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Abstract: While many advances towards effective anomaly detection techniques targeting specific applications have been

made in recent years, little work has been done to develop application-agnostic approaches to the subject. In
this article, we present such an approach, in which anomaly detection methods are treated as formal, structured
objects. We consider a general class of methods, with an emphasis on methods that utilize structural properties
of the data they operate on. For this class of methods, we develop a decompositsubimethods-simple,

restricted objects, which may be reasoned about independently and combined to form methods. As we show,
this formalism enables the construction of software that facilitates formulating, implementing, evaluating, as

well as algorithmically finding and calibrating anomaly detection methods.

1 INTRODUCTION The aim of this article is to present a particular
such approach—where methods are treated as formal
objects, which map datasets golutions(i.e. a col-
lection of anomaly scores, or a set of ‘most anoma-
lous’ items), and which may be decomposed into
sub-methodghat may in turn be recombined into
methods—and to demonstrate the utility of this ap-

Anomaly detection tasks are encountered in many
areas of science, technology, and business, and au
tomated anomaly detection methods are indispens-
able in many applications, such as intrusion detec-
tion and fraud detection (Lazarevic et al., 2003; Phua ; ) .
et al., 2010). As manual analysis of the ever growing Proach in reaching the goals outlined above.

datasets encountered in many application domains be- we targﬁtg g(;nera_ll_class Gl methodsf—;/]vitz a fo-
comes increasingly difficult, the need for such meth- €4S 0 methods that utilize the structure of the dataset

ods can be expected to grow, to find contextualor collectiveanomalies—for which
For this need to be effectively met, approaches we develop a formalism for decomposing methods

that enable researchers and organizations to effec-
tively develop and implement appropriate methods
are required.

While there are excellent tools available for cer-
tain applications (Twitter, 2015; Etsy, 2015), there is
a notable lack of application-agnostic tools and ap-
proaches.

Considering the disparate nature of data encoun-
tered in applications, and the often subjective notion
of what constitutes an anomaly, it seems unlikely that
specific methods that work well across a majority of
applications can be found. A more viable approach
might be to instead focus on developing application-
agnostic tools that facilitate formulating, implement-
ing, evaluating, or calibrating methods.

We believe that taking a formal, high-level ap-
proach to the subject—where the focus is on what can
be said about anomaly detection methodgenera) 2 RELATED WORK
rather than in the context of any specific application
or task—is a vital step towards this goal. Throughout the years, many anomaly detection

into a collection of such sub-methods, amenable to
being shared between applications involving similar
types of data.

This enables an approach to developing methods
where the principal consideration is the collection of
applicable sub-methods (as constrained by the tar-
geted task). These sub-methods may then be com-
bined to form methods (either manually or algorith-
mically) until one that accurately solves the task at
hand is found.

To demonstrate the utility of this approach, we ap-
ply it to a number of tasks involving sequences, as
well as to finding and calibrating methods for such
tasks (given a collection of sub-methods and labeled
testing data).
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methods and applications has been studied. Plenty ofto better detect anomalies.

surveys and books which discuss these in detail have

Chandola et al. discuss two other categories of

been published (Hodge and Austin, 2004; Agyemang anomalies:contextual anomalies-elements anoma-

et al., 2006; Chandola et al., 2009; Fu, 2011).
To our knowledge, the formal, method-centric ap-
proach we take to anomaly detection is unique. How-

lous compared to aontext(some subset of the data;
typically ‘nearby’ elements)—andollective anoma-
lies—collections of elements anomalous compared to

ever, there have been a few attempts to provide a gen-the rest of the data. These can both be seen as gener-

eral treatment of anomaly detection in relation to spe-
cific applications. For instance, in (Chandola, 2009),
a high-level, formal discussion of common anomaly

alizations of the concept of point anomalies.
Our formalism targets a fourth such category:
collective contextual anomaliescollections of ele-

detection problems for sequences is presented. Wements anomalous compared to a context—which nat-

build on this approach, taking it further and general-
izing it to other types of tasks and data.

urally generalizes the other three
An fillustration of these four anomaly types is

Our discussion of anomaly detection in sequences shown in Figure 1.

shows how diverse applications and methods related

to sequences can be reconciled (Chandolaet al., 2012;

Chandola, 2009; Fu, 2011) and treated coherently.
We discuss a few specific tasks, including the de-

tection ofpoint anomaliegindividual anomalous ele-

ments, also referred to asitliers) (Fox, 1972; Abra-

ham and Chuang, 1989; Abraham and Box, 1979;

Galeano et al.,, 2006; Tsay et al., 200@pvelties
(previously unseen elements) (Markou and Singh,
2003a; Markou and Singh, 2003b; Ma and Perkins,

2003), elements anomalous with regard to nearby el-

ements (Basu and Meckesheimer, 2007) andma-
lous subsequencékeogh et al., 2005; Keogh et al.,
2007; Fu et al., 2006).

3 GENERALITY

When attempting to provide a formal basis for a con-
cept as broad aanomaly detection methodsis vital

AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

AVAVAVAVAVAVAY
AAVAVAVAVAVAVAVAVARRA VAVAVAVAVAVAVAVAY
AAAYRdVAVAY

Figure 1: Examples of point anomaly(top), acontextual
anomaly(above center), aollective anomalybelow cen-
ter), and acollective contextual anomalipottom) in uni-
variate real-valued sequences. Anomalies are shown in ligh
red; appropriate contexts in black.

Third, Chandola et al. classify methods as un-
supervised, semi-supervised, or supervised based on
whether they incorporate zero, one, or two classes of
labeled training data. We formalize methods as maps
from datasets to solutions; an approach naturally
suited to expressing unsupervised methods. However,

that care is taken to ensure that the breadth of the con-semi-supervised and supervised methods may also be

cept is captured by the resulting formalism.
In a widely cited survey of the subject, Chandola

expressed by replacing the input dataset with the dis-
joint union of the evaluation data and one or two sets

etal. (Chandola et al., 2009) discuss a few key aspectsOf training data.

of anomaly detection tasks: the nature of the data and
the types of anomalies involved, the expected solution

format, and the type of supervision employed. Our
aim is to provide a formalism which captures or gen-
eralizes these three aspects.

First, we formulate our formalism in a data- and
solution-agnostic manner, so its applicability is inde-
pendent of the nature of data and solutions.

Second, we target a general type of anomalies.

Most methods are focused on detectpgint anoma-

lies—individual elements anomalous compared to the
rest of the rest of the data. Such methods are appropri-

ate for unstructured data (i.e. data in which individual

elements are not related). However, the datasets en-

4 SUB-METHODS

Formally, an anomaly detection method may be
treated as a mapping: D — S, that associates with
each potential input datasdte D a solutions € S,
where:

e D is an application-dependent set of well-formed
datasets (e.g. all real-valued sequences, or all po-
tential sets of users of a social network). We will

1Contextual and point anomalies correspond to single-

countered in applications (e.g. sequences, graphs, an@lement collections; for collective and point anomaliés, t
spatial data) often have structure that can be exploitedcontext is the entire dataset.
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Figure 2: A dataset (center right) b = ?(C x B) = P(N? x R), constructed by linearly combining periodic data (far)left
and data containing an anomaly (center left). We use thenpatin the far right to indicate contextual data.

assume that any dataskis a set of items in some anomaly (a subset of the dataset, disjoint with the
application-specific seX, s& D C P(X). candidate anomaly; i.&x, Yy C x: B(x,y) C x\Y).

e Sis a corresponding application-dependent set :_:ormethod_s targeting pointand collective anoma-
of potential solutions (e.g. all sequences of real-  1€S:B(Xy) =X\y.
valued anomaly scores, or all potential sets of e The comparison of candidate anomalies and con-
anomalous clusters of users in a social network). texts may be encoded as a function
For any given application, the sgt= D — Scor- y:DxD—A,

responds to all potential methods.

When designing a method targeting point anoma- ~ Which assigns a dissimilarity scoeec A (where
lies, there are two aspects to consider: waramaly A is some method-specific set) to any candidate
measureshould be used to compare each item to the ~ anomaly-context pair.
rest of the data, and how the results of these compar- ¢ The aggregation of anomaly scores may be en-

isons should be aggregated to form a solution. coded as a function
Targeting collective anomalies means an addi-
tional aspect must be considered: how the setof 3:P(DxA)—S

didate anomalieshould be selected.

When targeting contextual anomalies, one must
instead consider how a context should be associated )
with each candidate anomaly. Any tuple (a,B,y,) (for givenS, D, andA) may

Since our formalism targets collective contextual °€ combinefito form anme M. Conversely, anyne
anomalies, it must capture all four of these aspects. M may be defined as a tuplen= (D,S A, a,B,Y,).

which maps any collection of candidate anomaly-
dissimilarity score pairs to a solution.

This may be achieved by decomposing amg M For any given applicatior_1, appropriatg methc_)ds
into four sub-methodseach responsible for one as- May be designed by reasoning about which choices
pect. We will encode these as functions: of these sub-methods are applicable.

. . ) As an illustration of this approach, consider an

* The selection of candidate anomalies may be en- gngjication involving grids of real-valued data con-
coded as a function taining collective contextual anomalies (regions of the
a:D — 2(D), grid, anomalous with regard to their surroundings), as

illustrated in Figure 2. Assume that the desired so-

which maps any dataset to a set of candidate lution format is a grid of real-valued anomaly scores;

anomalied (subsets of that data; i.e¥x,Vy i.e. S= D. What choices of sub-methods might be

f(x) 1y C x). For methods targeting point and suitable?

contextual anomaliesy produces singleton sets; First, a should produce candidate anomalies

i.e.a(d) = {{x}|x e d}. roughly on the scale of the anomalies we wish to
e The selection of contexts may be encoded as aC@pPture. ~For instance, aa that produces non-

function overlapping square regions of size 6-by-6 may be em-

B:DxD—D, ployed:
which maps any dataset and one of its candi- o
date anomalies to the context of that candidate D> —{ & ,...}€2(D)

2We denote the power set of a 3eby P(X). -

3Here, and in the remainder of this section, we assume  “*Specifically by—for d € D—letting X = a(d),
that information about the ‘original’ position of data itsm Y = {(x,B(x,d)) | x€ X}, Z={(x,y(x,¥)) | (x,y) € Y}, and
in the dataset is implicitly preserved when the data is rear- m(d) = &(Z).
ranged or transformed. This issue is resolved in Section 5  °Note that this implies no loss of generality; any
through the requirement that the contextual data of each m: D — Smay be encoded by e.g. lettidg=S, a(d) =
item is unique. {d}, y(d,y) = m(d), andd({s}) = s.
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Secondf should produce as context some appro- By contextual attributes we mean attributes
priately sized neighborhood of the candidate anomaly, which identify and relate individual items of a dataset,
such as the union of all adjacent such square regions:such as the position in spatial data, the index in se-

guential data, or the vertex in graph data. These may
DxD> < , ) £> eD, - ) ¢
and must be uniqueBehavioral attributesare any
other attributes. These are ideally relevant only to the

be thought of as ‘tags’ for each item in a dataset,

anomaly measure.

Accordingly, we will henceforth assume thit

may be decomposed &= P (C x B), whereC and

Third, y may be selected to compute the mean g 4 (application-specific) sets of contextual and be-

value of the items in the candidate anomaly,

: , and the payioral data, respectively. In our example applica-
mean values in each 6-by-6 region of the context, and tion, these may be representeds: N2

(capturing

produce as anomaly score the mean absolute differ-y,o wvo-dimensional nature of the data) dhe- R.

ence between the former and the latter (this means

thatA = R)S:
D><D9< , )»L)

Finally, d should be selected to associate with each
element the anomaly score of the candidate anomaly
to which it belongs:

eA,

PO XA {E WD), .}~ €s

It would be an easy task to construct software that
takes implementations of, 3, y, andd and combines
them into a corresponding method implementation.
Such software might be useful in constructing, cali-
brating, or evaluating methods.

However, its utility would be limited by the fact
thata, B, y, andd are all formulated in terms dp,
and would thus have to be implemented anew for each
new application.

If the sub-methods could be defined such that
implementations could be shared between applica-
tions with similar (rather than identical) data, soft-
ware could then be coupled with a library of imple-
mented sub-methods, drastically increasing its utility.

5 CONTEXTUAL AND
BEHAVIORAL ATTRIBUTES

To accomplish this, we may instead define our sub-
methods to operate on eitheehavioralor contextual
attributes of the data.

6We illustrate values iR as colored squares. To im-
prove the clarity of the presentation, we normalize anomaly
scores so that the most and least anomalous values of our
example are colored red and green, respectively.
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The sub-methods may then be replaced as follows:

e Behavioral data should be irrelevant when select-
ing candidate anomalies, somay be replaced by

a’:?(C) — P(P(C)),

which operates on contextual data rather than on
the full dataset.

e Similarly, B may be replaced by
p':2(C)x P(C) — P(C).

e When targeting point or contextual anomaligs,
may be replaced with a function

Y :Bx P(B) — A,

that maps behavioral attributes of the candidate
item and the context to an anomaly score.

When targeting collective or collective contextual
anomalies, however, both contextual and behav-
ioral aspects are likely to be relevant when com-
puting the anomaly measure. Thus, replacing
with sub-methods operating on eith@ror B is

not feasible.

A better approach would be to breglapart into
smaller sub-methods, isolating the relation of con-
textual and behavioural considerations to a single,
constrained sub-method.

Many anomaly measures compare one feature to
a set of similar features, and are not formulated to
operate on contextual data. For thegenay be
seen as encoding two responsibilities: extracting
features from candidate anomalies and contexts,
and comparing these to form anomaly scores.
These responsibilities may be encoded as (where
F is some method-specific set of features)

e:DxD—F xP(F), and
(:FxP(F)—=A

Note that the anomaly measués not coupled to
eitherC or B, so it is independent dd (as long as
the features it operated on can be extracted).
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In turn, € may be seen as encoding two respon- and by extension, software that can algorithmically
sibilities: breaking the context up into a set of find appropriate methods given a set of potentially
items, and extracting a single feature from each applicable sub-methods.

such item. For a given choice o€, the number of interest-

These responsibilities may be encoded separatelying sub-methods can be rather limited (as we will see

as in Section 8). Thus, implementations of a few sub-
n:2(C)— ?(?(C)) methods may be used to handle a wide range of tasks.

As an illustration of the sub-methods proposed
above, we may consider how they may be used to re-
6:D—F place thea, B, y, andd we applied to our example

) ) data. To indicate contextual data, we will use the pat-
e Behavioral data should be irrelevant when aggre- tern to the far right in Figure 2.

gating anomaly scores, samay be replaced by Our choice ofa corresponds to an analogaufs
¥ :P(P(C)xA) —S

(note the similarity tax’), and

If Sis known,d’ may in turn be replaced further.
Reasonably, ang should involve assigning labels
or scores either to individual items or to subsets
of the data, so we may assume tBat P(G x L),
where eitheiG = C or G = P(C), andL is some
set of labels.

WhenS= ?(C x L), and all candidate candidate
anomalies are singleton sets (i.e. when point or
contextual anomalies are targetéi)may be set

to Our choice ofy corresponds to aa that produces
, . as features the mean value of each 6-by-6 region (so
s({({e),a),... ) = {(c, (@), } F =R), and a that computes the mean absolute dif-
for some function : A— L. ference between the feature extracted from the candi-
Typically, eitherA = L = R, in which case may date anomaly and the features extracted from the con-
be set as the identity function, &= R andL = text:
0,1}, in which casa may be set as a threshold
f{UnC'};iOﬂ. Y D29< ) )'i)( ?{ 5 5 })EFXT(F)
Analogously, wher8= ?(?(C) x L), & may be
setto
( : S G R T
/
S({(Cra),...}) ={(Cy,1(a1)), ... }.
¢
Finally, whenS= ?(C x L) and there are non- FxPF)>( { . . D= €A
singleton candidate anomali@ may be set to Z
( ) { K R }) '—> Y
d({(Cr,a),...}) = {(cj,K(Aj)) |cje UCi}, In turn, thise corresponds to an that extracts

) _ disjoint such square regions, and®ahat computes
whereAj = {ac | ¢; € G}, i.e. for each dataitem,  the mean value of its inputs:
the anomaly scores for all candidate anomalies

to which it belongs are aggregated through some
functionk : P(A) — L.

The above sub-methods allow for decompos-
ing methods to various degrees; i.e. a method
may be specified as(D,SAd,p,y,d), or

(D,SF,Aa’,f,n,6,(,&), et cetera. Crucially, D>
it is an easy task to write software that constructs a
corresponding method for any such combinatjon

N eF, — ...
Our & may be replaced with an analogatis

’In the interest of saving space, we elide a precise for- P(P(C)x A) 3 {(:
mulation of how the sub-methods would be composed. :

Yyoo f— €S
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Finally, since the solution format 8= P(C x L) and anoutput transform
forL=A=R, and we are dealing with collective con- Y
T - . to € T v =P(GxL)— PG xL
textual anomalies, we may utilize The candidate o€ leLeL (GxL) (G'xL),
anomalies are disjoint, soshould produce the single  for someG', L, and produces a method
elements of the sets it receives: m € P(C' xB) — P(G x ).

PA{}=eL, (=M. .. Many methods found in the literature involve a
pre-analysis transformation of the data into some for-
mat more amenable to analysis, either through dimen-

6 PARAMETRIC SUB-METHODS sionality reduction (Ding et al., 2008) or a change of
data representation (i.e. Gfor B) (Lin et al., 2007).
Assuming thaD = 2(C x B) andS= 2(G x L), the Such methods may be accommodated through the use

construction of ane M = D — Sfrom e.g. somer’, of T together with appropriate andto.

B',y, andd may be seen as the application of a func- For instance, di_mensionality reducing transforma-
tions may be applied to our example method to ob-

tion
tain equivalent methods that operate on a lower di-
f(a',B,Y,8): Ac xBexTopaxBoacL = M, mensionality:

whereAi = P(C) — P(P(C)), et cetera. m

Likewise, the construction of e.g.yafrom some —
€ and{ may be seen as the application of a function

0(.0) 1 Ecnr x Zea— Tepa t.] Tto

Taking this approach one step further, we may
consider parametric sub-methodsfunctions that " ’
take some tuple of parameters and produce a sub-
method. ] Tts

For instance, our choice of ari that produces re-
gions of size 6-by-6 may be seen as a special case of
a parametric sub-method "

Oret(W 1) : N x N — (P(N?) = P(P(N?))) = A,

Here tj,t/,to,t; € Ty2 g 52 @and
that produces regions of width and height. ' L
As we will see in Sections 8 and 9, parametric sub- m=T(t, M, to) = T(ti, T(t/, M, to), to).
methods naturally arise in applications, and are very  Another interesting higher order method, which
helpful when formulating methods as well as when may be used to combine methods into ensembles, is

heuristically searching for appropriate methods. M:P(McpegL)xUgL — Mcpc,L, given by
H(m,u)(d) = u({m(d) | m € m}),
7 HIGHER ORDER METHODS whereu € Ug| = P(P(Gx L)) —» P(GxL)issome

function that combines solutions.

Crucially, t;, to andu may be used analogously to
sub-methods to construct methods, either manually or
algorithmically.

Similarly, we may considehigher order methods
which map methods to methods.
For instance, consider the function
T:TopceXMceeL X TeLe L — Mop.eL,

defined by 8 ANAPPLICATIONTO

1(tj,mt) =toomot;, SEQUENCES

which takes amnput transform Anomaly detection tasks involving sequerttese

ti€c Topcp=P(C xB)— P(CxB), commonly encountered in applications, and have
for someC’, B/, a method 8We here consider onlgegular sequences, as opposed
to irregular time series, for whidB = R, and which may be
me McpgL =P(CxB)— P(GxL), considered a type of one-dimensional spatial data.
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been extensively studied. For sequences, we may let"-"\ M. AN\ J A NN
C=N. " S o NN A

We will now illustrate how our approach may be ™ A _M__ A/

used to formulate methods through an application to \W
sequences. In the interest of saving space, we will M AWAW NN A WA

restrict our attention t&= P(G x L) = P(N x R)
(solutions which consist of real-valued per-element Figure 3: Left: results obtained by applying (3, doTw)

anomaly scores). to the UCR power usage dataset (Chen et al., 2014). Right:

First, consider the following real-valued sequence "esults obtained by applyingy (3, dotw) andBoyerry to
(inD = P(N x R)): a variant of the same data, where at a certain point, an ar-
’ tificial anomaly has been superimposed on subsequent se-

PN . ~ P ‘/‘-_‘ I:"‘-. ~ quences.
- \\’;‘ % /\/f \. ’,ﬁ\J' * ‘7! b \-"..'I VN s
- - W M . AN ¥ .\.." .

P N

Applying Bj,..(10) together withy,\(3,de) to

This sequence consists of a sinusoid with added the sequence gives the following result:
noise, and two abnormalities: two extrema (in its lat- ) Lo~ ~
ter half) and a trend of stray elements (beginning near /\ /™ VAVAYAYAAVAY ?
its middle). Either abnormality may be considered an N V/\’/\/\J 7 ° -.\.,_f‘.\v‘/\,
anomaly with regard to the (hypothetical) underlying ) ) ) )
application, so detecting either or both might be valu-  Capturing the entirety of this trend might not be
able. desirable; in some applicationapvelties—such as

To detect the extrema, methods targeting point the onset 'of such trends—are more interesting.
anomalies may be employed. As previously dis- Novelties can be captured througmavelty con-
cussed, when point anomalies are targeted,@rd text ,
C, it suffices to specifyy (an anomaly measure) and Broverty: P(N) x P(N) — P(N),
1 (a method of aggreg_ating anomaly scores). We will where Bﬁoveny(d»c) produces all elements id that
restrict our consideration @=L =R, and may thus  come before the elements ofwith respect to the se-
let1(x) = x. guence ordering).

A common choice of anomaly measures &re Replacind3
nearest neighbor-based measures, which for any givenng result:
candidate anomaly compute the mean distance fo its

local(10) With By ey gives the follow-

. AW A
.-,\' ™ e ;NS N f\. . >
nearest elements (for some distance mead)JréNc_a \ J/\/’\,,"/\J UAAAAVAY A A
may capture such measures through a parametric sub S G - AR A
method

It should be noted thefl,.,; andpy ey are both
Yinn(k d) N x (R xR — R) — (R x P(R) — R), special cases of a more general param@ffig,(b, a),
which produces as context th@ndaelements before
and after the candidate anomaly.

The sub-methods illustrated above may just as
well be applied to sequences of other types of ele-
ments. For instance, consider an application involv-
ing sequences of real-valued vectors of some fixed
length (i.e.D = P(N x R")), as illustrated in Fig-
A MNA 2 ',t'\\l,-‘"-\ A . ure 3. Here, point and contextual anomalies may be
(VA AVAV. kY VA AV] captured through e.gj (3, eotw), where

where Y n(k,d)(x,y) produces the mean of the
smallest values ikd(x,yi) | vi € y}.

Applying Y (3,de) (for de(xy) = [x—]) to
our sequence gives the following result (the anomaly
score is indicated through color and point size; large,
bright points indicate anomalous items):

) eDTW - R"'xR" R
As expected, it captures the extrema but not the o . .
trend of stray elements. The elements of this trend IS thedynamic time warglistance (Berndt and Clif-

are contextual anomalies with regard tioaal con-  [0rd, 1994). _ _
text which consists of all elements within some dis- Now consider the following three sequences:
tancem of a candidate anomaly (with respectto the 222428 A 8RN :

sequence ordering). This may be captured throughan ¥ ¥ ¥
appropriate3’:

Bl/ocal(m) €L~ (?(N) X ?(N) - T(N))-

~
AYAYAVAVAYE

\ AN AV AN AW A
VVV VIV Vv
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Here, the top sequence contains a collective
anomaly (at its center), the middle sequence con-
tains a (local) contextual collective anomaly (also at
its center), and the bottom sequence contains a few
change points (which may be considered contextual
collective anomalies with respect to a novelty con-
text).

For these anomalies to be detectable, the candi-

date anomalies under consideration should be subse-

quences of the original sequence. To this end, we may
employ an appropriate’, e.g.

Uin(W.S) : N x N = (P(N) = 2(2(N)))
where aj;,(w,s) selects everysth subsequence of
width w:
alin(Ws)({c1,...}) = {{c1,...,Cw},{Cirs,--- }... }.

To form an appropriate anomaly measure, we may

employ

Nwin(W;S) : N x N — (P(N) — P(P(N))),
defined identically ta/,;,, together with

Buec(n) : N — (P(N x R) — R")

defined by Byed(n)({(i,%),...}) = Xy, Xi+n-1],
and
Unn(k,d) N x (R"xR" = R) — (R"x P(R") = R)

defined analogously witlf (k. d).
Finally, sinceS= ?P(N x R), somek must be em-
ployed, e.gKmearX) = 3 X /|X|.
Applying e.g.a};,(40,5), Nwin(40,5), Byec(40),
4nn(3,epTw), andkmeanto our first sequence gives
the following result:

A;".
Vo

PV

Combining the above sub-method choices with
local(75) results in a method that captures the
anomaly in the middle sequence:

AFAY

\VAVAVAVA'
v

AVAV;
Finally, usinngovehygives a method that captures
novel change points in the last sequence:

VAW NVWWwW AMA

VVvV
While there are countless potentially interesting
anomaly measures (i.¢.or {) to apply to sequences,
the choices of other sub-methods are rather limited.
For methods that involves contiguous sub-
sequences and contexts (likely a vast majority of in-

/

approach would be to emplayi,, Basym

(when applicable).

While 6yec handles behavioral data, and is thus
technically dependent d8, its results are not affected
by the individual behavioral values, and it could be
extracted into a more portable sub-method, indepen-
dent ofC. This would likely be involved in most in-
teresting methods involving sequences.

Finally, there are only a few interesting choices of
K (e.g. it could produce the mean, median, maximum,
minimum of its input values).

Thus, these sub-methods may be considered to
fairly exhaustively cover anomaly detection tasks in
sequences (with the exemption @f¢, transforms,
and ensemble methods). It should further be noted
that sincey and( are formulated independently Gf
the same implementation §f or n may be used for
sequences, grids, graphs, et cetera, as long as an ap-
propriated is provided.

and Nwin

9 OPTIMIZATION

The application-agnostic and modular nature of our
formalism enables the construction of software that
heuristically searches for appropriate methods. Given
any collection of sub-method implementations, to-
gether with some means of assessing its associated
methods—e.g. a functioa: M — R—we may find
optimal methods by iteratively constructing and eval-
uating sub-method combinations.

One way to construct such a&ris to employ a set
T C D x Sof labeled training data, together with some
dissimilarity measure for solutiores: Sx S— R, to
form

e(m) € (m(di),s).
(di,s)eT

This function provides us with a convenient means
of evaluating methods. Software that implemeats
can be used to easily evaluate and compare methods
(especially if bundled with a collection of sub-method
implementations) for novel applications.

Furthermore, it gives rise to a supervised,
application-agnostic optimization problem—
minimizing e given a set of (potentially parametric)
sub-methods. If some means of efficiently solving
this problem could be found, the task of finding
appropriate methods for any given application could
be reduced to selecting appropriate sets of candidate
sub-methods and training data.

To illustrate this approach, we implemented a
rudimentary solver for the optimization problem.
This solver takes a collection of parametric sub-

teresting methods) it seems that the only reasonablemethods (with an ordered or unordered set of candi-
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Figure 4. A few sample sequences from the evaluation

data, with anomaly scores taken from a method with a
low evaluation error (8), corresponding tar;,(30,10),
I/ocal(loo)' nwin(307 5)1 evec(30)1 ZkNN(aDTW7 1)7 and

Kmean

NN

Evaluation error

8
Training error

Figure 5: Average training vs evaluation error for 50 solver
runs, with 10 training items and 100 and evaluation items.

date values for each parameter) and alset ?(C x
[0,1]) of training data. It uses the Euclidean distance
(with a prior rescaling of the anomaly scoreg@ol|)
ase.

The solver employs a naive, two-phase optimiza-
tion heuristic: In the first phase, the solver evalu-
ates all valid combinations of sub-methods. For each
such combination, it randomly samples the parameter

space (the product of the sets of sub-method param-

eter values) a fixed number of times, and evaluates
each resulting method on the training data.

In the second phase, the solver uses hill climb-
ing to calibrate the sub-method combination that pro-
duced the lowest error in the first phése

We applied this solver to a procedurally generated
data set consisting of real-valued sequences with col-
lective contextual anomali& as illustrated in Fig-

9Specifically, by starting at the point (out of those sam-
pled) with the smallest error, and iteratively—until a @jc
minimum is found—evaluating all adjacent points (chang-
ing one parameter at a time) and moving to the one with the
lowest error.

10gpecifically: 500-element, sinusoidal real-valued se-
quences with an angular frequenoy (1, 2) and two dis-
tinct amplitudesy; , ay (wherea; = 1, anday is 1(1.3,1.7)

A Formal Approach to Anomaly Detection

Training error

80
Iterations

40 120

Figure 6: The training error at each iteration for a set of
solver executions. Each sub-method combination is sam-
pled 20 times before the solver switches to hill climbing.

ure 4.

We used the sub-methods presented in the previ-
ous sectioi! and a set of 20 randomly sampled train-
ing items, let the solver take 20 random samples of
each valid sub-method combination, and repeated the
experiment 50 times. The resulting methods were
then evaluated on a set of 100 items.

As seen in Figure 5, a large share of the result-
ing methods seem to perform close to optimally. The
solver occasionally gets stuck in local minima, pro-
ducing poorly performing methods. Considering the
simplistic nature of the solver, this is hardly surpris-
ing, and it is likely that a more sophisticated solver
would have performed better. The per-iteration train-
ing data error for 20 experiments is shown in Figure 6,
and a few solutions produced by one method with a
low evaluation error is shown in Figure 4.

10 CONCLUSIONS

We have introduced an application-agnostic approach
to anomaly detection, in which anomaly detection
methods are treated as formal objects that may be de-
composed and recombined.

We have applied this formalism to sequences,
showing that it may be used to easily express a wide
range of anomaly detection tasks for this type of data.

Finally, we have demonstrated that our approach
may be used to construct application-agnostic soft-

with probability 05 and 11(0.3,0.7) with probability Q5),

arranged in a-b-c-b-a pattern, where the width of trere-

gion is 1(15,30) (rounded so that the amplitude transition

happens at the nearest sign change), and the width &f the

regions is7/(80,100) (also rounded).The labels were set to

1 in the anomalous regions and 0 elsewhere.
Hspecifically, ayin (W), Blocal (M), Broverry the trivial

B’ used for collective anomaliesyyin(W,s'), Byedw), and

{knn(d, k), for s,§in{5,10,...,25}, w € {30,35,...,60},

ke {1,2,...,5},me {80,90,...,130}, d € {dg,dpTw}
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ware that facilitates implementing and evaluating

methods, and that can be used to automatically find
appropriate methods (given labeled training data and

a set of candidate sub-methods).

FutureWork. We foresee several venues for future
work.
First, there are plenty of interesting sub-methods,

transforms, ensemble methods, and non-sequence

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and
Keogh, E. (2008). Querying and mining of time series
data: experimental comparison of representations and
distance measure®roceedings of the VLDB Endow-
ment 1(2):1542-1552.

Etsy (2015). Etsy Skyline. github.com/etsy/skyline. Ac-
cessed: 2015-02-10.

Fox, A. J. (1972). Outliers in time seriedournal of the

Royal Statistical Society. Series B (Methodological)

pages 350-363.

types of data (e.g. graphs, spatial data) to which our Fu, A. W.-C., Leung, O. T.-W., Keogh, E., and Lin, J.

formalism could be extended. There is work to be
done both in terms of studying these and in terms of
creating flexible and efficient implementations.

There is also work to be done on efficiently solv-
ing the optimization problem outlined in Section 9;
we have demonstrated that it may solved for simple
tasks, but it remains to be seen if it can be effectively
solved for real-world tasks.

Finally, modifying or extending our formalism

could be valuable. For instance, associating addi-

tional information with sub-methods could enable al-
gorithms that can optimize or approximate the result-
ing methods.
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