the heel. This contributes 

to a simplification of our wearable accelerometer-
based system, thus resulting in reducing the costs 
and time needed to attach the system on body. 

• This algorithm is validated for consecutive strides 
during normal walking. The validation used 
reference data provided by a kinematic system 
(used as gold standard) and a video camera. 

• Compared to previous studies, the proposed 
method performs equally well or better in terms of 
accuracy and precision of detection of temporal 
gait parameters such as times of swing, stance, and 
stride phases. 

The extension of this method to the study of 
pathological gait (e.g., gait of patients with 
Parkinson’s disease) is now in progress. The method 
promises to allow an objective quantification of gait 
parameters in routine clinical practice. 
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APPENDIX 

We present the piecewise-linear fitting method used 
to estimate the locations of the convex curvature in a 

signal (Sec. 2.4.1). For this, we consider a given 
signal ݃݅ݏ = ,(ଵݐ)݃݅ݏ ,(ଶݐ)݃݅ݏ … ,  defined (ேݐ)݃݅ݏ
in a time interval	ܫ = ,ଵݐ ,ଶݐ … ,  ே, where ܰ is theݐ
total number of samples of ݃݅ݏ. This method first 
computes the coefficients of piecewise-linear 
functions with two linear segments that best fit ݃݅ݏ 
in the least-square sense, leading to the computation 
of least-square errors. The minimum of these least-
square errors is then determined and the associated 
piecewise-linear function provides two linear 
segments that intersect at the breakpoint (ݐ௕,  The main steps to determine the .((௕ݐ)݃݅ݏ
breakpoint (ݐ௕,  :are as follows ((௕ݐ)݃݅ݏ

• For each ݇ = 1,… ,ܰ, one computes the 
coefficients ߙଵ, ,ଶߙ ,ଵߚ and	ߚଶ of a piecewise-linear 
function ݌௞	that best fits ݃݅ݏ by minimizing ܧ௞ =෍(݃݅ݏ(ݐ௜)ே

௜ୀଵ − 	,²((௜ݐ)௞݌ (2)

where ݌௞(ݐ) = ൜ߙଵ ∗ ݐ + ,ଵߚ ݐ ∈ ሾݐଵ, ଶߙ,[௞ݐ ∗ ݐ + ,ଶߚ ݐ ∈ ,௞ݐ[ 	.[ேݐ (3)

This error can be expressed as ܧ௞ = ܣ‖ ܺ௞ − 	,ଶ‖ܤ (4)

where ܺ௞ = ቀߙଵߚଵቁ , ܣ = ൭ݐଵ		⋮		ݐ௞		 1⋮1൱,	 ܤ = ൭݃݅ݏ(ݐଵ)⋮݃݅ݏ(ݐ௞)൱ if	ݐ ∈ ሾݐଵ,  ,[௞ݐ
and ܺ௞ = ቀߙଶߚଶቁ , ܣ = ൭ݐ௞ାଵ		⋮		ݐே		 1⋮1൱,	 ܤ = ൭݃݅ݏ(ݐ௞ାଵ)⋮݃݅ݏ(ݐே) ൱ 	if	ݐ ∈ ,௞ݐ[ 	.[ேݐ
The normal equations associated with (4) are ܣ௧ܺܣ௞ = 	.ܤ௧ܣ (5)

Solving (5) leads to the coefficients ߙଵ, ,ଶߙ ,ଵߚ and	ߚଶ. 
• Finally, one obtains the breakpoint (ݐ௕,  by determining the minimum of the	((௕ݐ)݃݅ݏ

least-square errors, i.e., ܧ௕ = ݉݅݊௞ୀଵ,… ,ே(ܧ௞).	 (6)
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