
Low Bandwidth Video Streaming using FACS, Facial Expression and
Animation Techniques

Dinesh Kumar and Jito Vanualailai
School of Computing, Information and Mathematical Sciences, The University of the South Pacific, Suva, Fiji

Keywords: Facial Expression, Facial Animation, Low Bandwidth, Video Streaming, FACS.

Abstract: In this paper we describe an easy to use real-time 3D facial expression and animation system that takes the
creation of individual facial expressions to the atomic level. That is instead of generating and recording
known facial expressions we propose a mechanism that will allow us to create and store each atomic facial
distortion. We can then combine some of these singular distortions to create meaningful expressions. FACS
Action Units (AUs) is one such technique that describes the simplest visible movement, which cannot be
decomposed into more basic ones. We use this as the basis for creating these atomic facial distortions. The
Waters muscle based facial model has been used and extended to allow the user to calibrate and record each
facial deformation as described in FACS AUs. The user can then create any facial expression by simply
stating the series of AUs and its degree of activation in a controlled fashion. These features all form part of
the Facial Animation System (FAS). Our FAS is implemented in such a way that enables it to be used as a
low bandwidth video streaming player - a real time facial animation player driven only by FACS AUs
transmitted as plain text over TCP sockets.

1 INTRODUCTION

In this paper we study the Facial Action Coding
System (FACS) as described in (Ekman and Frieson,
1977) and its application to facial expression
animation. We also investigate the area of facial
animation by examining some common facial
modeling and animation techniques and
implementing a Facial Animation System (FAS). In
FAS we demonstrate the application of the FACS
standard on a 3D face model based on Waters
muscle model (a popular technique in facial
expression creation described in (Waters, 1987)).
The animation of the face therefore is controlled by
incoming stream of FACS Action Unit (AU)
parameters.

This ties our system closely with the already
available information about human facial behaviour
given in FACS. The computational cost of facial
animation has been solved with the advent of high
processing power and advanced graphics rendering
capabilities of modern computers. What is left
therefore is the creation of a human face model and
a novel way to animate the model from one state to
another. At this point we realize that the first step in
the animation process is creation of a synthetic face

model. There are many commercial 3D modeling
software that allows development of 3D face models
for animation. However this process is rather tedious
and very time consuming.

Next step is the creation of individual facial
expressions. Each expression therefore describes a
human emotion such as smile, anger and surprise
etcetera. In many facial animation systems
developed the user simply creates an expression by
tweaking parameters that directly deforms parts of
the synthetic face model. In other words basic
human expressions are pre-programmed into the
system. The resultant expression is normally
validated through visual inspection. These
expressions are then sent to animation engine.
Therefore most facial animations systems lack a
systematic way for creation of these facial
expressions.

This situation motivated our research. We
propose a 3D facial expression and animation
system that takes the creation of individual facial
expressions to the atomic level. That is instead of
generating and recording known expressions we
propose a mechanism that will allow us to create and
store each atomic facial distortion. We can then
combine some of these singular distortions to create

226
Kumar, D. and Vanualailai, J.
Low Bandwidth Video Streaming using FACS, Facial Expression and Animation Techniques.
DOI: 10.5220/0005718202240233
In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 1: GRAPP, pages 226-235
ISBN: 978-989-758-175-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

meaningful expressions. We use FACS AUs as the
basis for creating atomic facial distortions. In
summary the key contributions made to the field in
this paper are:
 the ability of FAS to create atomic facial

distortions based on information about human
facial behaviour described in FACS with ease.

 a technique to execute a set of AUs to generate
an expression.

 a simple technique proposed to apply the degree
of activation of AUs in expression creation.

 development of a simple animation engine for
simulation.

 implementation of a low bandwidth video
streaming system; a real-time facial animation
player driven only by FACS AUs transmitted as
plain text over TCP sockets.

It is therefore envisaged that our system can prove
useful to researchers studying the relationship
between the generating of facial expression using
FACS AUs as the basis. We wish to demonstrate the
feasibility of using the FACS paradigm for the
animation of facial expressions hence we selected a
subset of AUs and implemented their behaviour. In
this research we also attempt to understand some of
the principles that are used to model face
expressions based on FACS and implement a basic
animation system on these. This paper therefore
deals with FACS and animation but does not cover
FACS AU recognition.

The rest of the paper is organised as follows: In
section 2 we review related work in the field of
FACS driven facial expression and animation.
Section 3 describes the architecture of our system
and in section 4 we describe the components of our
FAS and algorithms developed. In section 5, we
present the experimental results followed by
conclusion in section 6.

2 RELATED WORK

The human face is a complex architecture which is
capable of creating a vast range of facial expressions
on the fly. Not only are the same named expressions
different from person to person, mimicking the same
on a computer has remained a challenge to computer
scientists for over several decades now. The primary
focus had been to create models capable of
rendering high quality and realistic facial
expressions. Initial efforts in 3D facial modeling
began with (Parke, 1972) who developed the first
parameterized facial model. (Waters, 1987) and

(Magnenat-Thalmann et al., 1988) follow soon by
developing pseudo muscle based models. The
technique of free form deformations were also used
to create facial expressions for example in (Kalra et
al., 1992). (Kahler et al., 2001) utilized geometry
based muscle modeling for facial animation where
as (Ostermann, 1998) used the MPEG-4 standard to
animate synthetic faces.

It is to be noted that the state of the art in facial
animation has advanced tremendously over the
years. For instance there is increasing effort by
scientists to perfect the facial model to produce
quality and realistic expressions. Example (Tena et
al., 2011) developed an interactive region-based
linear 3D face model that effectively divided the
facial model into regions and used user-given
constraints (markers placed on the face model).
When activated these markers affected only the
region in which they were placed and produced
better effects than using the same markers on a
region less model. The practice and theory of
blendshape models has been well discussed by
(Lewis et al., 2014). (Weise et al., 2011) discusses
real time performance based facial animation that
enables the user to control the facial expression of a
digital avatar in real-time. Similar facial
performance based models were proposed by (Pauly,
2013) and (Bermano et al., 2013). On the other hand
there is equal effort by scientists to produce facial
animation from video or motion capture data.
Techniques have been developed to detect facial
expressions using motion detectors or sensors that
are susceptible to movements and then animated on
a computer facial model. One such implementation
is described by (Sifakis et al., 2005) who were able
to automatically determine muscle activations from
motion capture marker data.

It is therefore evident that most of these
researches were focused on perfecting models to
generate expressions and the results validated by
FACS. Instead in our research we propose a method,
which is to use FACS to generate expressions rather
than to just use it to validate expressions. Some
research is evident in this area such as in (Alkawaz
et al., 2015), (Wojdel and Rothkranz, 2005) and
(Wojdel and Rothkranz, 2001). (Wojdel and
Rothkranz, 2005) in their research developed a
parametric performance based model where each
parameter corresponded to one of the AUs as
defined in FACS.

They also developed co-occurrence rules that
described how different AUs influenced each other.
We employ the co-occurrence rules developed by
(Wojdel and Rothkranz, 2005) in our paper, but

Low Bandwidth Video Streaming using FACS, Facial Expression and Animation Techniques

227

Figure 1: Architecture of our Facial Animation System (FAS).

instead we use these rules to generate expressions on
Waters muscle model rather than on a parametric
face model.

Furthermore, research in using computer
generated face models to support low bandwidth
virtual videoconferencing or video streaming is
sparse. However, quite interestingly (Liu and Wang,
2010) proposed a low bandwidth teleconferencing
system by combining techniques of facial muscle
model, face detection and facial feature extraction to
create life-like face animation. Using the symmetry
property of the face, feature points were detected.
Transformation values were then computed based on
the position of the feature points which were then
sent via a network to the receiver frame by frame.
We note here that our proposed system sends AU
numbers and their activation values rather than
transformation values. Finally (Prakash and
Balasubramanian, 2010) provide a good review of
techniques developed in the area of facial modeling
and animation while (Alkawaz et al., 2014) presents
the future directions and challenges in the facial
animation field.

3 SYSTEM OVERVIEW

Our Facial Animation System (FAS) was developed
in three parts. The first part included work done on
the facial model itself. Waters initial model was used
and enhanced by giving it an easy to use graphical
user interface (GUI) to control the functionalities of
the program. Also greater control over rendering and
animation is provided. The second part involved
work done on the expression editor. Waters original
linear muscle set used in the program is extended to
include more muscles (in particular sphincter and
sheet muscles) in order to create more interesting
facial expression. The expression editor gives user
the control over all muscles used on the face model
including jaw rotation. Using this control the user
can contract and relax muscles and can record
expressions for each FACS AUs quite easily. The
recordings for individual AUs are used by the
Remote Player which is the third component
developed. The remote player enables live video
only streaming. It opens up a TCP socket and

GRAPP 2016 - International Conference on Computer Graphics Theory and Applications

228

receives streaming data from a remote source. This
streaming data is made up of series of AUs defining
individual expressions. A small animation engine is
also designed within this player. The information
about expressions (that is AUs) is processed
according to the co-occurrence rules (if chosen)
developed by (Wojdel and Rothkranz, 2005) and
then played over time creating animation on our 3D
face model. Figure 1 illustrates the architecture of
FAS.

4 FACIAL ANIMATION SYSTEM
(FAS)

This section describes the work done on our Facial
Animation System (FAS) driven by FACS in three
distinct categories:
1. Enhancements and improvements made to the

original Waters program to provide a better user
interface (UI) and greater control over rendering
options and animation. This includes inclusion of
sphincter and sheet muscles to control the facial
geometry for expression creation.

2. Work done on our expression editor that allows
the user control over all the muscles on the face
to create an expression. It gives the user the
flexibility to score expressions for individual
FACS AUs and even record them. These
expression recordings for individual AUs are
used by the Remote Player.

3. The Remote Player itself. Once a TCP
connection is established with the server
transferring in sequence batches of AU numbers
for expressions, the player runs these batches
over time creating animation.

4.1 The Reference Face Model

The original Waters face geometry is retained and
used in this project. The geometry comprises of 236
interconnected vertices forming 876 triangular
polygons. In addition to the 18 existing linear
muscles, our model introduces 2 sheet muscles and 3
sphincter muscles. The mathematics behind these
pseudo-muscles are drawn from (Tanguy, 2001) and
(Edge and Maddock, 2001) which is based on the
original Waters model. We note that the original
sphincter muscle used around the mouth area
converges vertices towards the centre of the muscle.
This makes it inappropriate to use the same
implementation of the sphincter muscle around the
eyes. To correct the problem we modified the

sphincter muscle equation so that the vertices
converge towards the semi-major axis of the ellipse
defining the influence area around the eyes. This
gives the model the ability to “squint” eyes. Figure 2
shows all the muscles implemented in FAS.

Figure 2: Muscles implemented in FAS.

4.2 Expression Editor

The Expression editor forms an integral part of our
FAS. It gives the user control over all the muscles
(including the jaw) used in our face model hence
allowing a wide range of expressions to be generated
with ease. Since our aim is to animate facial
expression based on FACS AUs, it gives the
flexibility to generate expressions that can
approximate the various AUs defined in FACS.
Using the expression editor the user can manipulate
one or more muscles to match a particular AU
expression. During this activity the calibration is
rendered in the graphics window for the user to note
the deformations on the face model. This allows the
user to fine tune the expression. Once the desired
expression is generated to a satisfactory level it can
then be recorded with the AU number as an
identifier. There is also the possibility to modify an
existing AU expression if desired by the user. A
total of 64 AU expressions can be defined.

By the definition of FACS, complex facial
expressions are generated by applying one or more
individual AUs. When these AU expressions are
programmed and stored in FAS, it gives us the
possibility to generate many other compound
expressions simply by using combinations of AUs.
The UI for our expression editor is fairly easy to use
(Figure 3).

Low Bandwidth Video Streaming using FACS, Facial Expression and Animation Techniques

229

Figure 3: Expression Editor UI.

4.3 The Remote Player

Improving the Waters facial model by including the
sphincter and sheet muscles and fixing the jaw
movement has been the first major development
task. This allowed creating more interesting
expressions. Further the expression editor gives us a
novel way to blend in FACS results with our
modified facial model. This has been the second
major task. However a system that only allows
creation and recording of AU expressions will seem
of not much use. It will be interesting to see hence
how our system will behave if we present to it a
series of random AUs to animate. Surely the end
result is worth noting and whether it corresponds to
a valid human expression.

This led to the implementation of a small low-
bandwidth video streaming system, a real time facial
animation player driven by FACS AUs transmitted
as plain text over TCP sockets. The reasons for
developing this are in twofold:
1. It will allow the testing for facial expression

creation and animation by streaming AU
numbers as plaintext over the internet instead of
high-end media files.

2. Such a system would prove useful for example in
live streaming or streaming recorded lecture
presentations from across different university
campuses. Instead of clogging bandwidth with
high resolution video data to be transmitted, if
AU numbers representing facial deformation of
the person presenting the lecture can be
indentified and sent, this would significantly
reduce the usage of the bandwidth.

In general, multimedia content has a large volume,
so media storage and transmission costs are still
significant; even in today’s computing world where
bandwidths have increased significantly. To offset
this somewhat, media are generally compressed for
both storage and streaming. This however reduces
the quality. Our system attempts to solve this
problem by eliminating the need to send the actual
video of the person delivering the lecture. Instead

the user will be presented with a facial model on the
client side which will deform according to AUs sent
from the server side.

Developing media players capable of streaming
live video over the internet are not trivial. There are
three fundamental problem areas that have to be
addressed.
 Bandwidth - If the sender transmits faster than

the available bandwidth then congestion occurs,
packets are lost, and there is a severe drop in
video quality. If the sender transmits slower than
the available bandwidth then the receiver
produces sub-optimal video quality.

 Delay Jitter – This is a problem because the
receiver must receive/decode/display frames at a
constant rate, and any late frames resulting from
the delay jitter can produce problems in the
reconstructed video, e.g. jerks in the video.

 Loss Rate - Losses such as lost packets, bit errors
or burst errors can have a very destructive effect
on the reconstruction of the video on the receiver
side.

It is also desirable that playback can begin while
data is still being delivered. This requires the usage
of an appropriate buffering algorithm and the use of
an appropriate size buffer which is basically shared
by two processes – one that fills up the buffer with
video data to play and the other that actually plays it.
However unlike conventional media players, our
remote player is very much different in the sense
that it is driven only by streaming AU numbers. This
required custom algorithms to be designed for
buffering and playback sequences.

The remote player system consists of an AU
Reader, an AU Blender, an AU Mixer and a
Playback Controller. All these components are part
of FAS except the AU Reader that runs as a separate
thread from the program. The first step is to provide
all the parameters necessary to run the remote player
efficiently as illustrated in Figure 4.

Figure 4: Remote Player user interface.

GRAPP 2016 - International Conference on Computer Graphics Theory and Applications

230

Figure 5: AU Reader Algorithm.

4.3.1 AU Reader

The AU Reader is a key component in the remote
player. It is responsible for receiving the transmitted
data from the server. In fact the functionality of the
AU Reader is handled by a thread that is created as
soon as the user initiates a connection. The use of a
thread is desirable because our OpenGL based FAS
process is already running in an endless loop
drawing frames every few milliseconds. What we
needed is a background process that will simply
work alongside our FAS, receiving and recording
AUs and feeding them to the playback controller.
This leads to the obvious advantage that the parent
FAS process is not overloaded to do the job of
receiving AUs from the server which if it did would
obviously create disruptions in rendering. Figure 5
describes the algorithm used in AU Reader.

AU Reader also accesses and manipulates the
two buffers – Receiver and Playout. In order for the
receiver and server to communicate with each other
efficiently the following control constants are used:
1 – successful receipt of packet. (Clients signals
server that packet received in good state, no loss). A
‘packet’ in our case is simply a series of AU
numbers (a set) that corresponds to an expression.
For example, for the expression - happiness, the
‘packet’ would simply contain the string (plaintext)
{1, 6, 12, 14}, for anger {2, 4, 7, 9, 10, 20, 26} and
{-2} for end of transmission etc.
- 1 – client signals server to pause transmission.

(The likely cause of this would be the Receiver

buffer has become full and the playback controller
is slow in freeing up Playout buffer)

- 2 – server signals client for end of transmission.
- 3 – client signals server to resume transmission.

(Receiver buffer now has space to accommodate
more AUs)

- 4 – client signals server to stop transmission. (This
is when the user decides to stop the streaming pre-
maturely)

Since the Playout buffer is also accessed by the
playback controller (a shared resource), to avoid any
deadlock situation a condition variable is defined
and used called player_buffer_state. This
variable is set to zero (0) when the Playout buffer is
or becomes empty and set to one (1) when the
Playout buffer is not 100% empty. A value of one
(1) also indicates to the AU Reader that the playback
controller is processing the current set of AUs. The
AU reader fills the Playout buffer when it finds the
state of this condition variable is zero.

4.3.2 The Playback Controller

The Playback controller works on the concept of key
frames. That is two key frames (start/end)
representing two different expressions are
determined. The in-between frames are then
interpolated resulting in animation. The end frame
becomes the start frame in the next sequence and so
on. A control variable (current_frame_state)
is used to keep track whether interpolating between

Low Bandwidth Video Streaming using FACS, Facial Expression and Animation Techniques

231

Figure 6: Playback Controller Algorithm.

Figure 7: FIFO queue implementation of Playout buffer.

start and end frame has been completed.
It is set to zero (0) if the player has finished

playing the end frame, one (1) otherwise. Each entry
in the Playout buffer represents one key frame in the
form of a set of AUs. Each set therefore describes
one expression.

Once initiated by the AU Reader the playback
controller function executes at a constant rate.
Figure 6 illustrates the complete playback controller
algorithm and the Playout buffer is implemented as
first in first out (FIFO) queue structure as illustrated
in Figure 7.

GRAPP 2016 - International Conference on Computer Graphics Theory and Applications

232

4.3.3 AU Blender

The function of the blender is to receive a set of AUs
and apply the co-occurrence rules discussed in
(Wojdel and Rothkranz, 2005) thus resulting in a
refined set of AU which can then be animated. A
total of 16 AU expressions are implemented in our
system (Table 1). The reason for these choices of
AUs is that they are used to produce the 6 basic
expressions (happy, sad, anger, fear, surprise and
disgust). These basic expressions are implemented in
the original Water model. However they have been
produced by manipulating the muscles of the face so
that the desired expression can be achieved. Our
system tries to arrive at the same expression but by
applying individual expressions governed by
recorded AUs in the program. The AU Blender
therefore implements the same dependencies as
provided by (Wojdel and Rothkranz, 2005) but only
for the 16 AU given in Table 1.

Table 1: Action Units (AUs) implemented.

AU FACS Name Muscle Reference

1 Inner Brow Raiser Frontalis

2 Outer Brow Raiser Frontalis

4 Brow Lowerer
Corrugator supercilii,
Depressor supercilii

5 Upper Lid Raiser Levator palpebrae superioris

6 Cheek Raiser Orbicularis oculi

7 Lid Tightener Orbicularis oculi

9 Nose Wrinkler
Levator labii superioris

alaeque nasi

10 Upper Lip Raiser Levator labii superioris

12 Lip Corner Puller Zygomaticus major

13 Cheek Puffer Levator anguli oris

14 Dimpler Buccinator

15 Lip Corner Depressor Depressor anguli oris

16 Lower Lip Depressor Depressor labii inferioris

17 Chin Raiser Mentalis

20 Lip stretcher Risorius

23 Lip Tightener Orbicularis oris

26 Jaw Drop Masseter

4.3.4 AU Mixer

Facial expressions in a real life rarely contain only
one single AU activation (Wojdel and Rothkranz,
2005). This means meaningful facial expressions
consists of activations of more than one AU. Each
AU activation in our system is recorded as activation
values for the 18 linear muscles, 3 sphincter, 2 sheet

muscles and jaw rotation – a total of 24 values.
Some of the values are none-zero if the
corresponding muscle is activated and zero
otherwise. In order to accumulate changes resulting
from activation of multiple AUs to create an
expression, we use the following mechanism.
Average – In this mixer the muscle activation values
for each AU in the set of AUs to generate an
expression is investigated in parallel. If the
corresponding muscles are activated in the AUs,
their values are added and averaged according to the
number of AUs which have that muscle activated.
Table 2 illustrates the average mixer functionality
(only a subset of muscles is shown). It shows from
this technique that muscles that are commonly used
in many AUs, their activation values are averaged
across the number of AUs.
Maximum – Here, activation values of common
muscles across AUs are analyzed and the maximum
activation value selected. The advantage of this
mixer is that subtle changes would be overshadowed
by higher muscle activation values giving maximum
deformation. Table 3 shows the implementation of
the maximum mixer.

Table 2: Average mixer technique used in FAS.

Muscle
Muscle Activation Average

Activation AUa AUb AUc

Left Zygomatic
Major

1.2 0.0 0.6 0.9

Left Angular
Depressor

0.8 0.2 1.4 0.8

Left Frontalis Inner 0.0 0.0 0.9 0.9

… … … … …

Table 3: Maximum mixer technique used in FAS.

Muscle
Muscle Activation Maximum

Activation AUa AUb AUc

Left Zygomatic Major 1.2 0.0 0.6 1.2

Left Angular Depressor 0.8 0.2 1.4 1.4

Left Frontalis Inner 0.0 0.0 0.9 0.9

… … … … …

5 TEST RESULTS

We test the Remote Player’s ability to animate
expressions based on a given set of AUs. We use the
AU set defined for the 6 basic expressions in (Noh
and Neumann, 1998). We also test the system

Low Bandwidth Video Streaming using FACS, Facial Expression and Animation Techniques

233

combining some of these basic expressions and
evaluate their results. Table 4 describes the
application of the co-occurrence rules as the
transmitted AUs pass through the AU Blender and
AU Mixer functions. Table 5 gives results of a
simple test performed to measure the bandwidth
usage of transferring single expressions, the duration
of playback and the amount of time the remote
player spent on receiving each expression. The data
for this table was gathered by performing 5
executions cycles for each single expression.

Table 4: Application of co-occurrence rules for the six
basic human expressions.

Expression AUs Transmitted
Resultant list of AUs

after applying
co-occurrence rules

Surprise 1, 2, 5, 15, 16, 20, 26 2, 5, 11, 15, 26

Fear 1, 2, 4, 5, 15, 20, 26 2, 4, 5, 11,15, 26

Disgust 2, 4, 9, 15, 17 2, 4, 9, 11, 15, 17

Anger 2, 4, 7, 9, 10, 20, 26 2, 4, 9, 11, 15, 26

Happiness 1, 6, 12, 14 6, 11, 14, 15

Sadness 1, 4, 15, 23 4, 11, 15, 23

As an example from this analysis, it can be
calculated that approximately 33 frames of
“surprise” like expressions can be transmitted by
using only 5% of the total bandwidth with the

remaining 95% to be used for other purposes
(including audio transfer). This shows video
transferred only as a series of AU activations is
clearly an effective way to minimize bandwidth
usage and at the same time achieve animation of the
desired expression

6 CONCLUSION

This research also led to study of other areas of
research such as psychology (study of FACS) and
anatomy (study of the human face muscles aspect –
due to adoption of the Waters muscle model). Our
main research objective was to show the feasibility
of using the Facial Action Coding System (FACS)
paradigm for the generation of facial expressions.
The results obtained by our research are an
affirmation that indeed FACS can be used as a basis
for facial expression and animation.

We note that real muscles when contracted,
contract with the skin rather than just displacing
skin; have different and unequal volumes across the
muscle shape that determines how much it can be
contracted; and overlap each other where in many
cases activation of one muscle triggers the activation
of adjacent muscles. Hence future direction of this
research could be development of real 3D muscle
models governed by laws of fluid dynamics.

Table 5: Bandwidth usage for single expressions.

Bandwidth size: 100Mbps LAN Client Platform: System 1
Playout Buffer Size: 30 CPU: INTEL Core 2 Duo 2194 Mhz
Receiver Buffer Size: 100 RAM: 1GB
Player Speed: 250ms GFX: INTEL Q35 Express 384MB
Threshold: 40% AVERAGE FPS: (1024x768) 469.6

Expression

Server Side Receiver Side

Bandwidth
used Bytes

Transferred
Transmission send

Time (average seconds)
Bytes

Received

Transmission
Recv time

(average-seconds)

Playback duration
(average-seconds)

Surprise 19 0.0189 19 0.0149 1.0212 0.148%

Fear 18 0.0228 18 0.0150 1.0307 0.141%

Disgust 13 0.0155 13 0.0148 1.0213 0.102%

Anger 18 0.0149 18 0.0155 1.0305 0.014%

Happiness 11 0.0154 11 0.0154 1.0185 0.086%

Sadness 11 0.0214 11 0.0153 1.0152 0.086%

GRAPP 2016 - International Conference on Computer Graphics Theory and Applications

234

REFERENCES

Alkawaz, M. H., Mohamad, D., Basori, A. H. & Saba, T.,
2015. Blend Shape Interpolation and FACS for
Realistic Avatar. 3D Research (Springer Link), 6(6).

Alkawaz, M. H., Mohamad, D., Rehman, A. & Basori, A.
H., 2014. Facial Animations: Future Research
Directions & Challenges. 3D Research (Springer
Link), 5(12).

Bermano, A. et al., 2013. Facial Performance
Enhancement Using Dynamic Shape Space Analysis.
ACM Transactions On Graphics (ACM TOG).

Edge, J. D. & Maddock, S., 2001. Expressive Visual
Speech using Geometric Muscle Functions. Proc.
Eurographics UK, pp. 11-18.

Ekman, P. & Frieson, W., 1977. Facial action coding
system. Consulting Psychologists Press.

Kahler, K., Haber, J. & Seidel, H. P., 2001. Geometry-
based muscle modeling for facial animation.. In Proc.
of Graphics Interface,, p. 37–46.

Kalra, P., Mangili, A., Magnetat-Thalmann, N. &
Thalmann, D., 1992. Simulation of facial muscle
actions based on rational free form deformations.. In
Proc. of Eurographics, pp. 59-69.

Lewis, J. P. et al., 2014. Practice and Theory of
Blendshape Facial Models. EUROGRAPHICS State of
the Art Reports 2014.

Liu, Y. & Wang, S., 2010. A virtual teleconferencing
system based on face detection and 3D animation in a
low-bandwidth environment. International Journal of
Imaging Systems and Technology, 20(4), pp. 323-332.

Magnenat-Thalmann, N., Primeau, E. & Thalmann, D.,
1988. Abstract muscle action procedures for human
face animation. Visual Computer, 3(5), pp. 290-297.

Noh, J. & Neumann, U., 1998. A Survey of facial
Modeling and Animation Techniques. Technical
Report, University of Southern California.

Ostermann, J., 1998. Animation of synthetic faces in
MPEG-4. Computer Animation, pp. 49-51.

Parke, F., 1972. Computer generated animation of faces.
ACM Annual Conference.

Pauly, M., 2013. Realtime Performance-Based Facial
Avatars for Immersive Gameplay. Proceedings of the
ACM SIGGRAPH Conference on Motion in Games
2013.

Prakash, K. G. & Balasubramanian, 2010. Literature
Review of Facial Modeling and Animation
Techniques. International Journal of Graphics and
Multimedia, 1(1), pp. 1-14.

Sifakis, E., Neverov, I. & Fedkiw, R., 2005. Automatic
determination of facial muscle activations from sparse
motion capture marker data. ACM. Trans. on Graphics
(SIGGRAPH).

Tanguy, E., 2001. An Abstract Muscle Model for Three
Dimensional Facial Animation. Technical Report,
University of Sheffield, UK.

Tena, J. R., Torre, F. D. L. & Mathews, I., 2011.
Interactive Region-Based Linear 3D Face Models.
SIGGRAPH.

Waters, K., 1987. A Muscle Model for animating 3D
facial expressions. Computer Graphics
(SIGGRAPH'87), 21(4), pp. 17-24.

Weise, T., Bouaziz, S., Li, H. & Pauly, M., 2011. Realtime
Performance-Based Facial Animation. Transactions
on Graphics (Proceedings SIGGRAPH 2011), 30(4).

Wojdel, A. & Rothkranz, L. J. M., 2001. FACS Based
Generating of Facial Expressions. Proceedings of 7th
annual conference of the Advanced School for
Computing and Imaging, ASCI’01.

Wojdel, A. & Rothkranz, L. J. M., 2005. Parametric
generation of facial expressions based on FACS.
Computer Graphics Forum, Volume 24, pp. 743-757.

Low Bandwidth Video Streaming using FACS, Facial Expression and Animation Techniques

235

