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Abstract: Cloud computing, an emerging computing and service paradigm, where the computing and storage 
capabilities are outsourced on demand, offers the advanced capabilities of sharing and multi-tenancy. But 
security has been a major barrier for its adoption to enterprise, as being placed with other tenants on the 
same physical machine (i.e. co-residency or co-location) poses a particular risk. Former research has shown 
how side channels in shared hardware may enable attackers to exfiltrate sensitive data across virtual 
machines (VMs). In view of such risks, tenants need to be able to verify physical isolation of their VMs. 
This paper presents Sift, an efficient and reliable approach for co-residency detection. Through a pre-
filtration procedure, the time for co-residency detection could be significantly reduced. We describe the 
cloud scenarios envisaged for use of Sift and the accompanying threat model. A preliminary validation of 
Sift has been carried out in a local lab Xen virtualization experimental platform. Then, using the Amazon’s 
Elastic Compute Cloud (EC2) as the test platform, we evaluate its practicability in production cloud 
environment. It appears that Sift can confirm co-residency with a target VM instance in less than 5 seconds 
with an extremely low false rate. 

1 INTRODUCTION 

Cloud computing has become an essential 
technology. Commercial third-party clouds allow 
businesses to avoid over provisioning their own 
resources and to pay for the precise amount of 
computing that they require. By placing many 
virtual hosts on a single physical machine, cloud 
service providers (CSPs) are able to profitably 
leverage economies of scale and statistical 
multiplexing of computing resources. Such as 
Amazon’s Elastic Compute Cloud (EC2) service, it 
offers a set of virtualized hardware configurations 
for tenants. 

However, this practice of multi-tenancy also 
introduces the risk of sharing a physical server with 
an arbitrary and potentially malicious VM, which 
enables various security attacks in the public cloud. 
There exist attacks that break the logical isolation 
provided by virtualization to breach confidentiality 
(Hund et al., 2013); (Ristenpart et al., 2009); (Wu, 
2012); (Xu, 2011); (Yarom and Falkner, 2013); 
(Zhang et al., 2014); (Zhang et al., 2012) or degrade 
the performance (Varadarajan et al., 2015); (Zhou, 
2011) of the victim. Most notable are the side-

channel attacks that steal private keys across the 
virtual-machine isolation boundary by cleverly 
monitoring shared resource usage (Yarom and 
Falkner, 2013); (Zhang et al., 2014); (Zhang et al., 
2012). Although, defenses against such 
vulnerabilities and researches on VM allocation and 
scheduling policies to mitigate multi-tenancy risks 
(Bijon et al., 2015); (Han et al., 2014) are already 
being proposed in the academic literature (Godfrey 
and Zulkernine, 2014); (Godfrey and Zulkernine, 
2013); (Raj et al., 2009), multi-tenancy risk still 
cannot be ignored. 

Venkatanathan Varadarajan et al., (2015) have 
investigated the problem of placement 
vulnerabilities and quantitatively evaluated three 
popular public clouds, including Amazon EC2, 
Google Compute Engine and Microsoft Azure, for 
their susceptibility to co-location attacks. The most 
important pre-condition for this kind of research is a 
reliable co-residency detection approach. In recent 
years, feasible detection approaches have been 
proposed (Bates et al., 2012) (Ristenpart et al., 2009) 
(Zhang et al., 2011), but some of them are not 
effective at all since the adoption of stronger 
isolation technologies such as Virtual Private Clouds 
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(VPCs). 
In this paper, we propose Sift, an efficient and 

reliable approach for co-residency detection. We 
find a new way to reliably detect co-residency, and 
the pre-filtration procedure we have raised can 
improve the efficiency. Since most VMs could be 
excluded through a pre-filtration procedure and 
filtration on VMs consumes very little time. 

This paper makes the following contributions: 
 We put Forward a New Way for Co-residency 

Detection. Unlike existing detection schemes, 
our co-residency detection scheme is based on 
the physical sharing resources. 

 The Efficiency can be Significantly Improved 
through a Pre-filtration Procedure. Through 
the analysis of those VMs already co-reside on 
identical physical machine, we have raised an 
improved co-residency detection scheme. 

 Demonstration on Amazon EC2. We use 
multiple customer accounts to launch VM 
instances under different strategies to simulate 
the actual deployment of VMs.  Then we use Sift 
to detect co-residency on those VMs. These tests 
confirm its efficiency and practicality on 
commodity clouds. 

2 RELATED WORK 

Tomas Ristenpart et al., (2009) first exposed the co-
residency detection of VMs in 2009. Since then, the 
co-residency detection problems of VMs have 
become a new research hotspot and the researchers 
proposed a lot of co-residency detection methods 
based on different techniques.  

Tomas Ristenpart et al., (2009) indicated that, on 
the EC2 platform, we can judge the co-residency of 
VMs through simple network-topology-based co-
residency checks. This co-residency detection 
approach is the simplest way to implement, but its 
accuracy cannot be guaranteed. As it is based on 
network information, it can be influenced by firewall 
policies, network traffic flow and so on, so it has a 
critical limitation. Actually, this simple network-
topology-based co-residency check is not usable 
anymore since the adoption of VPC. 

Adam Bates et al., (2012) proposed the co-
residency watermark technique based on the 
network packet delay problem of co-resident VMs. 
This technique constructed a side channel skilfully 
based on the network packet delay caused by 
multiplexing of the physical network card. An 
adversary can use this side channel to detect co-

residency with target server. This technique also has 
its own limitation. If the service provider restricted 
the upper limit of bandwidth, this co-residency 
detection method would fail. If service providers 
provide each VM with a dedicated network export, 
this co-residency detection method will also fail.  

Yinqian Zhang et al., (Zhang et al., 2011) used 
L2 memory cache to construct a co-residency 
detection tool HomeAlone. Different from the 
previous two methods, the key idea in HomeAlone is 
to invert the usual application of side channels. 
Rather than exploiting a side channel as a vector of 
attack, HomeAlone uses a side-channel (in the L2 
memory cache) as a novel, defensive detection tool. 
By analysing cache usage during periods in which 
“friendly” VMs coordinate to avoid portions of the 
cache, a tenant using HomeAlone can detect the 
activity of a co-resident “foe” VM. HomeAlone has 
two difficulties. One is how to accurately distinguish 
Cache behaviour between normal tenant's friendly 
VM and co-resident VM. Another is how to ensure 
that the performance of friendly VM will not reduce 
greatly. 

3 SYSTEM DESIGN 

3.1 Practical Application Scenarios 

3.1.1 Attack Scenario 

We assume system administrators are not interfering 
with the activities of their customers, and will not 
intervene with customer behaviour unless it is a 
threat to Service Level Agreements (SLAs) or to the 
general health of their business. We also assume that 
our target VM (victim) is trusting of the cloud 
infrastructure.  

As we need to implement communication 
between target VM and the VMs launched by the 
adversary, a receiving end has to be established on 
the target VM. It is mentioned above that co-
residency attacks in public clouds involve two steps: 
a launch strategy and co-residency detection. The 
focus of this study is to identify if there exists any 
VMs co-reside with target VM. Here we will explain 
a reasonable threat model for establishing the 
receiving end. 

In fact, this pre-condition is able to achieve 
through existing attack technique, e.g., Bundled 
Software technology. As the operations you are 
trying have no harm on the system security, it will 
not be detected by security software. Establishing a 
receiving end on target VM has nothing to do with 
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any complex or sensitive privileged operation and 
the entire process from establishing a receiving end 
to achieving co-residence consumes little time, 
which ensures a high imperceptibility. 

We assume that the adversary is in the disguise 
of a legal software package source. If the user of 
target VM accesses this source to update or install 
any software, a receiving end will be established, 
benefiting from the bundled software technology. 
Then, the essential information needed for pre-
filtration will be forwarded to the adversary through 
the normal communication process between target 
VM and adversary. Once receiving this information, 
the adversary follows the first step of co-residency 
attack to launch a large number of VM instances. 
Then, following the process of Sift, the adversary 
can find the expected VM in a very short time. 

3.1.2 Benign Scenario 

We have mentioned in the Introduction section that 
Venkatanathan Varadarajan et al., (2015) have 
investigated the problem of placement 
vulnerabilities and quantitatively evaluated three 
popular public clouds for their susceptibility to co-
location attacks. A key technique for understanding 
placement vulnerabilities is to detect whether VMs 
are co-resident on the same physical machine. Thus, 
a reliable co-residency detection approach is the 
most important pre-condition for this kind of 
research. Apparently, Sift is quite a suitable choice 
for research demand. 

3.2 System Overview 

We have analysed those VMs already co-reside with 
each other from a local lab environment to 
production cloud environments. The reason we 
perform an analysis of those VMs is to find the 
internal relation among them and set the filtration 
criteria. Then we can conduct a pre-filtration on VM 
instances we launched before. However, VMs 
meeting the filtration criteria might not be co-
resident with each other, which could lead to false 
negative. So we still need a reliable approach for co-
location test to further detect co-residence after pre-
filtration procedure. 

In this paper, we present a new way to test by 
using physical sharing resources. A covert channel 
for communication can be constructed based on the 
physical sharing resources. The pre-condition for 
VMs to use this covert channel for communication is 
that they must have co-resident relationship. That is 
to say, as long as the communication succeeds, these 

two VMs are co-resident. This ensures the accuracy 
and reliability of co-location test. 

Sift consists of three components, Collecter, 
Communicator and a Pre-filter. A filtration criteria 
could be set through the analysis of VMs’ property. 
The Collecter on each VM is responsible for 
collecting essential information and sending the 
information to the Pre-filter outside the cloud. The 
Communicator on target VM is to establish a 
receiving end based on physical sharing resources. 
The Pre-filter is like the brain of Sift. After receiving 
the information sent by Collecters, Pre-filter will 
carry out a filtration on the VMs besides target VM. 
Then it will make the decision and inform qualified 
VM to establish a sending end. According to the 
result of incoming communication process, the 
sending end will report to the brain whether co-
residency is achieved. 

 

Figure 1: System architecture. 

4 IMPLEMENTATION ON 
AMAZON EC2 

4.1 Analysis of VM Instances 

We have implemented Sift on Amazon EC2. In our 
experiment, the domain id is taken as the filtration 
criteria. Amazon EC2 is based on Xen virtualization 
technology. In the Xen virtualization technology, 
each Domain (VM) has a unique identifier called the 
domain id (domid). Differing from the UUID of 
each VM, the value of UUID does not change during 
the lifecycle of a VM, but domid does. When a VM 
reboots, the domid of a VM will change. Through 
analysing the source code of Xen (version 4.4.1), we 
have found that the Domain Us managed by same 
Domain 0 have adjacent domid. 

The code is located in xen/common/domctl.c. As 
showed in Figure 2, the rover is a static variable. We 
can see that it reserves the last assigned domid. 
Then, this value will increase by 1 and be assigned 
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to the next domain, which means when a VM boot, 
it will be assigned a new domid by increasing 1. 
When domid reaches the first reserved value, it will 
be reset to 1. 

 

Figure 2: Assignment of domid in Xen 4.4.1. 

EC2 uses a customized version of Xen. We are 
not able to obtain its source code. But Amazon EC2 
has provided dedicated service to users, so that we 
can rent a physical machine. We deployed several 
VMs on this physical machine and tried to get the 
domid of these VMs. It was found that the domid of 
VMs on EC2 presented the same regularity. If 
Amazon EC2 changes the assignment scheme of 
domid, for example, using a randomized assignment 
scheme. Here is a doubt whether this change has an 
effect on our approach. We will talk about it in the 
Discussion section. We assume that EC2 would not 
change the domid assignment scheme, and our work 
is under this pre-condition. 

4.2 Collecter 

In general case, domid is not visible to EC2 users. 
Our Collecter can acquire domid through the 
utilization of XenStore. XenStore is an inter-domain 
sharing storage system which is managed and 
maintained by Domain 0. It stores configuration of 
all VMs (include Domain 0), e.g., the domain’s 
name, domid and UUID. There are three paths in 
XenStore: 
 /vm directory stores the configuration of domain. 
 /local/domain directory stores information of 

running domain. Each subdirectory represents a 
running VM like Linux proc file system, e.g., 
/local/domain/0 represents Domain 0. 

 /tool directory stores information of all tools. 

As a privileged domain, Domain 0 can read and 
write all data stored in XenStore. However, as the 
Domain U, EC2 users only have access to its own 
data. The first reserved domid is 32752(0x7FF0U) 
as showed in Figure 2, which implies that the domid 
of Domain U ranges from 1 to 32751. 

Collecter tries to access /local/domain/<domid> 

on a VM. As the directory can only be accessed by 
the domain which has the corresponding domid 
(e.g., /local/domain/1000 can only be accessed by 
Domain 1000). The core pseudo code of Collecter to 
get domid is shown in Figure 3. Access represents 
access operation to the directory. We can determine 
VM’s domid according to its return value. If access 
succeeds, then the current i is VM’s domid. 

 

Figure 3: Assignment of domid in Xen 4.4.1. 

4.3 Pre-filter 

Through the analysis of VM instances, we have 
found that the Domain Us managed by same 
Domain 0 have adjacent domid. As the capacity of 
physical machine has a limit, we can assume that a 
physical machine can run x VMs. Therefore, we can 
infer from these facts that difference between two 
co-resident VMs’ domid is less than x (greater than 
zero as well). Pre-filter should carry out the filtration 
procedure according to the following algorithm. 

Assume that we have a sample set X={x1, x2 ... 
xn}, and we need to find all possible co-resident 
VMs in this set. Each element represents the VMs’ 
domid. In accordance with the principle of the 
nearest neighbour clustering, the algorithm is as 
follows: 
 Step 1. Select a distance threshold x (i.e. capacity 

of physical machine), and take a sample as the 
clustering center of first cluster Z1 (e.g., x1). 

 Step 2. Calculate the distance to x1 (i.e. Dn) of all 
the rest sample, if Dn < x, then xn∈Z1. Choose 
another unclassified sample (i.e. not belong to 
any cluster) as the clustering center of the second 
cluster Z2 (e.g., xm).  

 Step 3. Repeat until all VMs have been 
classified. Notice that every clustering center can 
only belong to one cluster and the other sample 
can appear in several clusters (i.e. overlap 
between partitions is allowed for the accuracy 
and efficiency). 

 Step 4. Check every cluster, if a cluster has only 
one element, it will be excluded. The remaining 
clusters are possible to be co-resident. 

Although when a VM boot, it will be assigned a new 
domid by increasing 1, when it shutdown, this used 
domid will not be recycled. So there may be two co-
resident VMs with domid differs a lot. For example, 
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assume there are two VMs running on the same host, 
with VM1 assigned domid=1 and VM2 assigned 
domid=2. Then VM2 reboot, it will be assigned 
domid=3. Reboot again, domid=4, 5, 6…. This 
special case might be missed when we have set up a 
threshold value, which will lead to false negative. 
Therefore, we have arranged two experiments. Two 
groups of VMs are launched in different time. The 
time interval for first experiment is 12 hours, and the 
time interval for second experiment is 24 hours. 
During the time interval, the other VMs on the 
physical host might reboot which will consume the 
domid. We set these two experiments to simulate 
that special case, and test the rate of false negative 
for Sift. 

4.4 Communicator 

After the Pre-filtration, the Pre-filter will inform the 
qualified VMs to establish a communication process 
using physical sharing resources. We have utilized 
the physical sharing resources of Xen VM monitor, 
such as event channel, grant table.  

Event channel is an asynchronous notification 
mechanism provided by Xen VM monitor for VMs 
to exchange information. We can try to establish 
event channel between two VMs. These two VMs 
can be determined as co-resident if the event channel 
can be established successfully. Further, we can 
construct a covert channel based on event channel 
for co-location test, such as the CCECS been 
proposed in our previous work (Shen et al., 2013). If 
two VMs can use CCECS to establish a 
communication process, the co-residency is 
achieved. 

In addition to covert channel based on event 
channel, any other covert channels satisfy the 
following conditions could be applied to co-
residency detection. 
 It is built on the physical sharing resources of 

VM monitor. 
 It can be carried out on commodity cloud, such 

as Amazon EC2 to ensure the practicability 
 It should be stable enough and have the ability of 

anti-interference to ensure the reliability 

4.5 Experiment Strategies 

We use two Amazon EC2 accounts (account A and 
B) to launch VM instances under different strategies 
that simulate the actual deployment of VMs. The 
VMs we launch have the same configuration. 

We have designed two sets of experiments. The 
first set consists of three experiments corresponding 

to three specific availability zones (us-west-2a, us-
west-2b, us-west-2c). We use account A and account 
B to launch 20 VMs at the same time, since EC2 has 
a limitation that each account can only launch 20 
VMs. The reason why we launch VMs at same time 
is to maximize the likelihood of co-residency, so we 
can demonstrate Sift better. These three experiments 
are denoted as experiment 1-a, 1-b, 1-c. 
Corresponding to the three zones. 

It has been mentioned in section 4.3 that a 
special case might lead to a false negative. 
Therefore, in the second set of experiments, we have 
arranged two experiments. Two groups of VMs are 
launched in different time. The time interval for first 
experiment (denoted as experiment 2-1) is 12 hours, 
and the time interval for second experiment (denoted 
as experiment 2-2) is 24 hours. We set these two 
experiments to simulate that special case, and test 
the rate of false negative for Sift. 

We have noticed that each account can only 
launch 20 VM instances on Amazon EC2. 
Meanwhile, Amazon EC2 has provided a dedicated 
service to users. So we can infer that Amazon just 
needs to guarantee that each physical machine could 
hold 20 VMs of any type. Thus, we set the value of x 
to 20. We will discuss how to choose a proper value 
for x in Discussion. The results of experiments will 
be given in Evaluation section. 

5 EVALUATION 

5.1 Experimental Data of First Set 

The domid of VM instances in experiment 1-a listed 
in Table 1 is in an ascending order for the 
convenience of analysing. 

Table 1: Domid of VM instances in Experiment 1-a. 

No. domid No. domid No. domid No. domid 
A1 437 A11 1039 B1 223 B11 1295 
A2 494 A12 1056 B2 314 B12 1317 
A3 514 A13 1174 B3 530 B13 1320 
A4 635 A14 1176 B4 531 B14 1320 
A5 640 A15 1439 B5 548 B15 1517 
A6 773 A16 1581 B6 1001 B16 1548 
A7 818 A17 1941 B7 1133 B17 1558 
A8 952 A18 1942 B8 1196 B18 1569 
A9 1000 A19 2117 B9 1240 B19 1615 
A10 1308 A20 4948 B10 1262 B20 9009 

 

It is mentioned in section 4.1 that each Domain 
U managed by same Domain 0 has a unique domid. 
So it can be sure that VMs have same domid are 
definitely not co-resident. Besides, VMs launched 

Sift - An Efficient Method for Co-residency Detection on Amazon EC2

427



by same account are not co-resident (Ristenpart et 
al., 2009), which has been proved in our experiment. 
We should take these into consideration during pre-
filtration procedure. 

For example, we can take A3 as the first 
clustering center. As the VMs launched by same 
account are not co-resident, we can just search in 
account B for expected VMs. Here exist B3 and B4 
meet the rule. Next, we should pick another 
clustering center from the remaining 37 unclassified 
VMs and search for those expected VMs. Then 
repeat these steps until all VMs have been classified. 
Remember that overlap between partitions is 
allowed. Figure 4 illustrates the process of pre-
filtration in experiment 1-a. 

As VMs launched by same account are not co-
resident, we can just do co-location test using covert 
channel (namely CCECS) between clustering center 
and other elements. That is to do co-location test 
between A2 and B3, A2 and B4, A9 and B6, A16 
and B18. If the test is successful, then the receiving 
VM and sending VM can be judged as co-resident. 
But unfortunately, no VMs are proved to be co-
resident in experiment 1-a. 

 

Figure 4: The result of pre-filtration is: A3{B3, 
B4}(means that A3, B3, B4 belong to same cluster with 
A3 being the clustering centre), A9{B6}, A16{B18}. 

 

Figure 5: The result of pre-filtration is: A1{B1}, A2{B3}, 
A3{B4}, A4{B6}, A6{B8}, A7{B9, B10}, A9{B11, 
B12}, A10{B13}, A14{B14, B15}. 

Without listing the domid of VMs in Table 
again, we directly illustrate the other two 
experiments through graphs. Figure 5 illustrates the 
process of pre-filtration in experiment 1-b. There 
were 12 co-location tests need to be carried out in 
total. After that, we got 4 pairs of VMs that were co-

resident. They were A2-B3, A3-B4, A4-B6, A7-
B10. 

Figure 6 illustrates the process of pre-filtration in 
experiment 1-c. There were 73 co-location tests need 
to be done in total. After that, we got 17 pairs of 
VMs that were co-resident. They were A1-B3, A2-
B4, A3-B5, A4-B6, A5-B7, A6-B8, A7-B9, A8-B10, 
A9-B11, A10-B12, A11-B13, A12-B14, A13-B15, 
A14-B16, A15-B17, A16-B18, A20-B20. 

 

Figure 6: The result of pre-filtration is: A1{B3, B4, B5, 
B6, B7, B8}, A2{B3, B4, B5, B6, B7, B8, B9}, A3{B3, 
B4, B5, B6, B7, B8, B9}, A4{B3, B4, B5, B6, B7, B8, 
B9}, A5{B3, B4, B5, B6, B7, B8, B9}, A6{B3, B4, B5, 
B6, B7, B8, B9}, A7{B4, B5, B6, B7, B8, B9, B10, B11}, 
A8{B8, B9, B10, B11}, A9{B9, B10, B11, B12}, 
A10{B11, B12, B13}, A11{B12, B13}, A12{B14, B15}, 
A13{B14, B15, B16}, A14{B14, B15, B16}, A15{B17}, 
A16{B18}, A20{B20}. 

In order to prevent the false negative, we have 
carried out exhaustive co-location tests for all 
possible VM combination in all three experiments, 
in other words, 400 co-location tests for each 
experiment. It turns out that no false negative has 
been produced. In terms of efficiency, the number of 
co-location test has been greatly reduced with the 
help of pre-filtration. The efficiency is improved 
indeed. 

5.2 Experimental Data of Second Set 

The time interval for experiment 2-1 is 12 hours. We 
first use account A to launch 20 VM instances, and 
use account B to launch 20 VM instances after 12 
hours. The time interval for experiment 2-2 is 24 
hours. During the time interval, there might happen 
a lot of reboot operations, which will consume the 
domid. We set these two experiments to simulate 
that special case, and test the rate of false negative 
for Sift. 

Figure 7 illustrates the process of pre-filtration in 
experiment 2-1. There were 5 co-location tests need 
to be done in total. After that, we got 5 pairs of VMs 
that were co-resident. They were A1-B3, A3-B7, 
A4-B11, A5-B13, A18-B18. 
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Figure 7: The result of pre-filtration is: A1(B3), A3(B7), 
A4(B11), A5(B13), A18(B18). 

Figure 8 illustrates the process of pre-filtration in 
experiment 2-2. There were 14 co-location tests 
need to be carried out in total. But unfortunately, 
there were no VMs proved to be co-resident in 
experiment 2-2 as well. 

 

Figure 8: The result of pre-filtration is: A4(B5), A5(B5), 
A6(B5, B6), A7(B6), A9(B10), A10(B11), A11(B10, 
B11), A12(B12, B13, B14), A13(B14), A15(B19). 

We can learn from the experimental data, the 
biggest difference of domid between co-resident 
VMs is 13, these two VMs are A3 and B7 in 
experiment 2-1. The reason why we arrange this set 
of experiment is to simulate the special case we 
discussed in previous section. We have carried out 
exhaustive co-location tests for all possible VM 
combination in both two experiments. But this 
exceptional case has not occurred as we expect, and 
no false negative has been produced. We speculate 
that this special case is a small probability event. It 
might happen, but its impact on Sift is negligible. 

5.3 Performance Analysis 

We can find that the number of co-location tests in 
five experiments have been greatly reduced from 
400 to 4, 12, 73, 5, 14 respectively. While the 
filtration on VMs consumes very little time, close to 
the time needed for a co-location test. 

Suppose there are M accounts, each account can 
launch N VMs. Considering the fact that VMs 
launched by same account are not co-resident, we 
have C(M,2)•N2 possible VM combinations for co-
location test. So the time complexity is O(M2•N2), 

e.g., we use two accounts and each account can 
launch 20 VMs, as a result, we have 400 possible 
VM combinations for co-location test. In contrast, if 
we implement a pre-filtration procedure before co-
location test, we can improve the time complexity. 
Considering the extreme case that each cluster has 
2(x-1) elements, we need to do M•N(x-1) co-location 
tests at most. As x can be considered as a constant, 
so the time complexity is O(M•N). It can be seen by 
comparing the time complexity that the adoption of 
a pre-filtration procedure can significantly reduce 
the time of co-residency detection. 

6 DISCUSSION 

The value of x depends on the following factors: the 
performance of physical machine, instance’s type, 
and the number of VMs that a physical machine 
should hold defined by CSP. In general case, the 
capacity of physical machine for different types of 
instance is diverse, for example, the capacity for 
medium type VM on Amazon EC2 is 8 (Ristenpart 
et al., 2009). Furthermore, the value of x we set 
could directly affects the efficiency and accuracy of 
co-residency detection. When the selected value of x 
is greater, the accuracy is higher, but the efficiency 
would be lower. When the selected value of x is 
smaller, the accuracy would be relatively reduced, 
and it may appear some omissions. You could adjust 
the value of x according to the result of the 
experiment to find the most accurate value of x. 

The reason why we choose domid as the 
filtration criteria during pre-filtration procedure on 
Amazon EC2 is that a VM will be assigned a new 
domid by increasing 1 when it boot. So co-resident 
VMs have adjacent domid. If Amazon EC2 changes 
the assignment scheme of domid, for example, using 
a randomized assignment scheme. It is a problem 
what impact there will be. Actually, the output 
number sequence is fixed when the seed of pseudo 
random number generator is certain. So it is possible 
for us to define a mapping from this random number 
sequence to a linear growth sequence.  

We have mentioned that the domid will not be 
recycled when a domain reboot, which could lead to 
a special case that two VMs co-reside on same host 
with domid differs a lot. We have to admit that this 
special case does exist, so we have arranged 
experiment 2-1 and 2-2 to simulate this special case. 
However this special case has not occurred as we 
expect, and no false negative has been produced. We 
speculate that this special case is a small probability 
event. It might happen, but its impact on Sift is 
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negligible. 

7 CONCLUSIONS 

In this paper, we proposed Sift, an efficient and 
reliable approach for co-residency detection. A 
detailed introduction of this detection scheme was 
presented, and the threat model for Sift was 
explained as well. Through an extensive series of 
tests, we have implemented Sift on Amazon EC2. 
Through the analysis of experimental data and the 
computation of complexity, we have proved its 
practicality and efficiency. Finally, we made a 
discussion about how to select a proper value for x 
and several problems of Sift. 

Our future work will focus on improving Sift. 
We will solve the leftover problems first and then 
implement it on other cloud platforms to assure 
whether Sift is still feasible. 
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