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Abstract: The authors propose a method that describes line structures in given 3D medical images by estimating the

values of model parameters: A Gaussian function is employed as the model function and the values of the

parameters are estimated by means of a weighted integral method, in which you can estimate the parameter

values by solving a system of linear equations of parameters which are derived from differential equations
that are satisfied by the Gaussian model function. Different from many other model-based methods for the

description, the proposed method requires no parameter sweep and hence can estimate the parameter values
efficiently. Once you estimate the parameter values, you can describe the location, the orientation and the

scale of line structures in given 3D images. Experimental results with artificial 3D images and with clinical
X-ray CT ones demonstrate the estimation performance of the proposed method.

1 INTRODUCTION the scale helps to group the described local line struc-
tures into the description of global ones.

In this article, the authors propose a method that  One of the most major foundations for describing
accurately and efficiently describes local line struc- local line structures, especially for estimating their
tures in 3D medical images. The description explic- scales, can be found in a conventional scale-space
ity denotes the location, orientation, and thickness analysis (Lindeberg, 1994; Lindeberg, 1998), which
(scale) of each line structure in given 3D images and supplies a theoretical background of the scale selec-
is needed for automatically detecting and analyzing tion in the computation of the SIFT key-points (Lowe,
anatomical vessels or tubes of patients in computer 1999; Lowe, 2004). In the scale-space analysis, you
aided diagnosis systems: Global structures of curvesblur a given image by Gaussian filters with various
such as the blood vessels or the bronchi are oftenscales and estimate the location and the scale (size) of
extracted from given images through multiple stages each structure in the image by observing the change
and you describe the local line structures at the very of image features with respect to the blurring scale
first stage in the curve structure extraction (Papari and change. Spatial image derivatives that are normal-
Petkov, 2011). For example, active contour models ized with respect to the blurring scale are employed
(Kass et al., 1988) or active shape models (Cootesfor the image features. A ridge detection method
et al., 1995) are often employed for extracting curve proposed by Lindeberg (Lindeberg, 1998), for exam-
structures and they require edge detection before theple, estimates the location and the scale of each ridge
models are registered. Edges are generally detectedstructure based on a ridge-strength feature computed
by local operators and the performance of an edge de-from the scale-normalized second derivatives: The
tector is often evaluated by the accuracy of the de- method firstly blurs a given image at various scales
tected edges. Not only the locations but also the di- to obtain a set of images blurred at different scales,
rections of edges should be accurately described whenthen detects center points of ridge structures based on
you employ Euler curves for describing curve struc- the first spatial derivatives and computes the ridge-
tures in given images (Kimia et al., 2003; Tamrakar strength feature at each of the detected center points.
and Kimia, 2007). In (Engan et al., 1999), the blur- The locations and the scales of ridge structures in the
ring scales of edges also play a very important role given image are finally detected by extracting the de-
for describing curve structures in images. The accu- tected center points at which the ridge-strength fea-
rate information of the location, the orientation, and ture is locally maximum with respect to the blurring
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scale change. It should be noted that the scales of the
structures are estimated by detecting the local maxi-
mum of the ridge-strength feature and that the maxi-
mum points are detected by sweeping the scale-space.

Not only the method (Lindeberg, 1998) but also many -1
other methodsd.g. (Zhu et al., 2010; Si and Zhu,

2012)) estimate the values of the model parameters by

sweeping a parameter space. This means the parame- v>

ter values estimated by those methods are essentially
quantized and you need to sample the parameter space
more densely in o_rder_for improving th_e accuracy of Figure 1: Parameters to be estimated for the description of
the parameter estimation. Steerable filters (Freemang jine structure.

and Adelson, 1991) are also widely used for describ-

ing local line structures especially for estimating their

directions. You can continuously rotate the direction 2 WEIGHTED INTEGRAL
of a steerable filter with varying the value of a pa- METHOD FOR 3D IMAGES

rameter and can estimate the direction by referring to

the change of the filter response with respect to the Emploving a Gaussian function. the pronosed method
parameter value: Steerable filter-based methods alsoesti?na)t/esgthe arameters of th’e funF():ticE)n for describ-
require the sweep of the parameter space. Curvelets P

(Starck et al., 2002; Woiselle et al., 2011), Wavelets Ing given local appearances by means of a weighted

(Chuang and Kuo, 1996), and Gabor filters (Zhu et al., Wegral method.

2010; Si and Zhu, 2012) are also often employed for .

describing curves or ridges and their representation of 2-1  Notation

line features are essentially discretized. Eigen vectors

of a Hessian (Sato et al., 1998) can estimate the lineLet a three-vectorx = (x,y,2)", denote the coordi-

directions in a continuous way but additional opera- nates in a given image and I&(x) denote a local

tions are required for accurately estimating the center cubic area in a given image of which center is located

location of a line structure. atx. Letu= (u,v,w) (-W <u,v,w < +W) denote
The proposed method, on the other hand, can es-the local coordinates iQ(X) where the origin is lo-

timate the location, orientation, and size of each line cated ax and letlo(u) denote an image appearance

structure without sweeping a parameter space. Anal-in Q(X).

ogous to the scale-space analysis (Lindeberg, 1994; In the proposed method, a Gaussian model func-

Lindeberg, 1998), the proposed method employs ation, shown in Eq. (1) is employed for describing a

Gaussian function for representing a line structure in a local image appearance.

given image and describes the structure by estimating 1

the values of the parameters of the Gaussian function f(ulA %) = Aexp{—(u N (TE u)} ,

so that the resultant Gaussian function fits to the local 2

line structure. For the estimation, the authors employ h 45 denote th ¢ dth 1) .

a weighted integral method (Ando and Nara, 2009), wherepandz denote the mean vector and the covar

which was developed for estimating the temporal fre- ance matrix of the Gaussian fu_nctlon, respectlyely,

quencies of one-dimensional signals. and a scalai, denotes the magnitude of the function.

Given a signal, a weighted integral method esti- Let the_elgenvalugs & be denoted by (i=1,2,3) .
mates the values of the parameters of a model funC_sorted in decreasing order and let the corresponding

tion by solving a linear system in the parameters, eigenvectors be denoted . Let assume that a

which is derived from differential equations that are line struc';urg IS qgszr\t/’ed if2(x) a_nd tfhat t_he “ni

satisfied by the model function. No parameter sweep- itruft)l\”e 'S)\ ejcgl e d tﬁ aI_Gaug_ﬂar]f un_ctlon. T” ?n,

ing is needed and the values obtained by the method, 1= %h>> I 3 o anf i el' ine h |re;: |onflls parz €

are essentially quantization-free. The contributions do Va. i deboca lon ot the fine structure &2 can be

of this article are as follows: The weighted inte- escribe 3’1_(899_ Fig. 1).

gral method is formulated for the analysis of 3D im- F_or the e§t|mat|on of the .parametqnsandz, we

ages for the first time and its description performance rewrite f(-|-) in (1) as follows:

is evaluated using artificial images and medical CT

ones. f(ulA',0) :A’exp{ > eaByu“vBWV}. 2)
oy
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Here,a,B,y € {0,1,2} and 1< o+ B+y< 2. Bgpy f oy, DECaUse of the spatial integration. By apply-
denote the coefficients a®vPw¥ andA’ denotes the  iNg the partial integration to the first term of the left
magnitude 8 = (6,p,)" is a nine-vector. Given alo- hand side of (5), you obtain the following equation:
cal image, o (u), the proposed method estimates the ac(u)

values of the nine parametel8, in (2) by using a /qu(u)c(u)du: [f(u)c(u)]g—/gf(u)—du.

weighted integral method, of which details are de- du @)

scribed in the next subsection. It is straightforward yoy can eliminate the first term of the right hand side
to computeu andz in (1) from@. of (7) if you employ a weight function such that

2.2 Weighted Integral Method c(u)=0 if ueaQ(x), (8)

. . . . where 0Q(x) denotes the boundary of the region,
Given a signal, a weighted integral method (Ando and Q(x). In the proposed method, we hence employ the
Nara, 2009; Goto and Hontani, 2013) estimates the Hann window function for cons:tructirrr_:{u)'

values of the parameters of a model function for fit-
ting the model to the given signal. The values are c(uw) = p(u)p(v) p(W)e—J(ﬁ)TU)’ 9)
estimated not by sweeping the space of the parame- . _

ters but by solving a system of linear equations of the Wherew = (wy,w,, )" denotes the frequencies of
parameters, which is derived from a set of differential the complex sinusoidal function appeared in the right

equations that the model function satisfies. hand side ang(-) denotes the Hann window func-
The Gaussian functiofi(u|-) in (2) satisfies the  tion,
following differential equation at every locatiou, p(u) = % (1+ cos(%)) . (10)
M = z GG_B.Vu“‘lvaVf(uL). (3) The weight function (9) satisfies the condition shown
ou apy in (8) and now the first term of the left hand side of

Let 9o,y f(Ul-) be denoted byf qpg,(ul). It (7) has an expression as follows:
should be noted that, when a local imagig(u), is oc(u
given, the derivatives of 4z, (ul-) in (3) are known /Q fu(u)e(u)du = — /Q (u)%du. A1)
and the differential equation in (3) is just a linear
equation of the parameter8,g,. By differentiating
f(ul-) with v andw, you obtain other linear equa-
tions of@, and the proposed method estimates the val-
ues of@ by solving the system of these linear equa-
tions. The values of the derivatives in these equa-
tions, though, are easily perturbed by image noises
and hence the weighted integral method converts the
differential equations into integral ones for estimating
the parameter values more stably against the noises. iy 000 pU (a—1)By _

Let c(u) denote a weight function defined on the Joag™h Z Bupyd . (12)
local region,Q(x). The following equation holds for
any weight function because the linear equation (3) Where
holds at every location i@(X): U — /Q f(u)a;;(uu) p(v)p(w)e*j(“’wdu. (13)
/Q { fu(u) = 5 Bq pyu 1VBWyf(u)} c(u)du=0. Analogously, using an identical weight function,

aBy @ you can obtain other complex equations from the
derivatives,fy(u|-) and fy(ul-), such that

,jm\/goooJr h — Z eaBygﬂ(B—l)v =0, (14)
a,By

—jong®+h— 3 8y g®V Y =0 (15)
a,By

Using the expression shown in the right hand side
of (11), you can compute the value of the integra-
tion more accurately because you can compute the
value ofcy(u) analytically: No finite difference ap-
proximation is needed for computing the values of the
derivatives. As a result, from the weighted integral of
fu(u|-) shown in (7), you obtain one following com-
plex linear equation:

a,By

You can rewrite (4) as follows:

[ fulweidu— 5 g e 0, (5)
Q o By
where
¢V = [ WP (ue(u)du. (6)
Q Each of the linear equations consists of two equations
The values 0§? in (6) can be computed more stably that correspond to the real part and the imaginary one
against the noises than the values of the derivatives,and hence you can obtainx32 = 6 different linear
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equations of the parameters shown in (12), (14), and

(15) by computing the weighted integrals.
Having nine unknowns, you need more than nine

independent linear equations for estimating the pa-

rameter values uniquely. In the experiments, four dif-
ferent weight functions each of which corresponds to
the different frequenciesp® (k = 0,1,2,3) are used

for obtaining enough number of mdependent linear

equations and the parameter values are estimated by

solving the system of 24 linear equations such that

b©
1)
(2) i (16)
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both of which are obtained by using the weight func-
tion, c(u|w). Here,gz andg; denote the real part
and the imaginary part of the complex numlggr,

(18)

2.3 Weight Function

As described above, different weight functions are
used in the computation gf®, h, h¥, andh" shown
in (17) and (18) in order for obtaining enough num-
ber of linear equations. Different weight functions are
constructed by changing the frequencies|n the ex-
periments reported in the next section, we set
m o g

W Y

(k) _

o) (k) _

(k) _
W= w19
Where(nﬁ),n\(,k),n\(,\,)) (+1,+1,+1), (+1,+1,-1),
(+1,-1,+1), (-1,4+1,+1) fork=0,1,2,3, respec-
tively. Figure 2 shows a weight functioc(u|m(°)).

A

Imaginary part

Real part F
Figure 2: Profiles of the weight function(u|w(®).

2.4 Automatic Window Size Selection

In the proposed method, the size of windd(x),

is adaptively selected at each location. As men-
tioned above, the coefficients of the linear systems
(16) are computed by integrating the weighted ap-
pearances if). Let the side length of2 be denoted

by L (=2W +1) (see Sec. 2.1). The accuracy of the
weighted integral method depends on the sizes of the
windows in which the weighted appearances are inte-
grated for computing the coefficieng§?Y, h¥, hV, and

h", in the linear systems (16) (you will see details in
Sec. 3.1). When the window sizes are too small, the
estimation is more sensitive to measurement noises.
Too large windows, on the other hand, often degrade
the accuracy because neighboring structures are often
included in a single window and because the resultant
appearance in the window cannot be described by the
model function. Hence, you need to determine an ap-
propriate size of the window at each location in given
images for making the parameter estimation more ac-
curate. The authors propose a new method that adap-
tively selects the appropriate window size from a set
of candidate sizes for each location in given images.
As mentioned above, the weighted integral method
solves the systems of linear equations with respect to
the parameters. The proposed method selects a win-
dow size by evaluating the uniqueness of the solution
of (16). It should be noted that, though the window
sizes determined by the proposed method are quan-
tized, the estimated values of the parameters are not
gquantized at all.

Let the candidates of the window sizes be de-
noted byL©@, L@ ..., LM whereM + 1 denotes
the total number of the candidates dd@ ) < LM
(m=1,2,....M). LetL™ x LM window centered
atx be denoted by2(™(x) and let the system of the
linear equations (16) obtained witd(™ (x) be de-
noted byA™® = b™. The proposed method selects
an appropriate window size from the sél,(m)|m =
0,1,...,M}, by quantitatively evaluating the unique-
ness of the solution of the linear systed™ @ = b(™
The linear system (16) can be rewritten as follows:
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[A —b)@' =0, (20) ratio of the overlaps betweemg") and RS,”‘*”. The
where®' — [B]1]. LetA' — [A| — b]. Then, the rank total number of the candidatelsl, is determined so
of the 24x 10 métrix A, should Be equ:aml to nine th_atomaxc(ag\ be accurately ?Ms)timate_d using the largest
i.e. rankA') =9, if (20) has a unique solution. Let windowL ™, i.€. Omax < L ™. Seftul?gm-: M, the
the singular values o’ be denoted by, ,s,.....s),, equation (24) can be rewritten as follows:

wheres, > ¢, ; (n=1,2,...,9). We evaluate the v LM aomin

uniqueness of the solution of (16) as follows: = LO 7 BOmax (25)
Yo You can determine the total number of the candidates
F(Ab) = X (21) M as follows:
, , L(M) 0l Omax
Note that rankA’) = 9 when the local appearance in M = |log, o | = log, = 1. (26)
Q exactly fits the model function (1)sy > 0 and Bamin

Sip =0, i.e, the proposed criteriorf (-,-), is equal For example, whem = 1/6, B = 1/4, Omin = 2.0,
to zero. The proposed method, hence, judges that theg,,,,, = 20.0, then we obtaiM = 6. Not so many

local appearance if2 is suitable for the parameter es-  candidates are needed for covering a wide range of
timation when the values &f are close to zero. the scales.

At each locationx, the proposed method selects
the window sizé(x) that minimize$= (A™, b™) for
computing the coefficients of the linear equations. 3 EXPERIMENTS

L(x)=arg min FA™ bM) (22 _ _ o
m=0,1,...M 3.1 Experiments with Artificial Images

The candidates of the window sizes are determined as ]

follows. Let a range of the scales that should be ac- Randomly sampling the parameter values of the

curately estimated be denotedy= {0|Omin < 0 < Gaussian function, we firstly generated a set of noise-
Omax}, Whereomin and omax are the minimum scale free images of a line structure and then added Gaus-
and the maximum one to be accurately estimated, re-Sian noises to the images for obtaining a set of noisy
spectively. Let a range of the scale that can be accu-0nes. Applying the proposed method to the images,
rately estimated by using the wind&@™ be denoted ~ We evaluated the accuracy of the parameter estima-

by Rém)' whereRE,m) — [aL(™ BLM] and 0< o < B. tion of the proposed method.

The candidates of the window sizes should be deter- AS. descnbeq in Sec. .2'1’ the e|genvecto.r Qf the
mined so that the following condition is satisfied: covariance matrix shown in (1) that has the minimum

eigenvalue represents the direction of atargetline. Let
M v denote the true direction and l&tdenote the di-
To C U Rérm)~ (23) rection computed from the estimated covariance ma-
m=0 trix. For the evaluation, the window size was fixed as

In the proposed method, the minimum window size, W = 10 pixel and the scale of the lines in the artifi-
L@, is firstly determined so that the minimum scale Cial images was set &= 5.0. The direction vectors,
is in the range?éo), e aL© < Goin (< BLO). Us- v, were randomly generated under the condition that

ing the smallest window®(™, you can accurately es |Vl = 1. Figure 3 shows some examples of the ar-
. ; =27 tificial images with different SN ratios. Firstly, the
timate the scales betweer© andpL©. The size o o2 ges with di ! Irstly

fth d llest window is then determined accuracy of the estimation the line direction was eval-
orthe second smaflest window 'S(O) €n aetermined SO 5ied. The proposed method estimates the values of
that the upper boundary scalplL.'*), can be accu-

. . . the parameterd), g\, and you can straightforwardly
rately estimated not only with the windo®© but Hapy & -
also withQ®. i.e, aL® < BL(Q)_ In the proposed compute the line directiows shown in Fig. 1. Here,

. . V3 IS a unit 3-vector and can be represented by a sin-
method, we determine the second smallest window 3 b y

) 0 . 0) gle point on a unit sphere. Let the true direction of the
size so thaRy” overlaps with the one quarter B, line in a given image be denoted faand let the point

ie. aLW = (o +3)L9/4. Analogously, we deter-  of the unit sphere correspondingitde denoted by .
mine all of the window sizes as follows: We represented the distribution of the estimated direc-
L(m — me(O)’ (24) tions, V3, from the synthesized i_mages by the points
on the unit sphere and these points were projected on
wherep = (a+3)/(4a) in the proposed method. The the tangent plane to the unit spheré/atThe resul-
value of the coefficientp, varies depending on the tant distributions observed at different SN ratios are
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Figure 5: Experimental results of the scale estimation.

Figure 3: Examples of the artificial 3D images.

[—SNR=20dB|

. 0.06¢ scales you can accurately estimate with the window
g : SNR=40dB Size,L*_

= 0.04f —SNR=w dB | The robustness of the proposed method, the ability
o I A of the method against input images of which patterns
=3 0.02} do not strictly obey the model, is evaluated. In this

9 I article, we report on the results obtained when the in-
S 0.00: put line patterns were represented by a pill-box model
2 0 02’ such that

QO - L

(O] ) .

= I 1 it x®+Z <0’

© _0.04 l(x0) = {O, otherwise (27)

~0.06 -0.03 000 003 0.6
direction along e_0 [rad]
Figure 4: Experimental results of the estimation of the di-

rections.

The estimation performance against non-Gaussian
patterns is improved by firstly blurring the input im-
ages with Gaussian of which scale g§, estimat-
ing the scale@? using the propose method and out-
putting 6> = 6% — 03. Figure 6 shows the results.
demonstrated in Fig. 4. The red, green and blue dotsAs shown, the proposed method unfortunately under-
correspond to the estimated directions from the im- estimated the scales, but the estimated scale values
ages with the SN ratio =, 40, and 20 dB, respec- were proportional to the true ones. It should be noted
tively. As shown in the figure, the estimation error that the scale space analysis (Lindeberg, 1994; Linde-
variance increased with respect to the decrease of theperg, 1998), which is one of the most standard method
SN ratio but the estimation was unbiased: The centerfor the scale estimation, is also biased: When non-
of the dots was identical with the true direction. Gaussian patterns are input, the scale-space analysis
Then, for evaluating the accuracy of the scale esti- outputs biased scales, which are proportional to the
mation, a set of the artificial images in which the line true scales (Lindeberg, 1994). On the other hand, as
structures have varieties of the scale values was usedshown in Fig. 6(B), the estimated directions of non-
A graph shown in Fig. 5 shows the result. The hor- Gaussian line patterns were unbiased.
izontal axis of the graph indicates the values of the Then, we evaluated the performance of the win-
true scales and the vertical one indicates the ratio of dow size selection. As mentioned above, an appropri-
the estimated scalé to the true one. As shown in ate window size should be selected because atoo large
the graph, when the given images are noise free im- window often includes not only a target line but also
ages, the proposed method successfully estimated theneighboring other structures and fails to accurately es-
scales regardless of the value. When the SN ratio de-timate the parameter values and a too small window
creased, the estimation quality degraded at the smalleris too sensitive to image noises and fails to accurately
scales ¢ < 2) and at the larger scales (- 6). It estimate the parameter values. For the evaluation, we
should be noted that these results were obtained with agenerated two sets of artificial images. One set con-
fixed window size Il = 2W + 1) and that these results  sists of images of two separate lines with different

are useful for determining the values @fand of 3,
which determine the range of the scaRg, in which

directions and the other set consists of images of a
curved line. When multiple lines are included in a
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0.02 z=0. The squares in the 2D images indicate the smallest,
§ the middle, and the largest applied windows.
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Figure 6: Experimental results obtained from a set of artifi- _ An_gle between 2 fines [rad] _
cial images that satisfy the equation (27). Figure 8: Experimental results of the effects of the window

size selection on the estimation accuracy. In the legend,

) . . WSS means the window size selection.
given image, you cannot accurately estimate the pa-

rameters and so you need to automatically select anyows. As shown. the value dF was the smallest
appropriate (not too small) windows size so that the \yhen the window was enough large comparing with

window includes only one single line structure. Top ihe |ine width and was enough small so that no neigh-
panels in Fig. 7 show some examples of the images boring structures was included.

of two lines and the bottom ones show three windows

with different sizes. As shown, when the windows . . .

size is large, the two lines are included in the window. 3-2 EXperiments with Medical Images

As shown in Fig. 8, when you automatically select an

appropriate window size at each location in given im- The authors applied the proposed method to a set of
ages, you obtain more accurate estimations than whenX-ray 3D medical images of the lungs for describing
you use fixed size windows. Figure 9 shows exam- the structures of the blood vessels. Figure 12 shows
ples in the latter set. As shown, images of curves some examples of the inputimages and Fig. 13 shows
with different curvatures are given. When a curve the descriptions obtained by the proposed method.
line is given, the image pattern in the window devi- In Fig. 13, the odd rows shows the results obtained
ate more largely from a Gaussian straight line model by the proposed method and the even rows shows
as the window size is increased. As shown in Fig. 10, the surface rendering of the differences between the
smaller size of windows were selected when the cur- given images and the results. The second column,
vatures of the lines were larger and the estimation ac-the third one, and the fourth one show the result ob-
curacy was improved by applying the automatic win- tained by the proposed method with the fixed window
dow size selection. Figure 11 shows an example of size W = 5,6, 8), respectively, and the right column
the change of (A, b) with respect to the window size.  shows the results obtained by the proposed method
The left panel of Fig. 11 shows an input image and with the window size selection. In the odd rows in
thee windows with different sizes and the right panel Fig. 13, the parameter values estimated by the pro-
shows the value oF computed with the three win-  posed method are indicated by colored line segments:
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r==80 r=40 r=20
Figure 9: Examples of the curve structures. The 2D images
in the bottom row show the coronal-slice£ plane) aty =
0. The squares in the 2D images indicate the smallest, the
middle, and the largest applied windows.
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(A) Scale estimation

20 30 40
Window size, L [pixel]
(B) Proposed criterion
Figure 10: Experimental results of the effects of the window

size selection on the estimation robustness.

The location of each segment is determined by the
estimated locationy, the direction of the segment
is determined by the estimated directiag, and the
color of the segment is determined by the estimated
scale. You can reconstruct line structures from these

line segments: Generating a Gaussian that has the es-

timated parameters from each of the segments, you

obtain line structures that have the estimated param-
eter values. We compared this reconstructed images

with the input original ones. Let a reconstructed im-
age be denoted by, and let the corresponding input

0.01

e

F(A,b)

0.005

0.5 1
-20 -10 0 Angle between 2 lines [rad]

Input |mages Proposed criteriorf; (A, b)

Figure 11: Experimental results of the proposed criterion,
F (A, b), obtained from the set of the artificial images of two

separate lines.
! .
s -
z=28

z=20

0

z=12
Flgure 12. Examples of the X-ray CT images of lungs used
in the experiments. Some axial slices are indicated.

z=36

image be denoted byput. LetA| = lre — linput. TO €N-
hance the difference, we binarized the difference im-
age/ and demonstrated binarized images in the even
rows in Fig. 13. In the binarized images, blue color
regions indicatéy, > 0 and the pink regions indicate

A < 0. As shown in the figures, we obtained more ac-
curate reconstruction when the window size is adap-
tively selected at each image location. As you can see
the figures, our method failed to reconstruct the pat-
terns of non-line structures such as junctions and we
need to implement such the regions by using the line-
structure descriptions. Table 1 shows the mean value
of the over-detection rate and the detection failure rate
for each method when the results shown in Fig. 13
were obtained. As shown, the proposed method with
the window size selection can estimate the values of
the parameters, that describe the line structure at each
location, more accurately and more robustly than the
weighted integral method with the fixed size window.

Table 1: Comparison of the mean among the results shown
in Fig. 13 on the accuracy of the line description.

Over-detec- Detection
Proposed method tionrate failure rate
Fixed asW =5 27.5% 6.7 %
Fixed asW =6 23.0% 14.5 %
Fixed asW =8 7.2% 42.0 %
Window size selection 12.7% 10.9%
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v

Fixed size window Fixed size window Proposed method

Input images Fixed size window

Figure 13: Examples of the descriptions obtained from treggies shown in Fig. 12. The columns from second to fifth show
the results by the proposed method with the fixed size windgdw=(5, 6,8) and the window size selection, respectively. The
colors in the odd rows indicates the estimated s@afg,cool colors indicates thin lines. In the even rows, redepand pink
indicate the regions dfnput, &1 > 0, andA; < 0, respectively.

4 CONCLUSIONS linear structures in 3D images. The weighted inte-
gral method linearizes the parameter estimation prob-
In this article, the authors proposed a new method lem based on the differential equations satisfied by
that accurately and efficiently estimates the parame-the Gaussian model function. The proposed window
ters of the Gaussian model for describing local curvi- Size selection determines appropriate window sizes by
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evaluating whether a solution of the system of the lin- Lowe, D. G. (1999). Object recognition from local scale-
ear equations exists uniquely. Experimental results invariant features. I®roc., IEEE Int'l Conf. Comput.
demonstrated that the method estimated accurately ~ Vis. volume 2, pages 1150-1157.

and robustly the parameter values of local curvilinear Lowe, D. G. (2004). Distinctive image features from scale-
structure in given images, and that the estimated val- ~ nvariant keypoints. Int' J. Comput. Vis, 60(2):91~
ues of parameters obtained the method describe accu-

rately and robustly the curvilinear structures in given
3D medical images.
Future works include to develop a method that

can describe local appearances using the other model

functions that is not the Gaussian functi@ng, the

Gabor function and the wavelet, and that can auto-
matically select an appropriate model function at each

location from a set of the model function.
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