
Ensemble UCT Needs High Exploitation

S. Ali Mirsoleimani1,2, Aske Plaat1, Jaap van den Herik1 and Jos Vermaseren2

1Leiden Centre of Data Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2Nikhef Theory Group, Nikhef Science Park 105, 1098 XG Amsterdam, The Netherlands

Keywords: Monte Carlo Tree Search, Ensemble Search, Parallelism, Exploration-exploitation Trade-off.

Abstract: Recent results have shown that the MCTS algorithm (a new, adaptive, randomized optimization algorithm)
is effective in a remarkably diverse set of applications in Artificial Intelligence, Operations Research, and
High Energy Physics. MCTS can find good solutions without domain dependent heuristics, using the UCT
formula to balance exploitation and exploration. It has been suggested that the optimum in the exploitation-
exploration balance differs for different search tree sizes: small search trees needs more exploitation; large
search trees need more exploration. Small search trees occur in variations of MCTS, such as parallel and
ensemble approaches. This paper investigates the possibility of improving the performance of Ensemble
UCT by increasing the level of exploitation. As the search trees become smaller we achieve an improved
performance. The results are important for improving the performance of large scale parallelism of MCTS.

1 INTRODUCTION

Since its inception in 2006 (Coulom, 2006), the
Monte Carlo Tree Search (MCTS) algorithm has
gained much interest among optimization researchers.
MCTS is a sampling algorithm that uses search results
to guide itself through the search space, obviating
the need for domain-dependent heuristics. Starting
with the game of Go, an oriental board game, MCTS
has achieved performance breakthroughs in domains
ranging from planning and scheduling to high energy
physics (Chaslot et al., 2008a; Kuipers et al., 2013;
Ruijl et al., 2014). The success of MCTS depends on
the balance between exploitation (look in areas which
appear to be promising) and exploration (look in ar-
eas that have not been well sampled yet). The most
popular algorithm in the MCTS family which ad-
dresses this dilemma is the Upper Confidence Bound
for Trees (UCT) (Kocsis and Szepesvári, 2006).

As with most sampling algorithms, one way to
improve the quality of the result is to increase the
number of samples and thus enlarge the size of the
MCTS tree. However, constructing a single large
search tree witht samples or playouts is a time con-
suming process. A solution for this problem is to
create a group ofn smaller trees that each havet/n
playouts and search these in parallel. This approach
is used in root parallelism (Chaslot et al., 2008a) and
in Ensemble UCT (Fern and Lewis, 2011). In both,
root parallelism and Ensemble UCT, multiple inde-
pendent UCT instances are constructed. At the end of

the search process, the statistics of all trees are com-
bined to yield the final result (Browne et al., 2012).
However, there is contradictory evidence on the suc-
cess of Ensemble UCT (Browne et al., 2012). On the
one hand, Chaslot et al. found that, for Go, Ensemble
UCT (with n trees oft/n playouts each) outperforms
a plain UCT (witht playouts) (Chaslot et al., 2008a).
On the other hand, Fern and Lewis were not able to re-
produce this result in other domains (Fern and Lewis,
2011), they found situations where a plain UCT out-
performed Ensemble UCT given the same total num-
ber of playouts.

As already mentioned, the success of MCTS de-
pends on the exploitation-exploration balance. Previ-
ous work by Kuipers et al. has argued that when the
tree size is small, more exploitation should be chosen,
and with larger tree sizes, high exploration is suitable
(Kuipers et al., 2013). The main contribution of this
paper is that we show that this idea can be used in
Ensemble UCT to improve its performance.

The remainder of this paper is structured as fol-
lows: in section 2 the required background informa-
tion is briefly discussed. Section 3 discusses related
work. Section 4 gives the experimental setup, to-
gether with the experimental results. Finally, a con-
clusion is given in Section 5.

370
Mirsoleimani, S., Plaat, A., Herik, J. and Vermaseren, J.
Ensemble UCT Needs High Exploitation.
DOI: 10.5220/0005711603700376
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2, pages 370-376
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

function UCTSEARCH(r,m)
i← 1
for i ≤m do

n← select(r)
n← expand(n)
∆←playout(n)
backup(n,∆)

end for
return

end function
Figure 1: The general MCTS algorithm.

2 BACKGROUND

Below we provide some background information on
MCTS (Section 2.1), Ensemble UCT (Section 2.2),
and the game of Hex (Section 2.3).

2.1 Monte Carlo Tree Search

The main building block of the MCTS algorithm is
the search tree, where each node of the tree represents
a game position. The algorithm constructs the search
tree incrementally, expanding one node in each iter-
ation. Each iteration has four steps (Chaslot et al.,
2008b). (1) In the selection step, beginning at the root
of the tree, child nodes are selected successively ac-
cording to a selection criterion, until a leaf node is
reached. (2) In the expansion step, unless the selected
leaf node ends the game, a random unexplored child
of the leaf node is added to the tree. (3) In the simula-
tion step (also called playout step), the rest of the path
to a final state is completed by playing random moves.
At the end a score∆ is obtained that signifies the score
of the chosen path through the state space. (4) In the
backpropagation step (also called backup step), the∆
value is propagated back through the traversed path
in the tree, which updates the average score (win rate)
of a node. The number of times that each node in
this path is visited is incremented by one. Figure 1
shows the general MCTS algorithm. In many MCTS
implementations the UCT algorithm is chosen as the
selection criterion (Kocsis and Szepesvári, 2006).

2.1.1 The UCT Algorithm

The UCT algorithm provides a solution for the prob-
lem of exploitation (look into existing promising ar-
eas) and exploration (look for new promising areas)
in the selection phase of the MCTS algorithm (Kocsis
and Szepesvári, 2006). A child nodej is selected to

maximize:

UCT(j) = X j +Cp

√
ln(n)

n j
(1)

whereX j =
w j
n j

, wj is the number of wins in childj, n j

is the number of times childj has been visited,n is the
number of times the parent node has been visited, and
Cp≥ 0 is a constant. The first term in UCT equation is
for exploitation and the second one is for exploration.
The level of exploration of the UCT algorithm can be
adjusted by theCp constant. (HighCp means more
exploration.)

2.1.2 Root Parallelism

Originally, root parallelism was considered as an
UCT algorithm, viz. UCT in parallel. In root par-
allelism (Chaslot et al., 2008a) each thread is as-
sumed to build simultaneously a private and indepen-
dent MCTS search tree with a unique random seed.
When root parallelism wants to select the next move
to play, one of the threads collects the number of visits
and the number of wins in the upper-most nodes of all
trees and then computes for both (visits and wins) the
total sum for each child (Chaslot et al., 2008a). There-
after, it selects a move based on one of the possible
policies. Figure 2 shows root parallelism. However,
nowadays we have noted that UCT with root paral-
lelism is not algorithmically equivalent to plain UCT,
but is equivalent to Ensemble UCT (Browne et al.,
2012).

2.2 Ensemble UCT

Ensemble UCT is given its place in the overview ar-
ticle by (Browne et al., 2012). Table 1 shows differ-
ent possible configurations for Ensemble UCT. Each
configuration has its own benefits. The total number
of playouts ist and the size of ensemble (number of
trees inside the ensemble) isn. It is supposed thatn
processors are available which is equal to the ensem-
ble size. Figure 3 shows the pseudo-code of Ensemble
UCT.

△ △

△

Figure 2: Different independent UCT trees are used in root
parallelism.

Ensemble UCT Needs High Exploitation

371

Table 1: Different possible configurations for Ensemble UCT. The ensemble size isn.

Number of playouts Playout speedup Strength speedup

UCT
Ensemble UCT

n cores 1 core
Each tree Total

t t n · t 1 1
n Yes

t t
n t n 1 ?

The first line of the table shows the situation where
Ensemble UCT hasn · t playouts in total while UCT
has onlyt playouts. In this case, there would be no
speedup in a parallel execution of the ensemble ap-
proach onn cores, but the larger search effort would
presumably result in a better search result. We call
this use of parallelismStrength speedup.

The second line of Table 1 shows a different pos-
sible configuration for Ensemble UCT. In this case,
the total number of playouts for both UCT and En-
semble UCT is equal tot. Thus, each core searches
a smaller tree of sizetn. The search will ben times
faster (the ideal case). We call this use of parallelism
Playout speedup. It is important to note that in this
configuration both approaches take the same amount
of time on a single core. However, there is still the
question whether we can reach anyStrength speedup.
This question will be answered in Section 4.2.2.

2.3 The Game of Hex

Hex is a game with a board of hexagonal cells (Ar-
neson et al., 2010). Each player is represented by a
color (Black or White). Players take turns by placing
a stone of their color on a cell of the board. The goal
for each player is to create a connected chain of stones

n← ensemble size or number of trees
t← total number of playouts
function ENSEMBLEUCT(s,t,n)

m← t/n
i← 1
for i ≤ n do

r[i]← create an independent root node with
state s

end for
i← 1
for i ≤ n do

execute UCTSearch(r[i],m)
end for
collect from all trees the number of wins and

visits to the root’s children. Then compute the total
sum of visits and wins for each child and store it to
a new rootr ′.

return child with argmax wj/n j j ∈ children of
r ′

end function
Figure 3: The pseudo-code of Ensemble UCT.

between the opposing sides of the board marked by
their colors. The first player to complete this path
wins the game.

In our implementation of the Hex game, a fast
disjoint-set data structure is used to determine the
connected stones. Using this data structure we have
an efficient representation of the board position (Galil
and Italiano, 1991).

3 RELATED WORK

From the introduction we know that (Chaslot et al.,
2008a) provided evidence that, for Go, root paral-
lelism with n instances oftn iterations each outper-
forms plain UCT witht iterations, i.e., root paral-
lelism (being a form of Ensemble UCT) outperforms
plain UCT given the same total number of iterations.
However, in other domains, (Fern and Lewis, 2011)
did not find this result.

(Soejima et al., 2010) also analyzed the perfor-
mance of root parallelism in detail. They found that
a majority voting scheme gives better performance
than the conventional approach of playing the move
with the greatest total number of visits across all trees.
They suggested that the findings in (Chaslot et al.,
2008a) are explained by the fact that root parallelism
performs a shallower search, making it easier for UCT
to escape from local optima than the deeper search
performed by plain UCT. In root parallelism each pro-
cess does not build a search tree larger than the se-
quential UCT. Moreover, each process has a local tree
that contains characteristics which differs from tree
to tree. Recently, (Teytaud and Dehos, 2015) pro-
posed a new idea by distinguishing between tactical
behavior and strategic behavior. They transferred the
RAVE (Rapid Action Value Estimate) ideas as devel-
oped by (Gelly and Silver, 2007), from the selection
phase to the simulation phase. This implies that influ-
encing the tree policy is changed into also influencing
the Monte-Carlo policy.

Fern and Lewis thoroughly investigated an En-
semble UCT approach in which multiple instances
of UCT were run independently. Their root statis-
tics were combined to yield the final result (Fern and
Lewis, 2011). So, our task is to explain the differ-
ences in their work and that by (Chaslot et al., 2008a).

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

372

Table 2: The performance evaluation of Ensemble UCT vs. plain UCT based on win rate.

Approach Win (%)
Performance vs.

plain UCT
Strength
Speedup

Ensemble UCT
< 50 Worse than No
= 50 As good as No
> 50 Better than Yes

4 EMPIRICAL STUDY

In this section, the experimental setup is described
and then the experimental results are presented.

4.1 Experimental Setup

The Hex board is represented by a disjoint-set. This
data structure has three operationsMakeSet, Find and
Union. In the best case, the amortized time per oper-
ation isO(α(n)). The value ofα(n) is less than 5 for
all remotely practical values ofn (Galil and Italiano,
1991).

In Ensemble UCT, each tree performs a com-
pletely independent UCT search with a different ran-
dom seed. To determine the next move to play, the
number of wins and visits of the root’s children of all
trees are collected. For each child the total sum of
wins and the total sum of visits are computed. The
child with the largest number of wins/visits is se-
lected.

The plain UCT algorithm and Ensemble UCT are
implemented in C++. In order to make our experi-
ments as realistic as possible, we use a custom de-
veloped game playing program for the game of Hex
(Mirsoleimani et al., 2014; Mirsoleimani et al., 2015).
This program is highly optimized, and reaches a speed
of more than 40,000 playouts per second per core on
a 2,4 GHz Intel Xeon processor. The source code of
the program is available online.1

As Hex is a 2-player game, the playing strength
of Ensemble UCT is measured by playing versus a
plain UCT with the same number of playouts. We ex-
pect to see an improvement for Ensemble UCT play-
ing strength against plain UCT by choosing 0.1 as the
value ofCp (high exploitation) when the number of
playouts is small. In our experiments, the value ofCp
is set to 1.0 for plain UCT (high exploration). Note
that for the purpose of this research it is not important
to find the optimal value ofCp, but just to to show the
difference in effect on the performance.

Our experimental results show the percentage of
wins for Ensemble UCT with a particular ensemble

1Source code is available at
https://github.com/mirsoleimani/paralleluct/

size and a particularCp value. They are measured
against plain UCT. Each data point represents the av-
erage of 200 games with a corresponding 99% confi-
dence interval. Table 2 summarizes how the perfor-
mance of Ensemble UCT versus plain UCT is evalu-
ated. The concept ofhigh exploitation for small UCT
treeis significant if Ensemble UCT reaches a win rate
of more than 50%. (Section 4.2.2 will shown that this
is indeed the case.)

The board size for Hex is 11x11. In our experi-
ments the maximum ensemble size is 28 = 256. Thus,
for 217 playouts, when the ensemble size is 1 there
are 217 playouts per tree and when the ensemble size
is 26 = 64 the number of playouts per tree is 211.
Throughout the experiments the ensemble size is mul-
tiplied by a factor of two.

The results were measured on a dual socket ma-
chine with 2 IntelXeonE5-2596v2 processors run-
ning at 2.40GHz. Each processor has 12 cores, 24
hyperthreads and 30 MB L3 cache. Each physical
core has 256KB L2 cache. The pack TurboBoost fre-
quency is 3.2 GHz. The machine has 192GB physical
memory. Intel’sicc 14.0.1compiler is used to com-
pile the program.

4.2 Experimental Results

Below we provide our experimental results. We dis-
tinguish them into hidden exploration in Ensemble
UCT (4.2.1) and exploitation-exploration trade-off for
Ensemble UCT (4.2.2).

4.2.1 Hidden Exploration in Ensemble UCT

It is important to understand that Ensemble UCT has a
hidden exploration factor by nature. Two reasons are:
(1) each tree in Ensemble UCT is independent, and
(2) an ensemble of trees contains more exploration
than a single UCT search with the same number of
playouts would have. The hidden exploration is be-
cause each tree in Ensemble UCT searches in differ-
ent areas of the search space.

In Figure 4 the difference in exploitation-
exploration behavior of the Ensemble UCT and plain
UCT is shown in the number of visits that one of

Ensemble UCT Needs High Exploitation

373

0 20 40 60 80 100 120
Moves(Children)

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r
o
f
V
is

it
s

Ensemble UCT
Plain UCT

Figure 4: The number of visits for root’s children in En-
semble UCT and plain UCT. Each child represents an avail-
able move on the empty Hex board with size 11x11. Both
Ensemble UCT and plain UCT have 80,000 playouts and
Cp = 0. In Ensemble UCT, the size of the ensemble is 8.

the root’s children counts when using one of the al-
gorithmic approaches withCp = 0. Both Ensemble
UCT (Browne et al., 2012) and plain UCT (Browne
et al., 2012) have 80,000 of playouts. In each ex-
periment, a search tree for selecting the first move
on an empty board is constructed. Each of the chil-
dren corresponds to a possible move of an empty Hex
board (i.e., 121 moves). Ensemble UCT is more ex-
plorative compared to plain UCT if it generates more
data points with more distance from the x-axis than
plain UCT. In Ensemble UCT the number of playouts
is distributed among 8 separate smaller trees. Each of
the trees has 10,000 playouts and for each child the
number of visits is collected. When the value ofCp
is 0, which means the exploration part of UCT for-
mula is turned off, all possible moves in the Ensem-
ble UCT receive at least a few visits. While for plain
UCT with 80,000 playouts andCp = 0 there are many
of the moves withno visits. The data points when
using plain UCT are closer to the x-axis compared
to Ensemble UCT. However, for Ensemble UCT the
peak is 2400, while it is 4000 visits for plain UCT. It
means that plain UCT is more exploitative.

4.2.2 Exploitation-Exploration trade-off for
Ensemble UCT

In Figures 5 and 6, from the left side to the right side
of a graph, the ensemble size (number of search trees
per ensemble) increases by a factor of two and the
number of playouts per tree (tree size) decreases by
the same factor. Thus, at the most right hand side of
the graph we have the largest ensemble with smallest
trees. The total number of playouts always remains
the same throughout an experiment for both Ensemble
UCT and plain UCT. The value ofCp for plain UCT

is always 1.0 which means high exploration.
Figure 5 shows therelations between the value

of Cp and the ensemble size, when both plain UCT
and Ensemble UCT have the same number of to-
tal playouts. Moreover, Figure 5 shows theperfor-
manceof Ensemble UCT for different values ofCp. It
shows that whenCp = 1.0 (highly explorative) En-
semble UCT performs as good as or mostly worse
than plain UCT. When Ensemble UCT usesCp = 0.1
(highly exploitative) then for small ensemble sizes
(large sub-trees) the performance of Ensemble UCT
sharply drops down. By increasing the ensemble
size (smaller sub-trees), the performance of Ensem-
ble UCT keeps improving until it becomes as good as
or even better than plain UCT.

In order to investigate the effect of enlarging the
number of playouts on the performance of Ensem-
ble UCT, the second experiment is conducted using
218 playouts. Figure 6 shows that when for this large
number of playouts the value ofCp = 1.0 is high
(i.e., highly explorative) the performance of Ensem-
ble UCT cannot be better that plain UCT. While for a
small value ofCp = 0.1 (i.e., highly exploitative) the
performance of Ensemble UCT is almost always bet-
ter than plain UCT after ensemble size is 25. There-
fore, there is a marginal strength speedup. The poten-
tial playout speedup could be up to the ensemble size
if sufficient number of processing cores is available.

5 CONCLUSION

This paper describes an empirical study on Ensemble
UCT with different sets of configurations for ensem-
ble size, tree size and exploitation-exploration trade-
off. Previous studies on Ensemble UCT/root paral-
lelism provided inconclusive evidence on the effec-
tiveness of Ensemble UCT (Chaslot et al., 2008a;
Fern and Lewis, 2011; Browne et al., 2012). Our re-
sults suggest that the reason lies in the exploration-
exploitation trade-off in relation to thesize of the sub-
trees. Our results provide clear evidence that the per-
formance of Ensemble UCT is improved by select-
ing higher exploitation for smaller search trees given
a fixed time bound or number of simulations.

This work is motivated, in part, by the observa-
tion in (Chaslot et al., 2008a) of super-linear speedup
in root parallelism. Finding super-linear speedup in
two-agent games occurs infrequently. Most studies
in parallel game-tree search report a battle against
search overhead, communication overhead, and syn-
chronization overhead (see, e.g., (Romein, 2001)).
For super-linear speedup to occur, the parallel search
must searchfewernodes than the sequential search. In

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

374

20 21 22 23 24 25 26 27 28

Ensemble Size

0

10

20

30

40

50

60

Pe
rc
e
n
ta
g
e
 W

in
s

cp=0.1

cp=1.0

Figure 5: The total number of playouts for both plain UCT
and ensemble UCT is 217 = 131072. The percentage of
wins for ensemble UCT is reported. The value ofCp for
plain UCT is always 1.0 when playing against Ensemble
UCT. To the left few large UCT trees, to the right many
small UCT trees.

20 21 22 23 24 25 26 27 28

Ensemble Size

0

10

20

30

40

50

60

Pe
rc
e
n
ta
g
e
 W

in
s

cp=0.1

cp=1.0

Figure 6: The total number of playouts for both plain UCT
and ensemble UCT is 218 = 262144. The percentage of
wins for ensemble UCT is reported. The value ofCp for
plain UCT is always 1.0 when playing against Ensemble
UCT. To the left few large UCT trees, to the right many
small UCT trees.

most algorithms, parallelizations suffer because parts
of the tree are searched with less information than is
available in the sequential search, causingmorenodes
to be expanded. This study has shown how the re-
markable situation in which the parallel search tree is
smaller than the sequential search tree can indeed oc-
cur in MCTS. The ensemble of the independent (par-
allel) sub-trees can be smaller than the monolithic to-
tal tree. WhenCp is chosen low (i.e., exploitative)
the Ensemble search runs efficiently, where the mono-
lithic plain UCT search is less efficient (see Figures 5
and 6).

For future work, we will explore other parts of the
parameter space, to find optimalCp settings for dif-
ferent combinations of tree size and ensemble size.
Also, we will study the effect in different domains.
Even more important will be the study on the effect
of Cp in tree parallelism (Chaslot et al., 2008a).

ACKNOWLEDGEMENTS

This work is supported in part by the ERC Advanced
Grant no. 320651, “HEPGAME.”

REFERENCES

Arneson, B., Hayward, R. B., and Henderson, P. (2010).
Monte Carlo Tree Search in Hex.IEEE Transac-
tions on Computational Intelligence and AI in Games,
2(4):251–258.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A Survey of
Monte Carlo Tree Search Methods.Computational

Intelligence and AI in Games, IEEE Transactions on,
4(1):1–43.

Chaslot, G., Winands, M., and van den Herik, J. (2008a).
Parallel Monte-Carlo Tree Search. Inthe 6th Interna-
tioal Conference on Computers and Games, volume
5131, pages 60–71. Springer Berlin Heidelberg.

Chaslot, G. M. J. B., Winands, M. H. M., van den Herik, J.,
Uiterwijk, J. W. H. M., and Bouzy, B. (2008b). Pro-
gressive strategies for Monte-Carlo tree search.New
Mathematics and Natural Computation, 4(03):343–
357.

Coulom, R. (2006). Efficient Selectivity and Backup Op-
erators in Monte-Carlo Tree Search. InProceed-
ings of the 5th International Conference on Comput-
ers and Games, volume 4630 ofCG’06, pages 72–83.
Springer-Verlag.

Fern, A. and Lewis, P. (2011). Ensemble Monte-Carlo Plan-
ning: An Empirical Study. InICAPS, pages 58–65.

Galil, Z. and Italiano, G. F. (1991). Data Structures and
Algorithms for Disjoint Set Union Problems.ACM
Comput. Surv., 23(3):319–344.

Gelly, S. and Silver, D. (2007). Combining online and of-
fline knowledge in UCT. Inthe 24th International
Conference on Machine Learning, pages 273–280,
New York, USA. ACM Press.

Kocsis, L. and Szepesvári, C. (2006).Machine Learning:
ECML 2006, volume 4212 ofLecture Notes in Com-
puter Science. Springer Berlin Heidelberg.

Kuipers, J., Plaat, A., Vermaseren, J., and van den Herik, J.
(2013). Improving Multivariate Horner Schemes with
Monte Carlo Tree Search.Computer Physics Commu-
nications, 184(11):2391–2395.

Mirsoleimani, S. A., Plaat, A., van den Herik, J., and Ver-
maseren, J. (2015). Parallel Monte Carlo Tree Search
from Multi-core to Many-core Processors. InISPA
2015 : The 13th IEEE International Symposium on
Parallel and Distributed Processing with Applications
(ISPA), pages 77–83, Helsinki.

Mirsoleimani, S. A., Plaat, A., Vermaseren, J., and van den

Ensemble UCT Needs High Exploitation

375

Herik, J. (2014). Performance analysis of a 240
thread tournament level MCTS Go program on the
Intel Xeon Phi. InThe 2014 European Simulation
and Modeling Conference (ESM’2014), pages 88–94,
Porto, Portugal. Eurosis.

Romein, J. W. (2001).Multigame – An Environment for
Distributed Game-Tree Search. PhD thesis, Vrije Uni-
versiteit.

Ruijl, B., Vermaseren, J., Plaat, A., and van den Herik, J.
(2014). Combining Simulated Annealing and Monte
Carlo Tree Search for Expression Simplification.Pro-
ceedings of ICAART Conference 2014, 1(1):724–731.

Soejima, Y., Kishimoto, A., and Watanabe, O. (2010). Eval-
uating Root Parallelization in Go.IEEE Transac-
tions on Computational Intelligence and AI in Games,
2(4):278–287.

Teytaud, F. and Dehos, J. (2015). One the Tactical and
Strategic Behaviour of MCTS When Biasing Random
Simulations.ICCA Journal, 38(2):67–80.

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

376

