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Abstract: This paper focuses on developing an approach and technology for actionable recommendations on the 
operation of electric power network components. The overall direction of this research is to model the major 
components of a Hybrid Renewable Energy System (HRES), including power generation, 
transmission/distribution, power storage, energy markets, and end customer demand. First, we propose a 
conceptual diagram notation for power network topology, to allow the representation of an arbitrary complex 
power system. Second, we develop a formal mathematical model that describes the HRES optimization 
framework, consisting of the different network components, their respective costs, and associated constraints. 
Third, we implement the HRES optimization problem solution through a mixed-integer linear programming 
(MILP) model by leveraging IBM Optimization Programming Language (OPL) CPLEX Studio. Lastly, we 
demonstrate the model through an example of a simulated network, showing the ability to support sensitivity 
/ what-if analysis, to determine the behavior of the network under different configurations.  

1 INTRODUCTION 

We have seen in recent years several trends, which 
are significantly transforming the existing 
mechanisms for supplying energy to satisfy 
electricity demand. At the forefront, environmental 
concerns are driving a surge in motivation to integrate 
renewable energy sources into the power grid. 
Political factors exacerbate this trend, as there is a 
significant push for reducing dependency on 
imported fossil fuels. Economic aspects take into 
consideration the financial viability of operating 
those solutions, as well as the need to maintain a 
reliable source of supply.  

This last factor represents a potential problem for 
the effective deployment of some of the most 
promising renewable sources, such as wind and solar, 
stemming from the uncertain nature of their 
generation, which could drive volatility of the energy 
supply. 

Several complementary elements come into place 
to address these issues.  The establishment of smart 
grids, which expand the more traditional power grids 
by using two-way flows of electricity and information 
to create an automated and distributed advanced 
energy delivery network.  Figure 1 (U.S. Energy 
Information Administration, 2014), depicts a typical 

network configuration for a power grid. As a 
specialization of these smart grids, we see the 
development of Hybrid Renewable Energy Systems 
(HRES), or Integrated Renewable Energy Systems 
(IRES), both of which denote an elaborated energy 
grid that relies on multiple sources - in general, 
renewable ones such as solar, wind, and hydro, 
combined with traditional sources such as diesel, and 
the placement of storage technology at key locations 
on the grid, to establish a reliable, cleaner and stable 
flow of supply.  

A key problem facing decision makers is to find 
the most efficient way to operate such grids, which 
are becoming increasingly more complex, including 
different types of generation facilities, electricity 
storage equipment deployed throughout the network, 
transmission and distribution facilities, sources of 
demand scattered through a region, and markets for 
buying/selling energy and/or capacity. The question 
of electricity storage is a particularly important one, 
involving the options of placing the right storage 
technology at key locations to address multiple needs: 
balancing power supply to compensate for potential 
fuel shortages and the stochastic nature of renewable 
sources; deferring costly upgrades of the 
transmission/distribution infrastructure by placing 
storage technology next to the end consumer location; 
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allowing frequency regulation; and creating 
opportunity for revenue generation through 
secondary markets. 

This paper focuses on the problem of determining 
the optimal operation of the network in the short term, 
taking into account the components of power 
generation, storage placement, transmission, external 
markets, and consumption. The underlying decisions 
relate to the optimal flows and mode of operation of 
each component of the smart grid. Most of the current 
research in the area exhibits several limitations: it 
focuses on more specific aspects of the network, as 
opposed to an integrated view; is based on mostly 
simulation engines or heuristics, not on mathematical 
programming optimization; and much is focused on 
micro-grids, rather than largely distributed networks. 

Addressing those limitations is exactly the focus 
of the present research, proposing and implementing 
a decision guidance framework for optimal operation 
of power networks with renewable resources and 
storage.   We propose a conceptual diagram notation 
for power network topology, to represent Hybrid 
Renewable Energy Systems (HRES). We develop a 
formal mathematical model that describes the HRES 
optimization framework, consisting of the different 
network components, their respective costs, and 
associated constraints. We implement the HRES 
optimization problem solution through a mixed-
integer linear programming (MILP) model by 
leveraging IBM Optimization Programming 
Language (OPL) and CPLEX Studio. Lastly, we 
demonstrate the model through an example of a 
simulated network, showing also the ability to 
support sensitivity and what-if analysis to determine 
the behavior of the network under different 
configurations.  

There are several benefits to be achieved by the 
development of such a model. First, in a context of 
uncertain and probable growing demand, by allowing 
the planning and simulation of placement of 
components (including storage solutions) in different 
key locations on the grid, we can make a realistic 
assessment of their best utilization, and consequently, 
defer a potentially expensive upgrade of distribution 
lines. Second, we can minimize overall costs 
associated with regular operations due to a more 
efficient combination of power flows and use of 
storage. Third, we can profitably leverage existing 
energy markets, to sell excess capacity at periods of 
low demand. And finally, as a clear trend exists for 
transitioning from fossil fuels to renewable sources, 
the model can support a realistic analysis of how best 
to perform this transition. 

 

Figure 1: Distributed power system with storage 
technologies (Source: U.S. Energy Information 
Administration). 

2 RELATED WORK 

A significant body of research has been developed in 
the past few years to address the smart grid and the 
aspects related to its planning and operations. The 
first group of research surveys existing work on the 
topic rather than proposing new methods. Fang et al. 
(2011) define the smart grid as an enhancement to the 
traditional power grid of the 20th century, by 
leveraging two-way flows of electricity and 
information to create an automated and distributed 
advanced energy delivery network. They performed a 
survey of a large amount of work, classified into three 
major categories: Infrastructure System (i.e. the 
technologies underlying the Smart Grid for 
generation, information control and 
communications); Management System 
(management techniques for optimal operation of the 
grid); and Protection System (security). Our present 
work falls mainly in the second category. 

Other surveys (Baños et al., 2011; Erdinc and 
Uzunoglu, 2012; Chauhan and Saini, 2014) provide a 
comprehensive review of optimization and heuristic 
methods applied to individual renewable sources of 
energy to achieve optimal sizing of components. 
Similarly, Deshmukh and Deshmukh (2008) provide 
a review of the mathematical modelling of the 
different components of an HRES. The methods 
covered include traditional methods such as Linear 
Programming (LP), Quadratic Programming (QP), 
Mixed Integer-Linear Programming (MILP), as well 
as heuristics and meta-heuristics approaches, 
including Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), Artificial Neural Networks 
(ANN), and others. Although robust results were 
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achieved in those areas, the research focuses on 
optimizing the size of individual sources, and does 
not deal with the energy flows between components 
involved in the operations of the combined network. 

As many of the optimization models deal with 
multi-objective optimization, conventional methods 
can be used through unification of the objectives into 
one consolidated function, or through a Pareto-
optimal set, in which a set of non-dominated solutions 
are selected. Alternatively, less traditional methods 
are proposed (Katsigiannis et al., 2010), in which a 
Multi-Objective Genetic Algorithm is utilized to 
minimize the system long term Cost of Energy (COE) 
as well as the amount of emission of CO2 – 
equivalents, using a life-cycle approach that takes 
into account emission beyond the production of 
energy. This model, however, is designed to address 
the optimal combination to be utilized among the 
different components, but does not address the design 
of a flexible network from an operational perspective, 
as we do in our model. 

Several models have been developed to explore 
other alternative methodologies, with the intent of 
deflecting the inherent difficulty of traditional 
optimization models. Mahor et al. (2009)  provide a 
review of multiple papers that attempt to overcome 
the problem through the use of Particle Swarm 
Optimization (PSO), but those papers focus on the so 
called ‘Economic Dispatch’ problem, and on 
planning the output of given set of generating units. 
For this problem, the network flows did not play a 
role.   Courtecuisse et al. (2010) propose a 
methodology for designing a fuzzy logic based 
supervision model for an HRES, based on the 
guidance of maximizing the usage of wind power, and 
minimizing the use of non-renewable power by 
designing a supervisor system that controls the power 
generation of each component, and its frequency. 
However, they do not attempt to optimize the 
functioning of the HRES for cost, environmental 
impact, or other objectives. 

Much work is focused on the demand side, 
ranging from prediction models based on Artificial 
Neural networks (Yokoyama et al., 2009; Ekonomou, 
2010), to learning consumer behavior through 
piecewise regression (Luo et al., 2012; Luo and 
Brodsky, 2010), and to mechanisms for Demand Side 
Management (DSM) and Demand Regulation (DR) to 
counter the constraints on the renewable energy 
supply (Moura and de Almeida, 2010). This line of 
work complements our solution, in terms of load and 
consumption projections, but it does not address our 
main area of focus. 

Other research focuses on simulating the HRES 
model, and on developing optimization strategy to 
minimize Net Present Cost (investment costs plus the 
discounted present value of all future costs) or the 
‘Levelized’ Cost of Energy (total cost of the entire 
hybrid system divided by the energy supplied by the 
same) (Bernal-Agustin and Dufo-Lopez, 2009). 
Although the concept is useful in solving complex 
and non-linearized problems, it focuses on stand-
alone hybrid system, not on distributed networks. 

Several papers focus on optimization of hybrid 
models through Linear Programming approaches  
(Cormio et al., 2003), where the model describes the 
energy system as a network of flows, by combining 
the use of multiple sources (renewable and non-
renewable) of energy services, through a given 
planning horizon. The objective function to be 
minimized encompasses all fixed and variable costs 
(investment and operations), subject to a series of 
constraints related to demand, sources, environmental 
impacts, etc. The model builds on a comprehensive 
modelling of the different elements/components for 
generation and consumption, however, it does not 
support a modular approach for adding components 
located in different parts of the network, with 
considerations of distribution flows among possibly 
segregated regions.  

In the realm of software solution packages, many 
comprehensive models were also developed, one of 
the best known being HOMER (Lambert et al., 2006), 
which provides a robust framework for planning and 
simulating an HRES model for a micro-grid, and 
driving the identification of the optimal model 
through the simulation of discrete number of 
scenarios. A good number of packages were 
developed in the same vein. HOMER (as well as other 
similar packages), offers a user-friendly framework 
that allows the flexibility to incorporate the elements 
as required, by establishing options for each 
component, amount, and sizing, together with the 
determination of patterns for the grid load, and 
external factors such as wind, sunlight, etc. that affect 
the behavior of the components. Their framework, 
however, does not address the problem which is the 
focus of our research in two respects: it is based on a 
simulation approach as opposed to relying on true 
optimization techniques, and it solves the problem for 
micro-grid planning but does not address a larger 
energy distribution network.  
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3 TOPOLOGY 
REPRESENTATION FOR 
POWER NETWORKS 

Based on the power network depiction in Figure 1, we 
generate a topology diagram (Figure 2), which maps 
every physical facility in the picture to a 
corresponding component in the diagram below, 
Orange circles represent generators, blue circles 
represent aggregators, yellow circles represent 
market, green circles represent storage (for the 
purpose of this exercise, we don’t differentiate 
between different storage technologies, purple circles 
represent transmissions, lines represent power flows, 
small ovals represent the power flow identifiers, and 
red rectangles represent demand (both residential and 
commercial).  

 

Figure 2: Topology Diagram. 

This diagram can serve as the basis for establishing 
the formal model in the next section, as well as the 
case study subsequently, as it provides a modular 
view for the components to be assembled in distinct 
forms to reflect different network configurations. 

The topology diagram can be used for two 
interrelated decision problems: 

1. Operational (short term) – for every hourly 
interval, determine the optimal power flows 
across multiple components to satisfy projected 
demand during a given time horizon, while 
optimizing an objective function (e.g. cost 
optimization, emissions, or a combination of 
factors). A decision to be made at the beginning 
of each hourly interval, as a rolling time horizon. 

2. Planning/Investment (mid to long term) – based 
on expected demand growth, decide on preferred 
investments on network improvements. This 
problem normally involves decision on policy, 
when evaluating larger scales networks. 

This paper focuses on problem 1 – although it can 
support the analysis on problem 2, by allowing what-
if analysis on the operations under each option being 
evaluated. 

In the next section, we will introduce a formal 
description of the model, addressing the key 
considerations for each component, as well as the 
main variables involved. 

4 FORMAL MODEL 

4.1 HRES Optimization Framework 

We define an optimization framework as a tuple: 
HRES: 

ሺܶ, ,ܨ ,ܣ ,ܨܫܣ ,ܨܱܣ ,ܲܯܥ ,ܨܫܥ ,ܨܱܥ ,ܵܦ ,ܵܩ ,ܵܤ ܶܵሻ 
 

Where: 
 

 T = ሼ1,2,3…ܰሽ  is the Time Horizon with 
fixed intervals 1, 2,…, N (each with duration 
IntervalLength) 

 F  is the set of flow ids between the 
components of the network 

 A is the set of aggregator ids 
 AIF: ܣ → 2ிis an Aggregator Input Flow 

function that, for each aggregator ܽ	 ∈
 gives a set of its input flows AIF(a)	,ܣ

 AOF: ܣ → 2ி is an Aggregator Output Flow 
function that, for each aggregator ܽ	 ∈
 gives a set of its output flows AOF(a)	,ܣ

 CMP is the set of component ids, including 
generators, transmission/distribution, 
batteries, demand sources 

 CIF: ܲܯܥ → ܨ ∪ ሼ߉ሽ , where  Λ ∉  is a	,ܨ
function that, for every component ܿ	߳ܲܯܥ, 
gives: 

ሺ1ሻ	݅ݏݐ	ݐݑ݌݊݅	ݓ݋݈݂	ܨܫܥሺܿሻ 	∈  ܨ
OR 

ሺ2ሻ	ܨܫܥሺܿሻ ൌ	 
	Λ	݋ݐ	݁ݐܽܿ݅݀݊݅	ݐ݄ܽݐ	ݐ݊݁݊݋݌݉݋ܿ	ܿ	ݏ݁݋݀	ݐ݋݊	݁ݒ݄ܽ	
 ݓ݋݈݂ݐݑ݌݊݅	݊ܽ	

 COF: ܲܯܥ → ܨ ∪ ሼ߉ሽ , where  Λ ∉  is a	,ܨ
function that, for every component ܿ	߳ܲܯܥ, 
gives: 
ሺ1ሻ	݅ݏݐ	ݐݑ݌ݐݑ݋	ݓ݋݈݂	ܨܱܥሺܿሻ 	∈  ܨ
OR 
ሺ2ሻ	ܨܱܥሺܿሻ ൌ 

	Λ	݋ݐ	݁ݐܽܿ݅݀݊݅	ݐ݄ܽݐ	ݐ݊݁݊݋݌݉݋ܿ	ܿ	ݏ݁݋݀	ݐ݋݊	݁ݒ݄ܽ 
 ݓ݋݈݂ݐݑ݌݊݅	݊ܽ	

 DS = (D, dF), is the Demand Structure tuple, 
where: 
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D ⊆ CMP  is a set of demand source IDs; 
We require that demand source IDs  do not 
have output flows, i.e.   ሺ∀݀	 ∈
ሺ݀ሻܨܱܥ		ሻܦ ൌ  ߉	

dF: 	ܦ ൈ ܶ → Թାis the demand function 
that, for each demand source d and time 
interval t, gives the predicted demand 
dF[d,t] in kw. 

 GS = (G, fPr, gCap, gEff) is the Generators 
Structure tuple, where: 
o G ⊆ CMP is the set of generator ids; 

we require that generators do not have 
input flows, i.e.  

o ሺ∀݃	 ∈ ሺ݃ሻܨܫܥ		ሻܩ ൌ  ߉	
o ݂ܲ:ݎ	ܩ  ൈ ܶ → Թାis the price function 

that for each generator g and time 
interval t, gives the expected fuel price 
fPr[g,t] in $/Btu 

o ݃ܩ  :݌ܽܥ → Թାis a function that gives 
for each generator g, the maximal 
capacity of generation gCap(g)  in kw 

o ݃ܩ :݂݂ܧ → Թାis the function that gives 
for each generator g, the efficiency 
gEff(g) in Btu/kw. 

 ܶܵ ൌ
	ሺܶܦ, ,ܴܮ ,ܥܯܶ /݊݋݅ݏݏ݅݉ݏ݊ܽݎܶ	݄݁ݐ	ݏ݅	ሻ݌ܽܥݐ
,݈݁݌ݑݐ	݁ݎݑݐܿݑݎݐܵ	݊݋݅ݐݑܾ݅ݎݐݏ݅ܦ   :݁ݎ݄݁ݓ

o TD ⊆ CMP is the set of 
Transmission/݊݋݅ݐݑܾ݅ݎݐݏ݅ܦ ids 

o :ܴܮ	ܦܶ → ሾ0,1ሿ is the Loss Ratio of 
each Transmission/݊݋݅ݐݑܾ݅ݎݐݏ݅ܦ 
id 

o TMC:	ܶܦ → Թାis the annual 
maintenance cost for each 
Transmission/݊݋݅ݐݑܾ݅ݎݐݏ݅ܦ id 

o ݌ܽܥݐ:  Tܦ → Թାis the maximal 
capacity of transmission in kw for 
each Transmission/݊݋݅ݐݑܾ݅ݎݐݏ݅ܦ 
id 

 BS = (B, NBC, BLC, BMC, bcF, BIE, M, bmP, 
ppC) is the Battery Structure tuple, where: 

o B ⊆ CMP is the set of Battery ids 
o NBC: ܤ → Թାis the new battery 

cost (for replacing each battery id) 
o BLC: ܤ → Թାis the Battery 

Lifecycle Parameter, for each 
battery id 

o BMC:B → Թାis the annual 
maintenance cost for each Battery 
id 

o bcF: ܤ ൈ ܶ → Թାis the battery 
capacity function that for each 
battery b and time interval t, gives 

the expected energy storage 
capacity bcF(b,t) in kwh 

o BIE: B  → Թାis the battery initial 
energy level at t = 0 

o M is set of market ids being served 
by batteries 

o bmP: B	ൈ	M → ܾ݉ܲሾܾ,݉ሿ are all 
battery-market pairs, for ∀ܾ	 ∈  ܤ
and ∀݉	 ∈  ܯ

o ppC: B  ܯ → Թା is the price that 
each market is willing to pay for 
committed capacity (in $/kw) 

4.2 HRES Optimization Problem 

The formal HRES Optimization is stated as: 
 

							 Min
ሺ௞௪,௕ா,௖ி௟,ௗி௅,௖ଶ௠ி௅,௖஼ሻ	

 (1)            ݐݏ݋ܥ݆݀ܣݒܴ݁

Subject to Ca, Cg, Ctd, Cd, Cb 
 

Where the decision variables, objective and 
constraints are given below: 

 

Decision Variables: 
 kw is the matrix of elements kw[f,t], where for 

every flow f ∊ F and every time interval t ߳	ܶ, 
kw[f,t]  gives the the amount of kilowatts 
transferred between two components 

 bE is the amount of energy stored in a battery at 
a time interval t 

 cFL is the Boolean value (charge flag) that 
indicates if a battery is being charged at a time 
interval t 

 dFL is the Boolean value (discharge flag) that 
indicates if a battery is being discharged at a time 
interval t. 

 c2mFL is the Boolean value (commit to market 
flag) that indicates if a battery’s capacity is 
committed to a market at a time interval t 

 cC is the committed capacity of a battery to a 
market at a time interval t 

 

Objective Function:  
 

ݐݏ݋ܥ݆݀ܣݒܴ݁ ൌ ܥ݃ ൅ ܥݐ ൅ ܥܾ െܴ݉                (2) 
 

where: 
 RevAdjCost is the overall cost through the time 

horizon reduced by market revenue  
 gC is the cost associated with operating the 

power generators during the time horizon (see 
section 4.4) 

 tC  is cost of maintaining the Transmission/ 
Distribution stations during the time horizon (see 
section 4.5) 
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 bC is the cost of operating the batteries, as well 
as the associated battery depreciation cost, based 
on usage through the time horizon (see section 
4.7.1) 

 mR is the revenue associated with committing 
batteries to market throughout the time horizon 
(see section 4.7.2) 

Constraints: 
 Ca = Aggregators’ constraints (see section 4.3) 
 Cg = Generators’ constraints (see section 4.4) 
 Ctd = Transmission/Distribution constraints (see 

section 4.5) 
 Cd = Demand constraints (see section 4.6) 
 Cb = Batteries’ constraints (see section 4.7.3) 

4.3 Aggregators 

Power Aggregators consolidate power flows 
originated from m different sources, and redistribute 
the same flows into n different destinations. We 
assume no operational costs to be incurred with 
power aggregators.  
 

The main constraint for each Aggregator is given by: 
 

Ca: ∑ ,ሾ݂ݓ݇ ஺ூிሺ௔ሻ	ఢ	ሿ௙ݐ  ൌ ∑ ,ሾ݂ݓ݇ ∈஺ைிሺ௔ሻ	ሿ௙ݐ

  ሺ∀ܽ߳	,ܣ	߳ݐ	ܶሻ 
(3)

4.4 Generators 

We assume only output flows from the Power 
Generators (in the simplified case of only 
combustible fuel generators). The cost of operating 
each power generator is given by the fuel cost 
(Dollars per BTU), the generator efficiency (BTU per 
kWh), and the amount of output flow during the given 
time interval: 

GenCost[݃,t] =  fPR[݃,t] * gEff [݃] * kw[f, 
t] * IntervalLength  

,ܩ	߳݃∀  ) ,ܶ	߳	ݐ  ሺ݃ሻሻܨܱܣ	߳	݂
(4)

 

Total operating cost for all generators across the 
whole time horizon is given by the sum of GenCost 
across Generator Ids and time intervals t, i.e. 

gC = ∑ ,ሾ݃ݐݏ݋ܥ݊݁ܩ ீ	ఢ		்,௚	ሿ௧ఢݐ                                (5) 

he only constraint for the output flow is given by 
the generator’s maximal capacity: 

 

Cg:  kw[f,t]  ൑  gCap[݃] 
ሺ∀݃߳	ܩ, ,ܶ	߳ݐ  ሺ݃ሻሻܨܱܥ	߳	݂

(6) 

 

4.5 Transmission/Distribution 

The total cost associated with 
transmission/distribution is given by the sum of the 
known maintenance costs for each distribution station 
through the time horizon, i.e.  
 

                  tC = ∑ ்஽	ఢ	௧ௗ	ሿ݀ݐሾܥܯܶ                      (7)       
 

A fixed loss ratio is assumed to be known for each 
transmission/distribution station. Therefore, it carries 
a constraint of a given relationship between output 
and input flows based on the loss ratio:  

 

 Ca1:  kw [f1, t] = (1.0 - LR[݀ݐ]) * kw[f2,t]  
ݐ∀) ߳ ܶ, ݀ݐ ߳ ,ܦܶ ݂1߳ ,ሻ݀ݐሺܨܱܥ  ሻሻ݀ݐሺܨܫܥ		2݂߳

(8)
 

A second constraint is given by the maximal 
transmission capacity for the station: 

 

Ca2:  kw [f,t]  ൑  tCap[݀ݐ] 
ݐ∀) ߳ ܶ, ݀ݐ ߳ ,ܦܶ  ሻሻ݀ݐሺܨܫܥ	݂߳

(9)

4.6 Demand 

Given our assumption that all end demand is satisfied, 
and only input flows of electric power are applicable, 
the main constraint is that the sum of input flows 
equals total demand for any end demand point for any 
time interval t:  
 

Cd: kw[f,t] = dF[݀,t] 
ݐ∀) ߳ ܶ, ݀ ߳ ,ܦ ݂߳  ሺ݀ሻሻܨܫܥ

(10)
 

For the same reason, revenue from end demand is 
not considered in the cost / Revenue optimization (as 
it is unchanged for a given demand load). 

4.7 Energy Storage / Batteries 

4.7.1 Batteries Cost  

Cost of operating each battery for any time interval is 
given by adding the maintenance cost for the battery, 
and its depreciation cost. The depreciation is given by 
the cost of battery replacement (NBC), the 
cumulative charge and discharge at the end of the 
period (cCD) and a known battery lifecycle parameter 
(BLC): 
  

 bDep[ܾ] =   
ሾܾሿܥܤܰ ∗ ݐሾܾሿሾܦܥܿ ൅ 1ሿ

ሾܾሿܥܮܤ
 

ݐ∀) ߳ ܶ, ܾ ߳   ሻܤ

(11)

 

The accumulated amount (absolute value) that 
charges and discharges through a battery at the end of 
each time interval (t+1), is given by: 
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cCD[ܾ,t+1] = cCD[ܾ,t] + (kw[f1,t] + kw[f2,t]) * 
IntervalLength 
,ܶ	߳	ݐ∀) ,ܤ	߳	ܾ ,ሺܾሻܨܫܥ	߳	1݂  ሺܾሻሻܨܱܥ	2݂߳

(12)

 

where 
 

cCD[ܾ][0] = 0                                                  (13) 
 

For the overall Battery Costs: 
 

batCost[ܾ] = BMC[ܾ] + bDep[ܾ]                   (14) 
 

bC = ∑ ∈஻	௕	ሾܾሿݐݏ݋ܥݐܾܽ                                      (15) 

4.7.2 Batteries/ Market Revenue 

If a battery is committed to a market for a given time 
interval t, additional revenue is generated, given by 
the price per capacity for that market and the 
committed capacity for the time interval (cC): 

ActualMarketRev [ܾ݉ܲሾܾ,݉ሿ ][t] = 

ppc[݉][t]  * cC[ܾ][t]  
(16)

In this model, for sake of simplicity, the capacity 
is treated as constant over the time horizon. Note that 
during the time intervals where the battery is 
committed to a market, the net flow of energy is zero, 
i.e. the energy at the end of the period is equal to that 
at the beginning of the same period. 

The total market revenue (mR) is given by:  
 

    mR = ∑ ஻	ఢ	்,௕	ఢ	ሿ௧ݐሾܾሿሺܸܴ݁ݐ݁݇ݎܽܯ݈ܽݑݐܿܣ         (17) 

4.7.3 Batteries/ Market Constraints 

At any time interval, as the following battery states 
are mutually exclusive: 
 Charged – only input flows going into the 

battery. 
 Discharged – only output flows going to 

subsequent components in the network. 
 Committed to a market (i.e. using existing 

unused capacity at any time interval to sell it to 
an external market and provide revenue).   

Additionally, any battery can be committed to no 
more than one market at any given time interval. 

 

This translates into the following constraints,  
 

,ܶ	߳	ݐ∀) ,ܤ	߳	ܾ ,ሺܾሻܨܫܥ	߳	1݂  : ሺܾሻሻܨܱܥ	2݂߳
 

Bc1: cFL[ܾ][t] + dFL[ܾ][t]  + 
∑ ሿெ௝ݐሿሾ	ሾܾ݉ܲሾܾ,݉ሿܮܨ2݉ܿ  ൑ 1 

(18)

 

Bc2: cFL[ܾ][t] =  1 iff kw[f1,	ݐ])> 0 
    (0 otherwise) 

(19)

Bc3: dFL[ܾ][t]  =  1 iff kw[f2,	ݐ] > 0 
  (0 otherwise)       

(20)

Regarding the amount of energy stored in the 
battery at any point in time, it starts with a given 
amount, ends the time horizon with the same amount, 
and oscillates throughout the time horizon based on 
charges and discharges of the battery: 

 

Bc4: bE[ܾ][1] = bE[ܤ௜][	ܰ ൅ 1 ] = BIE[ܾ]  (21) 
 

bE[ܾ][ݐ ൅ 1] = bE[ܾ][   ([ݐ	,f2]kw – [ݐ	,f1]kw + [ݐ
* IntervalLength  

(22)

5 IMPLEMENTATION AS MILP 
AND CASE STUDY 

A simple version of this model was developed using 
IBM OPL CPLEX Studio. 

We proposed different scenarios to provide 
insights into the model, and to correspond to the 
intuition of what to expect from its behavior for 
different combinations of components ads their 
characteristics. We also followed a given sequence of 
key steps that constitute the methodology: First, we 
depict each scenario as the topological representation, 
as described in section 3. Next, we capture each of the 
component characteristics into the variables defined 
by the HRES optimization framework. Lastly, we 
implement the MILP problem solution, by translating 
these variables into IBM OPL CPLEX Studio, and 
running the solver, to derive the solutions.  

We examined scenarios in which the different 
parameters combinations drive distinct decision 
variables for the time horizon. As explained in prior 
section, we are examining a 24 hour time horizon, 
with a time unit of one hour. For each hourly interval, 
in essence, we are determining what would be the 
optimal value for power flows, battery states, 
commitments and costs, for the full 24-hour time 
frame. On real life utilization scenario, two possible 
operation modes could be considered: in the first, a 
planning engine would run based on the expected 
demand for the upcoming day, and after execution, 
the planning engine plans the subsequent day 
operation; another option, would be to re-evaluate 
dynamically the planning within a rolling time 
horizon, as every hour we could look at actual values, 
as well as adjustments on demand for upcoming 24 
hours.  

With these insights in mind, we proceeded to scale 
up the model, to reflect the topology depicted in 
Figure 2, and built (again recurring to synthetic data), 
to create the four scenarios depicted below.  
 Scenario 1: Generation and transmission 

capacity can satisfy the demand. 
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 Model recommendation: not using batteries 
in operation, and always committing them to 
market.  

 Scenario 2: For some hours in the time horizon, 
the fuel cost is very high.  
 Model recommendation: discharging 

batteries at that time. 
 Scenario 3: The generators capacity cannot 

satisfy some peak demand (for some hours of 
operation). 
 Model recommendation: using batteries for 

these periods. 
 Scenario 4: The transmission capacity is limited, 

so that it is not sufficient during some hours of 
peak demand.  
 Model recommendation: using the batteries 

downstream (at the distribution areas), to 
offset lack of power from upstream. 

6 CONCLUSIONS AND FUTURE 
DIRECTIONS 

In this work, we demonstrated an approach for 
optimizing the operations of components of an 
electric power network, including power generation, 
transmission/distribution, power storage, energy 
markets, and end customer demand (residential and 
commercial).  A prototype was developed using IBM 
OPL CPLEX Studio, to make recommendations for 
operating the network, while minimizing revenue-
adjusted overall costs for a given time horizon. A 
simple topology was created, and different scenarios 
were examined to assess the basic behavior of the 
model, in common situations, based on realistic 
synthetic data. The initial results demonstrate the 
validity of the approach, and provide some promising 
directions for future development, including 
operations optimization, investment planning / 
policy, and the technology aspects of the solution.  

Regarding operations optimization, the model can 
be refined in several ways: first, by introducing 
energy generation through wind and solar power, as 
alternate source to the fuel based generators; second, 
by incorporating stochasticity in demand (and 
possibly supply too, especially with renewable 
sources); Third, by introducing real data.  

In the realm of long term planning, the framework 
should be expanded, to include infrastructure/ capital 
investment recommendations to achieve long term 
goals. This process would possibly involve multiple 
stakeholders / decision-makers, in the public and 
private sectors, which could also drive policy 

decisions that address multiple goals (including 
environmental impact, regional employment, system 
reliability, etc.).  The model would evaluate the 
effects of different policies (e.g. tax incentives, 
emissions regulations), as well as the prioritization of 
investment in network assets (such as new batteries, 
new distribution lines, etc.).  

Finally, from a technology perspective, we could 
develop more flexible tools, to allow a more intuitive  
and reusable model, as well as incorporating other 
features such as learning and prediction mechanisms.  
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