SemNaaS: Semantic Web for Network as a Service

Mohamed Morsey', Hao Zhu', Isart Canyameres?, Samuel Norbury',
Paola Grosso! and Miroslav Zivkovic!
lInformatics Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
2i2CAT Foundation, 08034 Barcelona, Spain

Keywords:

Abstract:

Cloud Computing, Network as a Service, Network Markup Language, Semantic Web.

Cloud Computing has several provisioning models, namely Infrastructure as a service (IaaS), Platform as a

service (PaaS), and Software as a service (SaaS). However, cloud users (tenants) have limited or no control over
the underlying network resources and services. Network as a Service (NaaS) is emerging as a novel model to
bridge this gap. However, NaaS requires an approach capable of modeling the underlying network resources
and capabilities in abstracted and vendor-independent form. In this paper we elaborate on SemNaaS, a Semantic
Web based approach for supporting network management in NaaS systems. Our contribution is three-fold. First,
we adopt and improve the Network Markup Language (NML) ontology for describing NaaS infrastructures.
Second, based on that ontology, we develop a network modeling system that is integrated with the existing
OpenNaaS framework. Third, we demonstrate the benefits that Semantic Web adds to the Network as a Service
paradigm by applying SemNaaS operations to a specific NaaS use case.

1 INTRODUCTION

Cloud infrastructures and cloud services are becom-
ing the de facto architecture to support operations of
large web infrastructures, to process Big Data and to
provide users with ubiquitous and scalable computing
and storage services. This model of operation is prov-
ing effective thanks to its scalability and the associated
economic advantages. Still there are less explored chal-
lenges for an optimal operation: one of them being the
delivery of tailored network services.

New frameworks are emerging to define and create
such dynamic network services; they effectively pro-
vide easy APIs to define services at the network level,
while leveraging new capabilities such as Software
Defined Networking methods and Network Virtualiza-
tion techniques. These frameworks in essence support
Network as a Service (NaaS) operations.

There are several definitions for NaaS:

e (Costa et al., 2012) defines it as a modern Cloud
Computing paradigm in which the user has access
to the network infrastructure. Via Naa$S, the user
can apply custom forwarding according to his/her
application requirements.

¢ In (Minoves et al., 2012), the authors define NaaS
as a strategy which enables the deployment of dy-
namic infrastructures which support various ap-

Morsey, M., Zhu, H., Canyameres, I., Norbury, S., Grosso, P. and Zivkovic, M.
SemNaaS: Semantic Web for Network as a Service.

plications, with each application having its own
network usage technique. The NaaS methodol-
ogy offers virtual infrastructures to the user via
software and/or web services.

The common element among the above definitions is
that NaaS provides dynamicity and better matching
between network performance and application require-
ments.

1.1 Benefits of Semantic Web for NaaS

The emerging NaaS software systems require power-
ful and rich vocabularies, such as the ones that can be
provided by Semantic Web ontologies. Those vocabu-
laries should hide the network implementation details
from the user. Thus, NaaS users can fully express their
needs in terms of services, without having to know the
details of physical network devices. This is particu-
larly significant when the requested network services
span multiple domains that need to interoperate. OWL
ontologies provide three main advantages as models
for NaaS:

1. they are easy to extend;

2. they allow for automatic validation of both requests
and provisioned services;

3. they enhance network resource discovery.

27

In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 27-36

ISBN: 978-989-758-182-3

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

The last advantage is the most distinguishing factor
in adopting them as models for NaaS. Network users
often request network resources providing different
software programmability levels and different hard-
ware configurations. An example would be a request
for programmable network paths that use different
links depending on the application data being passed
between a sender and a receiver. This illustrates that
discovering suitable resources that match high user/ap-
plication dependent requirements is really a difficult
task. However, the representation of this metadata in
the ontology supports the keyword-based discovery of
resources that often miss relatively capable resources.
With semantic descriptions of resources, NaaS can not
only discover the resource that exactly matches with
that of the request, but also retrieves resources that
exhibit subsumption relation when the exact match is
not found.

Furthermore, RDF is a graph-based data model which
promotes it for modeling computer networks, as a
network forms a graph of interconnected nodes. This is
quite advantageous for connectivity checking and path
finding at early stage, i.e. prior to the actual network
provisioning, which ultimately lowers the reservation
cost (cf. Section 5).

1.2 The SemNaaS approach

We propose a novel approach to tackle the problem of
augmenting NaaS for clouds with a semantic dimen-
sion. In the following we highlight:

1. our novel Semantic Web-based approach for NaaS,
called SemNaaS;

2. our methods to empower the interconnection of
distributed NaaS instances;

3. the application of our approach to OpenNaaS' as
an example framework supporting NaaS;

4. a demonstration of a real world use case, which
shows SemNaaS in operation.

The rest of the paper is structured as follows. First,
we discuss related work in Section 2. Afterwards, we
elaborate on the SemNaaS approach in 3. In 4, Open-
NaaS is discussed in detail, which we use as the NaaS
provider. In Section 5, we discuss the architecture
of the SemNaasS system, and elaborate the SemNaaS
features in Section 6. Finally, we evaluate our system
using a use case showing the benefits of Semantic Web
to NaaS in Section 7, before we conclude in Section 8.

Uhttp://opennaas.org

28

2 RELATED WORK

Many disciplines leverage Semantic Web technology,
including networks and Cloud Computing, in order to
model their computing infrastructures. Peter Haase et
al. (Haase et al., 2010) introduce a strategy for man-
aging enterprise Cloud environments. They utilize Se-
mantic Web to tackle the challenges involved in man-
agement of enterprise Cloud systems. They develop a
product called eCloudManager, which depends on an
ontology for modeling eCloudManager data. However,
the system and its ontology only focus on the man-
agement aspect of Cloud systems. Furthermore, They
do not address the problem of how various computing
components are interconnected to each other.
Santana-Pérez et al. (Santana-Pérez and Perez-
Hernandez, 2012) propose a scheduling approach for
federated hybrid Cloud systems, based on semantic
technologies, capable of scheduling and allocating
tasks to the most suitable resource(s). The approach
reuses and modifies the UCI project ontologies”, which
comprise the information model. Although the ontolo-
gies cover a wide spectrum of details, they do not
cover the interconnection between the various Cloud
components.

Haak et al. (Haak and Grimm, 2011) present an
ontology-based optimization framework that enables
the Cloud service providers to figure out the best suit-
ing resource combination that fulfills the user’s request.
The approach focuses only on the resource composi-
tion optimization without addressing the issue of using
semantic technologies for administering the Cloud en-
vironments.

(Dastjerdi et al., 2010; Ngan and Kanagasabai, 2012)
propose ontology-based methodologies for discover-
ing and brokering Cloud services. Both works use
semantics for user requirements and Cloud provider
advertisements, and then apply a matchmaking algo-
rithm to find the match between a requirement list and
the list of advertised units. Both define multiple levels
of matching, ranging from exact match to no match.
Nevertheless, both concentrate only on Infrastructure
as a Service (IaaS) provisioning.

Semantic Web Service (SWS) discovery (Junghans
et al., 2010; Stollberg et al., 2007) tackles the problem
of automated discovery of Web Services that fulfill the
given requirements. The discovery process devotes a
matchmaking algorithm for finding usable Web Ser-
vices for solving the problem at hand. However, these
approaches can not be applied on complex intercon-
nected computing infrastructures.

Generally, all these approaches neither address the
networking strategy, nor define a Network as a Service.

Zhttp://code.google.com/p/unifiedcloud

This leads to the necessity of new methodology that
gives the user more control over the networking and
network resource reservation.

3 SemNaaS APPROACH

SemNaaS aims to improve OpenNaaS using Semantic
Web technologies. The main advantage of SemNaaS
is that it is a generic system in which OpenNaaS is
a pluggable component. In other words, SemNaaS
exposes its functionality as a set of APIs and RESTful
web services, which OpenNaaS consumes. Hence, if
OpenNaasS is replaced with any other Network as a
Service platform, the latter can still benefit from the
semantic capabilities SemNaaS offers. Furthermore,
SemNaaS provides the capability to track and monitor
the process of network resources provisioning at its
various stages starting from resource(s) request to the
release of those resource(s). SemNaasS is also open
source® .

The main objective of SemNaasS is to add a semantic
dimension to OpenNaaS, and subsequently to Network
as a Service paradigm. That includes several potential
improvement aspects for OpenNaaS:

* Support of network request validation and network
connectivity check;

* System monitoring and failure condition detection;

* Capability of constructing distributed and intercon-
nected OpenNaaS instances;

» Complex status report generation.

3.1 Preliminaries on RDF and SPARQL
1.1

According to the abstract treatments of RDF (Arenas
et al., 2012; Pérez et al., 2006), we assume I, ‘B, and
L be three pairwise disjoint sets denoting the sets of
IRIs, blank nodes, and literals respectively.
Definition 1 (RDF Triple). An RDF triple T is a tuple
(s,p,0) € (IUB) x I x (IUBUL) where s, p, o are
called subject, predicate and object, respectively.
Definition 2 (RDF Graph). An RDF
graph is a finite set of RDF triples G =
{(s1,p1,01),(52,2,02); 0 (Sns Pns0n)} ~ where s;
is the subject, p; is the predicate and o; is the object of
triple ;.

Definition 3 (SPARQL Graph Pattern). A SPARQL
triple pattern is a tuple of the form (I U V) x (I1U
V) x (IULUYV) where I is the set of IRIs, L is

3http://github.com/dana-i2cat/semnaas

SemNaaS: Semantic Web for Network as a Service

the set of literals, and V being the set of variables.
SPARQL basic graph pattern (BGP) is a finite set of
triple patterns.

Definition 4 (SPARQL Property Path). According
to (Harris and Seaborne, 2013) a property path can
be defined as: (1) if i € I — i is a property path, and
(2) if p and q are property paths, then ('p), (p/q), (p|q),
(p*), and (p*) are property paths as well, where " de-
notes inverse, / denotes sequence, | denotes alternative,
* is Kleene star, and + is Kleene plus.

3.2 Network Markup Language (NML)

The NML ontology is at the core of the SemNaaS
system, as it constitutes the main concepts required to
create, define and link various network nodes. We have
reused and improved the Network Markup Language
(NML)* ontology (van der Ham et al., 2013). NML
is an ontology constituting the information model for
describing and defining computer networks. The de-
velopers of NML kept it abstract with the possibility
of extension in order to customize it for certain use
cases.

In order to use NML for NaaS, we have enhanced the
ontology in order to permit the creation of complex
network topologies®. The enhancements include de-
vising more classes and properties and improving the
existing ones as well.

New Classes and Properties. A path between two
network nodes is simply an ordered list of links, start-
ing from the start node and ending at the end node.
Hence, in order to represent a path between two Node
instances, we added two classes, namely ListItem
which is the parent class of Link and LinkGroup.
We also added class Path which denotes an ordered
list of ListItems. Furthermore, we added prop-
erties hasSourceNetworkObject and hasSinkNet-
workObject and declared them as the inverse of prop-
erties isSource and isSink respectively. Those prop-
erties assist in connectivity checking (cf. Section 5).

Improved Classes and Properties. Basically, the
network provisioned by OpenNaaS might span
multiple geographical locations, thus we declared
Location as a subclass of geo:SpatialThing®.
Property locatedAt is declared as subproperty of
geo:location, and its domain is NetworkObject

“http://www.ogf.org/documents/GFD.206.pdf

5The ontology is available at http://bitbucket.org/uva-
sne/indl/src/master/nml.owl

Ohttp://www.w3.0rg/2003/01/geo/wgs84 pos#

29

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

& (@
[

C geo:SpatialThing

rdfs:subClassOf

C nml:Location

C nml:Group

rdfs:subClassOf

Trdfs:subclassof
nml:NetworkObject

owl:Thing %,

X
c time:TemporalEntity

rdfs:subClassOf

C nml:Lifetime

() time:hasBeginning

() time:hasEnd

C time:Instant

rdfs:domain

P _time:inXSDDateTime...i5...

rdf:type owl:Class
o rdf:type owl:DatatypeProperty
0 rdf:type owl:ObjectProperty

Figure 1: The key concepts and properties NML ontology.

and its range is Location. Furthermore, class Life-
time represents the time period during which a Net-
workObject is active, and it is quite helpful in case
of Network as a Service, as the network resources
are reserved for a specific amount of time. Lifetime
is declared as a subclass of time:TemporalEntity
of the W3C Time ontology (Hobbs and Pan, 2006).
We also utilized properties t ime:hasBeginning and
time:hasEnd to denote start and end times of a reser-
vation respectively.

1 illustrates the key classes and properties of NML.

4 OpenNaaS

OpenNaaS$, i.e. Open Network as a Service, is an open
source framework for network resources provision-
ing’. It enables the deployment, management, and
configuration of dynamic network infrastructures. Fur-
thermore, it defines vendor-independent interface to
access and administer services provided by those net-
work resources (Minoves et al., 2012; Aznar et al.,
2013).

OpenNaaS was first conceived over the NaaS paradigm
as a key enabler to offer virtual infrastructure ser-
vices to third parties. It supports the creation of a vir-
tual representation of a physical resource (e.g. router,
switch), based on an abstract model of it which is often
achieved by partitioning or aggregation.

It is built upon a set of core concepts, which are mainly
resources, model, and capabilities. These concepts can
be summarized as follows:

» Resources: The manageable units of OpenNaaS.
They are the entities the user can own, manage and
operate, e.g. a switch and a router.

* Model: The resource exposes a model that enables
checking state and capabilities of this resource.

"The source code of OpenNaaS is available at
https://github.com/dana-i2cat/opennaas/

30

Any change in resource state is reflected on its
model.

 Capabilities: A capability is an interface to a re-
source functionality, e.g. Open Shortest Path First
(OSPF) configuration capability for a router re-
source. A resource may contain several capabili-
ties exposing its functionality.

In summary, resources represent physical and virtual
devices, as well as networks. Resources use a model
to represent their state and expose capabilities, which
are vendor neutral interfaces to a given resource func-
tionality. Each resource has a defined lifecycle, which
defines its current state, e.g. active and inactive. Only
when the resource is active, all its capabilities are ini-
tialized and available for its use. The same also applies
to the resource model.

4.1 OpenNaaS Architecture

The OpenNaaS system consists of three layers, namely
the platform layer, the NaaS layer, and the network
intelligence layer, as illustrated in 2.

3P
Middleware

OpenNebula
OpenStack NS
NSA (NSI)
Network
Intelligence
Layer

A

Scripting

V| V|
Remoting

N

3P
Extensions

NaaS$ Layer

o
H 2
: i
k4 .
= x
3 S
3 43
2

BoD Resource
Optical Switch
Resource

Resource Layer

Persistence .

Resource Lifecycle

Protocol Session Manager

Platform
Layer

Security

Figure 2: The OpenNaaS framework architecture.

The Platform Layer. The platform layer, marked in
orange in OpenNaaS architecture diagram, is the Open-
NaaS technological framework. It is the foundation of
the NaaS layer. The platform layer:

* is embeddable and interoperable. It can be a com-
ponent of a bigger middleware (i.e. a cloud man-
agement infrastructure);

* provides reusable concepts across plugins, such as
the definition for Resources, Capabilities, Actions,
and their lifecycle. A command toolset is built
around these concepts;

handles lifecycle and persistence, it maintains pro-
tocol session lifecycle, with an eye on session
reusability.

The NaaS Layer. The NaaS layer, highlighted in
green, reuses platform defined components to expose
user manageable resources. This layer offers support
for concrete resource types, functionalities (called ca-
pabilities) and device types. Resources and capabilities
are exposed to the user abstracted from implementa-
tion details and from hardware specifications. Hence,
this layer acts as a Hardware Abstraction Layer. Ca-
pability implementation for specific devices (called
drivers) are also part of this layer.

The Network Intelligence Layer. On top of the ab-
straction provided by the NaaS layer, applications will-
ing to manage the network may be built. These ap-
plications compose the Network Intelligence layer,
illustrated in red. It receives this name as it is where
managing policies may be defined and actions based
on them applied to the network using OpenNaaS. The
OpenNaas$ architecture is discussed in detail in (man,
2013). From the OpenNaaS perspective, SemNaaS
system introduced in this paper is an application be-
longing to this layer.

S SemNaaS ARCHITECTURE

The SemNaaS system consists of four components:

1. Request validation and connectivity checking com-
ponent;

2. Monitoring component;
3. Report generator component;

4. OpenNaaS component, which is a pluggable com-
ponent, that supports the network resources provi-
sioning.

SemNaaS architecture is illustrated in 3. The Open-

NaaS component was discussed in Section 4, the re-

maining components are discussed in the following

subsections.

SemNaaS: Semantic Web for Network as a Service

SemNaa$S Triplestore
8 itoring Report SN—
i C N—

OpenNaas

Figure 3: The SemNaaS general system architecture.

Request Generator and Validation. A crucial
NaaS function is to provide users with a network on de-
mand with a specified topology. The users can indepen-
dently use the network to do experiments or execute
jobs. In order to acquire a network topology, the user
should formulate a request, which can be generated
via the SemNaa$S user interface. That request contains
information about the various network components,
e.g. ports and links, that should be created by Open-
NaaS and their interconnection together. The NML
ontology is used to formulate that request properly (cf.
Section 3.2). Example network topology is shown in 4,
which is described in NML (in Turtle format) as indi-
cated in 3. SemNaaS enables the user to graphically
create her topology, and validate it to detect any errors
and/or warnings. 5 indicates the generated request,
and the output of its validation. On other hand, Sem-
NaasS also enables the tenant to create his/her required
topology graphically, using drag & drop. Via this in-
terface, he/she can set the namespace and component
IDs, which will contribute to the generated URIs of
various components.

SemNaaS performs two levels of validation, namely

Figure 4: A network topology example.

[Uoload Request Direct Input

Jurn:ogf.networkexample.net:2014:port C.1503>; Format N3 v
nmkhasO: <http:/ivifnwi.uva

Jum:ogfnetworkiexample.net2014:;port C.1503>.
<http://ivi.fawi.uva.,
nmkisSink nmkresourcedink1, nmkresourceink2;
i :link1, I i

net2014port A1501> anmiPort; Validate

<http://ivi.fwi.wva.
nmlisSink nml-resourcedlink1, nml-resource:link2 ;
g link1, pm ink2.
nml-resource:ReservationtifeTime a nmkLifetime ;
nmk:end "2014-10-05T15:30:00+00:00"Mxsd:dateTime ;
nml:start "2014-10-05T14:00:00+00:00"xsd:dateTime .

net:2014:port_B.1502> a nml:Port;

ror/Warning | Error Type Error Description

ning Unreachability Port http://ivi fwi.uva.nl/sne/resource/urn:ogf:networkexample.net:2014port A 1501 is NOT reachablel

2 Waming Unreachabilty Porthttp/iifwi.vanlisnefresourcelurmiogfnetworkexamplenet:2014port B1502 i NOT reachable

Figure 5: SemNaaS system validating a topology request.

31

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

request validation, and connectivity check. The first
level ensures that the request is syntactically correct,
i.e. no syntactic error exists in the request. Further,
SemNaasS uses the Pellet reasoner (Sirin et al., 2007) to
validate the request with respect to the NML ontology.
In other words, it checks that the request adheres to
the NML vocabulary, and no violation exists, e.g. no
component is declared as a port and as link at the same
time, as those concepts are disjoint.

The second level of validation, is the connectivity val-
idation, in which SemNaa$S validates the request and
detects if a network node is unreachable from another
node. That is how to detect the inaccessibility of some
components at early stage, which helps in avoiding
that problem when the resources are allocated. We uti-
lize SPARQL (Harris and Seaborne, 2013) queries to
detect any unreachability problems among the various
nodes of the requested network.

Definition 5 (Connectivity Check). Vn;,n; €
N, 3p* (n;,n;) where ni,n; are the start node and end
nodes respectively, N is the set of all nodes and p*
represents the property path between n; and n;.

Based on 5, SPARQL query in 1, retrieves each node
along with all other nodes reachable from that node.
After the request is validated, it is passed to OpenNaaS
for provisioning. Moreover, the request is saved in
RDF to Virtuoso triplestore (Erling and Mikhailov,
2007) for later use. That helps in report generation
and for system utilization analysis, i.e. it helps in
tracking OpenNaasS utilization. After performing this
two-level validation on the user’s request, a list of
errors and/or warnings, in case one exits, is returned
to the user. An error represents a violation of an NML
rule, which prevents the request from fulfillment. Thus
the request is neither passed to OpenNaaS, nor stored
in the triplestore. In case an unreachability between
two or more nodes is detected, it is just returned as a
warning to the user in order for him/her to fix.

Monitoring Controller Component. Once the re-
quest is sent, OpenNaaS determines whether the re-
quested resources can be granted immediately or the
user should wait till those resources can be granted.
During normal operation, a resource passes through
several states, which represent its current state, e.g.
active. However, the resource may experience failure
conditions as well, e.g. network connectivity failure.
All those states should also be tracked and monitored,
thus the system administrator can later analyze and
calibrate those problems.

Whenever a change occurs in the resource status,
SemNaaS tracks that change. So that the SemNaaS
data always reflects the most recent status of Open-
NaaS resources. OpenNaaS has a core component

32

called "Resource Manager” via which the user can
create, update, and/or delete resource. Furthermore,
the user can retrieve and/or change the resource sta-
tus. The resource manager provides all of its ser-
vice as RESTful web services, which enables query-
ing those services online. For example, in order
to get the current status of a resource you can use
http://www.i2cat.net/resources/resourceld/status, and
just replace resourceId with the local resource ID.
SemNaaS can utilize this interface, to regularly contact
OpenNaaS to get the status of each resource reserved
in a request. Thus, SemNaaS data always reflects the
most up-to-date state of the whole system. This also
assists in determining whether there are free resources
OpenNaaS has, which can be used to fulfill a new
request.

It is worth noting that there is a minimal dependency
from SemNaaS on OpenNaaS web services to retrieve
the status of various resources. Consequently, if Open-
NaasS is replaced by another NaaS provider, it should
provide an interface to SemNaaS for resource status
retrieval.

1 SELECT DISTINCT ?StartNode ?EndNode

2 | WHERE { ?StartNode nml:hasOutboundPort ?
StartPort.

3 ?StartPort (nml:isSource/nml:
hasSinkNetworkObject)+ ?EndPort.

4 ?EndNode nml:hasInboundPort ?EndPort }

5 | ORDER BY ?StartNode ?EndNode

Listing 1: SPARQL query to check the connectivity
between the various nodes of a sample topology.

1 SELECT ?networkResource ?startTime

2 | WHERE {?networkResource nml:existsDuring ?
lifetime. ?lifetime time:hasBeginning ?
startTimeInstant. ?startTimeInstant time:
inXSDDateTime ?startTime.

3 | FILTER ((?startTime > "2014-10-01T00:00:00Z"""
xsd:dateTime) && (NOT EXISTS {?lifetime time:
hasEnd ?endtime})) }

4 | ORDER BY ?startTime

Listing 2: SPARQL query to list all active resources
reserved after the beginning of October.

Report Generator Component. SemNaaS empow-
ers OpenNaaS, and any other NaaS framework if en-
gaged in place of OpenNaaS, to create complex reports
about the whole resource reservation process. Those
reports enable the system administrator to identify the
problematic resources of OpenNaaS, monitor the re-
source failure conditions, and identify the lifetime of
any resource, i.e. the time from its creation until re-
lease.

Definition 6 (Unreleased Resources Check). V
r € R, 31 €L, nml: existsDuring(r, 1) A

time:hasBeginning(l,t;) A — time:hasBeginning(l,t,)
where R is the network resource set, 1L is the lifetime
set, and tg,t, are the start and end times respectively.

1 nml-resource:hostl a nml:Node ;
2 nml:existsDuring nml-resource:

ReservationLifeTime ;

3 nml:hasInboundPort nml-resource:port_A ;

4 nml:hasOutboundPort nml-resource:port_A .

5 | nml-resource:swl a nml:Node ;

6 nml:existsDuring nml-resource:
ReservationLifeTime ;

7 nml:hasInboundPort nml-resource:port_B;

8 nml:hasOutboundPort nml-resource:port_B .

9 nml-resource:sw2 a nml:Node ;

10 nml:hasInboundPort nml-resource:port_C ;
11 nml:hasOutboundPort nml-resource:port_C .
12 nml-resource:port_A a nml:Port ;

13 nml:isSink nml-resource:linkl, nml-
resource:link2 ;

14 nml:isSource nml-resource:linkl, nml-
resource:link2 .

15 | nml-resource:ReservationLifeTime a nml:

Lifetime ;
16 time:hasEnd nml-resource:startTime ;
17 time:hasBegining nml-resource:enTime .

18 nml-resource:startTime a time:Instant ;
19 time:inxSDDateTime "2014-10-05T14
:00:00+00:00"""xsd:dateTime .

20 nml-resource:enTime a time:Instant ;

21 time:inXSDDateTime "2014-10-05T15
:30:00+00:00""~xsd:dateTime .

Listing 3: Example topology expressed in Turtle
(prefixes are omitted).

Various network components are connected to Reser-
vationLifeTime which is of type Lifetime, to in-
dicate the lifetime of those nodes. This represents a
reservation of network resources for certain duration.
For example, in 3 the reservation is for one and half
hours between 14:00:00 and 15:30:00. Based on
this data, a system administrator can view all unre-
leased network resources which have been reserved
after the beginning of October and are still active, in
order to release them. Unreleased resources can be
checked as in 6, which is translated into SPARQL in 2.

6 SemNaaS FEATURES

Interconnection of Distributed NaaS Instances.
One significant feature that Semantic Web adds to
NaaS, is the support of establishing multiple dis-
tributed NaaS instances and interconnecting their re-
spective components with ease. One major challenge
OpenNaaS has faced before SemNaaS, was how to
maintain the uniqueness of the IDs assigned to the
various network components, in order to interconnect

SemNaaS: Semantic Web for Network as a Service

them whenever required. In other words, each net-
work component, e.g. network node, has an ID that is
only unique within the boundaries of the OpenNaaS
instance in which it resides. That introduces an ob-
stacle in connecting the components of two remote
OpenNaaS instances. Semantic Web depends on using
URIs (Uniform Resource Identifier) as an enabling
technology. Since we use the NML ontology to de-
scribe networks provisioned by OpenNaaS, we should
assign a unique URI to each component, which plays
the role of a global identifier.

In our case we use http://ivi.fnwi.uva.nl/sne/
and http://www.i2cat.net/ as base namespaces
for the OpenNaaS instances hosted in the University
of Amsterdam and i2CAT respectively. So, for
hostl as an example, the respective URIs will be
http://ivi.fnwi.uva.nl/sne/resource/hostl,
and http://www.i2cat.net/resource/hostl.
Thus, those nodes instantiated by distant OpenNaaS
instances can be interconnected with no problem.

URIs Minting. As mentioned before, URIs en-
able interconnecting several NaaS$ instances together.
Therefore, the process of minting those URIs should
be handled very carefully. SemNaaS also provides a
RESTful web service for creating URIs, which can be
used for referencing individual objects in the network
OpenNaaS provides.

The generated URI is based on the domain name
currently registered for SemNaaS. Thus, if the
NaaS provider can provide a locally unique iden-
tifiers, e.g. linkl, the service can generate a
URI like http://ivi.fnwi.uva.nl/sne/resource/link1. On
the other hand, if the NaaS provider does not
provide such an identifier, the service can cre-
ate the URI from scratch with the help of the
current timestamp. Example URI generated is
http://ivi.fnwi.uva.nl/sne/resource/1412684412000.

7 EVALUATION AND
EXPERIMENT

To demonstrate the advantages of SemNaaS, we dis-
cuss an example on how SemNaaS is used to meet
the specific challenges in a NaaS use case. The use
case shows how SemNaaS improves the functionality
of network resource provisioning and path finding of
OpenNaaS. This request passes several phases to get
fulfilled:

1. The user sends a request with the required details,
e.g. source and destination nodes, as illustrated
in Figure 6(a). The request is formulated in NML

33

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

nml:topology

nml:hasNode

nml:Hostl

nml:RPID

D

00:00:24:37:84:
58:48:77

nml:logAtionAt

00:00:64:87:88:
58:£6:57

nml:Location]

Amsterdam

Barcelona

nml:SW1

(2)

nml:topology

nml:Host2

nml:isSource

nml:link8

nml:SW5

(b)

Figure 6: An example request (a), and reply (b) in the virtual routing function use case.

and user should use the resource URISs, generated
via SemNaasS to refer to various network elements;

2. SemNaaS receives the request, validates it, and
uses SPARQL to check the connectivity of the
nodes, in order to make sure there is a certain path
between those nodes (cf. Section 5);

. SemNaaS forwards the path finding request to
OpenNaasS for fulfillment, as discussed in the Sec-
tion 7.1;

After OpenNaaS calculates the path between
nodes, SemNaaS formulates the output response
in NML using Path class.

7.1 Virtual Routing Function

OpenNaasS interworks several types of OpenFlow con-
trollers to orchestrate network services on top of Open-
Flow infrastructures. An OpenFlow controller is an
application that manages flow control in a SDN envi-
ronment.

The Virtual Routing Function use case aims to imple-
ment inter-domain routing through OpenNaaS over an
OpenFlow infrastructure. VRF finds out a routing path
according to the routing mode such as static, Dijkstra,
and then invoke the controllers to dynamically create
flow tables of the switches on the path.

We developed a prototype to show the VRF function-
ality of OpenNaaS. The prototype includes a web
client GUI, which communicates with the capabili-
ties of OpenNaaS through REST APIs. We emulated
a Mininet network with a topology of 5 OpenFlow
switches and 3 hosts, shown in 4. The switches had
the same network capacity and controlled by Flood-
light controllers.

7 presents the sequence diagram of use case in our
emulated environment. A provider (SemNaaS in our

34

case) creates a set of abstract OpenFlow resources and
loads the OpenFlow capabilities for the resources us-
ing OpenNaaS (Step). After creating the resources,
the provider sets the controller information for the
network to build the connections between switches
and the controllers (Step 2). After that, the provider
sets the routing mode e.g. static or Dijkstra (Step 3).
At this point the provider submits a routing request
to OpenNaaS for a path between a source and a des-
tination (Step 4). OpenNaaS calculates the routing
path according to the specific routing mode (Step 4.1).
Then OpenNaasS interacts with the OFCs to create flow
forwarding rules in the switches (Step 4.2). The SDN
controller finishes the flow configuration by executing
the modification of the Route Table of switches. In the
end, the unstructured route path information is instan-
tiated by NML and returns to the provider if the flow
rules are successfully created (Step 4.3 and 5).

8 E.Iga &,,,@\t =
OpenNaaS — -
@Naas OpenNaaS COEPM Ogenfiow

1. Create abstract network

2. Set SDN controller info

3. Set routing mode

'4. Routing request

|: E.l CalFulate a path

4.2 Create flow forwarding rules:

4.3 Modify the FlowTable

4.4 Return the path

5. Path return

Figure 7: Sequence diagram for VRF functionality using
SemNaaS.

Both VRF request and reply require an information
model describing resources. SemNaaS can use NML
to describe resources in the request and reply. Fig-
ure 6(a) shows an example of a possible basic request

in the VRF use case. The request contains a start host
and a destination host. The nodes have different prop-
erties, e.g. location and IP address. As Figure 6(b)
shows, the reply from OpenNaaS components formu-
lated in NML, which is a routing path consisting of a
set of links and switches. Besides the description of re-
quest and reply, SemNaasS also validates the request for
users. It also avoids the VRF use case from receiving
wrong request and performing serious behavior.

8 CONCLUSIONS AND FUTURE
WORK

In this paper we described SemNaaS, an open source
Semantic Web based system for supporting Network
as a Service (NaaS). NaaS is a modern Cloud Comput-
ing paradigm which gives users easy control over the
networking resources. SemNaaS utilizes the Semantic
Web to add new features to NaaS systems, e.g. connec-
tivity checking. It fuses Semantic Web with Network
as a Service to develop an intelligent NaaS system.
The current version of SemNaaS uses OpenNaaS for
network provisioning, a free and open source NaaS
system. However, SemNaaS uses OpenNaaS only as
a pluggable component, i.e. it can be replaced by any
other Naa$ provisioning framework. Furthermore, we
have also elaborated a use case, to show SemNaaS in
action, and demonstrate its various features for NaaS
provisioning.

We plan to continue our work on SemNaaS, and extend
it in several directions. First, SemNaaS uses URIs for
uniquely identifying the network components, which
opens up the door for interlinking those components
to the Linking Open Data (LOD) cloud (Bizer et al.,
2009). This is quite impressive because using the LOD
cloud, the metadata of a network resource is enriched
dramatically. For instance, for a router resource when
linked to the LOD cloud, the specifications registered
in SemNaaS will increase significantly. Internet Topol-
ogy Data Kit (ITDK)? is an example potential dataset
for interlinking.

Moreover, we are contributing to the OpenMultinet
initiative (Willner et al.,), which leverages ontolo-
gies for interlinking heterogeneous networks®. That
enables describing various interconnected computing
infrastructures and cloud systems in RDF, thus help-
ing SemNaaS to control and manage heterogeneous
networks. It can also support the federation of multi-
ple testbeds, which might be in distant geographical
locations.

8http://datahub.io/dataset/itdk
9http://open-multinet.info

SemNaaS: Semantic Web for Network as a Service

ACKNOWLEDGMENTS

This work was supported by the Dutch national pro-
gram COMMIT and by funding from the European
Community Seventh Framework Programme under
grant agreement n. 605243 (GN3plus).

REFERENCES

(2013). Deliverable D4.2 Software Development Report.
Project Deliverable Mantychore.

Arenas, M., Conca, S., and Pérez, J. (2012). Counting Be-
yond a Yottabyte, or How SPARQL 1.1 Property Paths
will Prevent Adoption of the Standard. In Proceedings
of the 21st international conference on World Wide
Web, pages 629-638. ACM.

Aznar, J. L., Jara, M., Rosello, A., Wilson, D., and Figuerola,
S. (2013). OpenNaaS Based Management Solution
for Inter-data Centers Connectivity. In IEEE 5th Inter-
national Conference on Cloud Computing Technology
and Science, CloudCom 2013, Bristol, United King-
dom, December 2-5, 2013, Volume 2.

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked
Data - The Story So Far. International Journal on
Semantic Web and Information Systems, 5.

Costa, P., Migliavacca, M., Pietzuch, P., and Wolf, A. L.
(2012). Naas: Network-as-a-service in the cloud. In
Proceedings of the 2nd USENIX conference on Hot
Topics in Management of Internet, Cloud, and Enter-
prise Networks and Services, Hot-ICE, volume 12.

Dastjerdi, A. V., Tabatabaei, S. G. H., and Buyya, R. (2010).
An Effective Architecture for Automated Appliance
Management System Applying Ontology-Based Cloud
Discovery. In 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing (CCGrid),
2010. IEEE.

Erling, O. and Mikhailov, 1. (2007). RDF Support in the
Virtuoso DBMS. In Conference on Social Semantic
Web, volume 113 of LNI. GI.

Haak, S. and Grimm, S. (2011). Towards Custom Cloud
Services - Using Semantic Technology to Optimize
Resource Configuration. In Proceedings of the 8th
Extended Semantic Web Conference, ESWC 2011.

Haase, P., MathdB3, T., Schmidt, M., Eberhart, A., and
Walther, U. (2010). Semantic Technologies for En-
terprise Cloud Management. In International Semantic
Web Conference.

Harris, S. and Seaborne, A. (2013). SPARQL 1.1 query
language. W3C Recommendation.

Hobbs, J. R. and Pan, F. (2006). Time Ontology in OWL.
Working draft.

Junghans, M., Agarwal, S., and Studer, R. (2010). Towards
Practical Semantic Web Service Discovery. In ESWC
(2), volume 6089 of Lecture Notes in Computer Sci-
ence, pages 15-29. Springer.

Minoves, P., Frendved, O., Peng, B., Mackarel, A., and
Wilson, D. (2012). Virtual CPE: Enhancing CPE’s

35

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

deployment and operations through Virtualization. In
CloudCom.

Ngan, L. D. and Kanagasabai, R. (2012). OWL-S Based
Semantic Cloud Service Broker. In 2012 IEEE 19th

International Conference on Web Services, Honolulu,
HI, USA, June 24-29, 2012.

Pérez, J., Arenas, M., and Gutierrez, C. (2006). Semantics
and Complexity of SPARQL. In The Semantic Web-
ISWC 2006, pages 30—43. Springer.

Santana-Pérez, 1. and Perez-Hernandez, M. S. (2012). A
semantic scheduler architecture for federated hybrid
clouds. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on. IEEE.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y.
(2007). Pellet: A Practical OWL-DL Reasoner. Web
Semantics: science, services and agents on the World
Wide Web, 5(2).

Stollberg, M., Keller, U., Lausen, H., and Heymans, S.
(2007). Two-Phase Web Service Discovery Based on
Rich Functional Descriptions. In Franconi, E., Kifer,
M., and May, W., editors, Proceedings of the 4th Euro-
pean Semantic Web Conference (ESWC), volume 4519
of Lecture Notes in Computer Science, pages 99—113.
Springer.

van der Ham, J., Dijkstra, F., Lapacz, R., and Zurawski, J.
(2013). The Network Markup Language (NML) A
Standardized Network Topology Abstraction for Inter-
domain and Cross-layer Network Applications. In Pro-
ceedings of the 13th Terena Networking Conference.

Willner, A., Papagianni, C., Giatili, M., Grosso, P., Morsey,
M., Al-Hazmi, Y., and Baldin, I. The Open-Multinet
Upper Ontology Towards the Semantic-based Man-
agement of Federated Infrastructures. In Proceed-
ings of 10th International Conference on Testbeds and
Research Infrastructures for the Development of Net-
works & Communities (TRIDENTCOM2015).

36

