
Sift
An Efficient Method for Co-residency Detection on Amazon EC2

Kang Chen, Qingni Shen, Cong Li, Yang Luo, Yahui Yang and Zhonghai Wu
School of Software and Microelectronics & MoE Key Lab of Network and Software Assurance, Peking University,

Beijing, China

Keywords: Co-residency Detection, Cloud Security, Multi-tenancy.

Abstract: Cloud computing, an emerging computing and service paradigm, where the computing and storage
capabilities are outsourced on demand, offers the advanced capabilities of sharing and multi-tenancy. But
security has been a major barrier for its adoption to enterprise, as being placed with other tenants on the
same physical machine (i.e. co-residency or co-location) poses a particular risk. Former research has shown
how side channels in shared hardware may enable attackers to exfiltrate sensitive data across virtual
machines (VMs). In view of such risks, tenants need to be able to verify physical isolation of their VMs.
This paper presents Sift, an efficient and reliable approach for co-residency detection. Through a pre-
filtration procedure, the time for co-residency detection could be significantly reduced. We describe the
cloud scenarios envisaged for use of Sift and the accompanying threat model. A preliminary validation of
Sift has been carried out in a local lab Xen virtualization experimental platform. Then, using the Amazon’s
Elastic Compute Cloud (EC2) as the test platform, we evaluate its practicability in production cloud
environment. It appears that Sift can confirm co-residency with a target VM instance in less than 5 seconds
with an extremely low false rate.

1 INTRODUCTION

Cloud computing has become an essential
technology. Commercial third-party clouds allow
businesses to avoid over provisioning their own
resources and to pay for the precise amount of
computing that they require. By placing many
virtual hosts on a single physical machine, cloud
service providers (CSPs) are able to profitably
leverage economies of scale and statistical
multiplexing of computing resources. Such as
Amazon’s Elastic Compute Cloud (EC2) service, it
offers a set of virtualized hardware configurations
for tenants.

However, this practice of multi-tenancy also
introduces the risk of sharing a physical server with
an arbitrary and potentially malicious VM, which
enables various security attacks in the public cloud.
There exist attacks that break the logical isolation
provided by virtualization to breach confidentiality
(Hund et al., 2013); (Ristenpart et al., 2009); (Wu,
2012); (Xu, 2011); (Yarom and Falkner, 2013);
(Zhang et al., 2014); (Zhang et al., 2012) or degrade
the performance (Varadarajan et al., 2015); (Zhou,
2011) of the victim. Most notable are the side-

channel attacks that steal private keys across the
virtual-machine isolation boundary by cleverly
monitoring shared resource usage (Yarom and
Falkner, 2013); (Zhang et al., 2014); (Zhang et al.,
2012). Although, defenses against such
vulnerabilities and researches on VM allocation and
scheduling policies to mitigate multi-tenancy risks
(Bijon et al., 2015); (Han et al., 2014) are already
being proposed in the academic literature (Godfrey
and Zulkernine, 2014); (Godfrey and Zulkernine,
2013); (Raj et al., 2009), multi-tenancy risk still
cannot be ignored.

Venkatanathan Varadarajan et al., (2015) have
investigated the problem of placement
vulnerabilities and quantitatively evaluated three
popular public clouds, including Amazon EC2,
Google Compute Engine and Microsoft Azure, for
their susceptibility to co-location attacks. The most
important pre-condition for this kind of research is a
reliable co-residency detection approach. In recent
years, feasible detection approaches have been
proposed (Bates et al., 2012) (Ristenpart et al., 2009)
(Zhang et al., 2011), but some of them are not
effective at all since the adoption of stronger
isolation technologies such as Virtual Private Clouds

Chen, K., Shen, Q., Li, C., Luo, Y., Yang, Y. and Wu, Z.
Sift - An Efficient Method for Co-residency Detection on Amazon EC2.
DOI: 10.5220/0005742004230431
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 423-431
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

423

(VPCs).
In this paper, we propose Sift, an efficient and

reliable approach for co-residency detection. We
find a new way to reliably detect co-residency, and
the pre-filtration procedure we have raised can
improve the efficiency. Since most VMs could be
excluded through a pre-filtration procedure and
filtration on VMs consumes very little time.

This paper makes the following contributions:
 We put Forward a New Way for Co-residency

Detection. Unlike existing detection schemes,
our co-residency detection scheme is based on
the physical sharing resources.

 The Efficiency can be Significantly Improved
through a Pre-filtration Procedure. Through
the analysis of those VMs already co-reside on
identical physical machine, we have raised an
improved co-residency detection scheme.

 Demonstration on Amazon EC2. We use
multiple customer accounts to launch VM
instances under different strategies to simulate
the actual deployment of VMs. Then we use Sift
to detect co-residency on those VMs. These tests
confirm its efficiency and practicality on
commodity clouds.

2 RELATED WORK

Tomas Ristenpart et al., (2009) first exposed the co-
residency detection of VMs in 2009. Since then, the
co-residency detection problems of VMs have
become a new research hotspot and the researchers
proposed a lot of co-residency detection methods
based on different techniques.

Tomas Ristenpart et al., (2009) indicated that, on
the EC2 platform, we can judge the co-residency of
VMs through simple network-topology-based co-
residency checks. This co-residency detection
approach is the simplest way to implement, but its
accuracy cannot be guaranteed. As it is based on
network information, it can be influenced by firewall
policies, network traffic flow and so on, so it has a
critical limitation. Actually, this simple network-
topology-based co-residency check is not usable
anymore since the adoption of VPC.

Adam Bates et al., (2012) proposed the co-
residency watermark technique based on the
network packet delay problem of co-resident VMs.
This technique constructed a side channel skilfully
based on the network packet delay caused by
multiplexing of the physical network card. An
adversary can use this side channel to detect co-

residency with target server. This technique also has
its own limitation. If the service provider restricted
the upper limit of bandwidth, this co-residency
detection method would fail. If service providers
provide each VM with a dedicated network export,
this co-residency detection method will also fail.

Yinqian Zhang et al., (Zhang et al., 2011) used
L2 memory cache to construct a co-residency
detection tool HomeAlone. Different from the
previous two methods, the key idea in HomeAlone is
to invert the usual application of side channels.
Rather than exploiting a side channel as a vector of
attack, HomeAlone uses a side-channel (in the L2
memory cache) as a novel, defensive detection tool.
By analysing cache usage during periods in which
“friendly” VMs coordinate to avoid portions of the
cache, a tenant using HomeAlone can detect the
activity of a co-resident “foe” VM. HomeAlone has
two difficulties. One is how to accurately distinguish
Cache behaviour between normal tenant's friendly
VM and co-resident VM. Another is how to ensure
that the performance of friendly VM will not reduce
greatly.

3 SYSTEM DESIGN

3.1 Practical Application Scenarios

3.1.1 Attack Scenario

We assume system administrators are not interfering
with the activities of their customers, and will not
intervene with customer behaviour unless it is a
threat to Service Level Agreements (SLAs) or to the
general health of their business. We also assume that
our target VM (victim) is trusting of the cloud
infrastructure.

As we need to implement communication
between target VM and the VMs launched by the
adversary, a receiving end has to be established on
the target VM. It is mentioned above that co-
residency attacks in public clouds involve two steps:
a launch strategy and co-residency detection. The
focus of this study is to identify if there exists any
VMs co-reside with target VM. Here we will explain
a reasonable threat model for establishing the
receiving end.

In fact, this pre-condition is able to achieve
through existing attack technique, e.g., Bundled
Software technology. As the operations you are
trying have no harm on the system security, it will
not be detected by security software. Establishing a
receiving end on target VM has nothing to do with

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

424

any complex or sensitive privileged operation and
the entire process from establishing a receiving end
to achieving co-residence consumes little time,
which ensures a high imperceptibility.

We assume that the adversary is in the disguise
of a legal software package source. If the user of
target VM accesses this source to update or install
any software, a receiving end will be established,
benefiting from the bundled software technology.
Then, the essential information needed for pre-
filtration will be forwarded to the adversary through
the normal communication process between target
VM and adversary. Once receiving this information,
the adversary follows the first step of co-residency
attack to launch a large number of VM instances.
Then, following the process of Sift, the adversary
can find the expected VM in a very short time.

3.1.2 Benign Scenario

We have mentioned in the Introduction section that
Venkatanathan Varadarajan et al., (2015) have
investigated the problem of placement
vulnerabilities and quantitatively evaluated three
popular public clouds for their susceptibility to co-
location attacks. A key technique for understanding
placement vulnerabilities is to detect whether VMs
are co-resident on the same physical machine. Thus,
a reliable co-residency detection approach is the
most important pre-condition for this kind of
research. Apparently, Sift is quite a suitable choice
for research demand.

3.2 System Overview

We have analysed those VMs already co-reside with
each other from a local lab environment to
production cloud environments. The reason we
perform an analysis of those VMs is to find the
internal relation among them and set the filtration
criteria. Then we can conduct a pre-filtration on VM
instances we launched before. However, VMs
meeting the filtration criteria might not be co-
resident with each other, which could lead to false
negative. So we still need a reliable approach for co-
location test to further detect co-residence after pre-
filtration procedure.

In this paper, we present a new way to test by
using physical sharing resources. A covert channel
for communication can be constructed based on the
physical sharing resources. The pre-condition for
VMs to use this covert channel for communication is
that they must have co-resident relationship. That is
to say, as long as the communication succeeds, these

two VMs are co-resident. This ensures the accuracy
and reliability of co-location test.

Sift consists of three components, Collecter,
Communicator and a Pre-filter. A filtration criteria
could be set through the analysis of VMs’ property.
The Collecter on each VM is responsible for
collecting essential information and sending the
information to the Pre-filter outside the cloud. The
Communicator on target VM is to establish a
receiving end based on physical sharing resources.
The Pre-filter is like the brain of Sift. After receiving
the information sent by Collecters, Pre-filter will
carry out a filtration on the VMs besides target VM.
Then it will make the decision and inform qualified
VM to establish a sending end. According to the
result of incoming communication process, the
sending end will report to the brain whether co-
residency is achieved.

Figure 1: System architecture.

4 IMPLEMENTATION ON
AMAZON EC2

4.1 Analysis of VM Instances

We have implemented Sift on Amazon EC2. In our
experiment, the domain id is taken as the filtration
criteria. Amazon EC2 is based on Xen virtualization
technology. In the Xen virtualization technology,
each Domain (VM) has a unique identifier called the
domain id (domid). Differing from the UUID of
each VM, the value of UUID does not change during
the lifecycle of a VM, but domid does. When a VM
reboots, the domid of a VM will change. Through
analysing the source code of Xen (version 4.4.1), we
have found that the Domain Us managed by same
Domain 0 have adjacent domid.

The code is located in xen/common/domctl.c. As
showed in Figure 2, the rover is a static variable. We
can see that it reserves the last assigned domid.
Then, this value will increase by 1 and be assigned

Sift - An Efficient Method for Co-residency Detection on Amazon EC2

425

to the next domain, which means when a VM boot,
it will be assigned a new domid by increasing 1.
When domid reaches the first reserved value, it will
be reset to 1.

Figure 2: Assignment of domid in Xen 4.4.1.

EC2 uses a customized version of Xen. We are
not able to obtain its source code. But Amazon EC2
has provided dedicated service to users, so that we
can rent a physical machine. We deployed several
VMs on this physical machine and tried to get the
domid of these VMs. It was found that the domid of
VMs on EC2 presented the same regularity. If
Amazon EC2 changes the assignment scheme of
domid, for example, using a randomized assignment
scheme. Here is a doubt whether this change has an
effect on our approach. We will talk about it in the
Discussion section. We assume that EC2 would not
change the domid assignment scheme, and our work
is under this pre-condition.

4.2 Collecter

In general case, domid is not visible to EC2 users.
Our Collecter can acquire domid through the
utilization of XenStore. XenStore is an inter-domain
sharing storage system which is managed and
maintained by Domain 0. It stores configuration of
all VMs (include Domain 0), e.g., the domain’s
name, domid and UUID. There are three paths in
XenStore:
 /vm directory stores the configuration of domain.
 /local/domain directory stores information of

running domain. Each subdirectory represents a
running VM like Linux proc file system, e.g.,
/local/domain/0 represents Domain 0.

 /tool directory stores information of all tools.

As a privileged domain, Domain 0 can read and
write all data stored in XenStore. However, as the
Domain U, EC2 users only have access to its own
data. The first reserved domid is 32752(0x7FF0U)
as showed in Figure 2, which implies that the domid
of Domain U ranges from 1 to 32751.

Collecter tries to access /local/domain/<domid>

on a VM. As the directory can only be accessed by
the domain which has the corresponding domid
(e.g., /local/domain/1000 can only be accessed by
Domain 1000). The core pseudo code of Collecter to
get domid is shown in Figure 3. Access represents
access operation to the directory. We can determine
VM’s domid according to its return value. If access
succeeds, then the current i is VM’s domid.

Figure 3: Assignment of domid in Xen 4.4.1.

4.3 Pre-filter

Through the analysis of VM instances, we have
found that the Domain Us managed by same
Domain 0 have adjacent domid. As the capacity of
physical machine has a limit, we can assume that a
physical machine can run x VMs. Therefore, we can
infer from these facts that difference between two
co-resident VMs’ domid is less than x (greater than
zero as well). Pre-filter should carry out the filtration
procedure according to the following algorithm.

Assume that we have a sample set X={x1, x2 ...
xn}, and we need to find all possible co-resident
VMs in this set. Each element represents the VMs’
domid. In accordance with the principle of the
nearest neighbour clustering, the algorithm is as
follows:
 Step 1. Select a distance threshold x (i.e. capacity

of physical machine), and take a sample as the
clustering center of first cluster Z1 (e.g., x1).

 Step 2. Calculate the distance to x1 (i.e. Dn) of all
the rest sample, if Dn < x, then xn∈Z1. Choose
another unclassified sample (i.e. not belong to
any cluster) as the clustering center of the second
cluster Z2 (e.g., xm).

 Step 3. Repeat until all VMs have been
classified. Notice that every clustering center can
only belong to one cluster and the other sample
can appear in several clusters (i.e. overlap
between partitions is allowed for the accuracy
and efficiency).

 Step 4. Check every cluster, if a cluster has only
one element, it will be excluded. The remaining
clusters are possible to be co-resident.

Although when a VM boot, it will be assigned a new
domid by increasing 1, when it shutdown, this used
domid will not be recycled. So there may be two co-
resident VMs with domid differs a lot. For example,

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

426

assume there are two VMs running on the same host,
with VM1 assigned domid=1 and VM2 assigned
domid=2. Then VM2 reboot, it will be assigned
domid=3. Reboot again, domid=4, 5, 6…. This
special case might be missed when we have set up a
threshold value, which will lead to false negative.
Therefore, we have arranged two experiments. Two
groups of VMs are launched in different time. The
time interval for first experiment is 12 hours, and the
time interval for second experiment is 24 hours.
During the time interval, the other VMs on the
physical host might reboot which will consume the
domid. We set these two experiments to simulate
that special case, and test the rate of false negative
for Sift.

4.4 Communicator

After the Pre-filtration, the Pre-filter will inform the
qualified VMs to establish a communication process
using physical sharing resources. We have utilized
the physical sharing resources of Xen VM monitor,
such as event channel, grant table.

Event channel is an asynchronous notification
mechanism provided by Xen VM monitor for VMs
to exchange information. We can try to establish
event channel between two VMs. These two VMs
can be determined as co-resident if the event channel
can be established successfully. Further, we can
construct a covert channel based on event channel
for co-location test, such as the CCECS been
proposed in our previous work (Shen et al., 2013). If
two VMs can use CCECS to establish a
communication process, the co-residency is
achieved.

In addition to covert channel based on event
channel, any other covert channels satisfy the
following conditions could be applied to co-
residency detection.
 It is built on the physical sharing resources of

VM monitor.
 It can be carried out on commodity cloud, such

as Amazon EC2 to ensure the practicability
 It should be stable enough and have the ability of

anti-interference to ensure the reliability

4.5 Experiment Strategies

We use two Amazon EC2 accounts (account A and
B) to launch VM instances under different strategies
that simulate the actual deployment of VMs. The
VMs we launch have the same configuration.

We have designed two sets of experiments. The
first set consists of three experiments corresponding

to three specific availability zones (us-west-2a, us-
west-2b, us-west-2c). We use account A and account
B to launch 20 VMs at the same time, since EC2 has
a limitation that each account can only launch 20
VMs. The reason why we launch VMs at same time
is to maximize the likelihood of co-residency, so we
can demonstrate Sift better. These three experiments
are denoted as experiment 1-a, 1-b, 1-c.
Corresponding to the three zones.

It has been mentioned in section 4.3 that a
special case might lead to a false negative.
Therefore, in the second set of experiments, we have
arranged two experiments. Two groups of VMs are
launched in different time. The time interval for first
experiment (denoted as experiment 2-1) is 12 hours,
and the time interval for second experiment (denoted
as experiment 2-2) is 24 hours. We set these two
experiments to simulate that special case, and test
the rate of false negative for Sift.

We have noticed that each account can only
launch 20 VM instances on Amazon EC2.
Meanwhile, Amazon EC2 has provided a dedicated
service to users. So we can infer that Amazon just
needs to guarantee that each physical machine could
hold 20 VMs of any type. Thus, we set the value of x
to 20. We will discuss how to choose a proper value
for x in Discussion. The results of experiments will
be given in Evaluation section.

5 EVALUATION

5.1 Experimental Data of First Set

The domid of VM instances in experiment 1-a listed
in Table 1 is in an ascending order for the
convenience of analysing.

Table 1: Domid of VM instances in Experiment 1-a.

No. domid No. domid No. domid No. domid
A1 437 A11 1039 B1 223 B11 1295
A2 494 A12 1056 B2 314 B12 1317
A3 514 A13 1174 B3 530 B13 1320
A4 635 A14 1176 B4 531 B14 1320
A5 640 A15 1439 B5 548 B15 1517
A6 773 A16 1581 B6 1001 B16 1548
A7 818 A17 1941 B7 1133 B17 1558
A8 952 A18 1942 B8 1196 B18 1569
A9 1000 A19 2117 B9 1240 B19 1615
A10 1308 A20 4948 B10 1262 B20 9009

It is mentioned in section 4.1 that each Domain
U managed by same Domain 0 has a unique domid.
So it can be sure that VMs have same domid are
definitely not co-resident. Besides, VMs launched

Sift - An Efficient Method for Co-residency Detection on Amazon EC2

427

by same account are not co-resident (Ristenpart et
al., 2009), which has been proved in our experiment.
We should take these into consideration during pre-
filtration procedure.

For example, we can take A3 as the first
clustering center. As the VMs launched by same
account are not co-resident, we can just search in
account B for expected VMs. Here exist B3 and B4
meet the rule. Next, we should pick another
clustering center from the remaining 37 unclassified
VMs and search for those expected VMs. Then
repeat these steps until all VMs have been classified.
Remember that overlap between partitions is
allowed. Figure 4 illustrates the process of pre-
filtration in experiment 1-a.

As VMs launched by same account are not co-
resident, we can just do co-location test using covert
channel (namely CCECS) between clustering center
and other elements. That is to do co-location test
between A2 and B3, A2 and B4, A9 and B6, A16
and B18. If the test is successful, then the receiving
VM and sending VM can be judged as co-resident.
But unfortunately, no VMs are proved to be co-
resident in experiment 1-a.

Figure 4: The result of pre-filtration is: A3{B3,
B4}(means that A3, B3, B4 belong to same cluster with
A3 being the clustering centre), A9{B6}, A16{B18}.

Figure 5: The result of pre-filtration is: A1{B1}, A2{B3},
A3{B4}, A4{B6}, A6{B8}, A7{B9, B10}, A9{B11,
B12}, A10{B13}, A14{B14, B15}.

Without listing the domid of VMs in Table
again, we directly illustrate the other two
experiments through graphs. Figure 5 illustrates the
process of pre-filtration in experiment 1-b. There
were 12 co-location tests need to be carried out in
total. After that, we got 4 pairs of VMs that were co-

resident. They were A2-B3, A3-B4, A4-B6, A7-
B10.

Figure 6 illustrates the process of pre-filtration in
experiment 1-c. There were 73 co-location tests need
to be done in total. After that, we got 17 pairs of
VMs that were co-resident. They were A1-B3, A2-
B4, A3-B5, A4-B6, A5-B7, A6-B8, A7-B9, A8-B10,
A9-B11, A10-B12, A11-B13, A12-B14, A13-B15,
A14-B16, A15-B17, A16-B18, A20-B20.

Figure 6: The result of pre-filtration is: A1{B3, B4, B5,
B6, B7, B8}, A2{B3, B4, B5, B6, B7, B8, B9}, A3{B3,
B4, B5, B6, B7, B8, B9}, A4{B3, B4, B5, B6, B7, B8,
B9}, A5{B3, B4, B5, B6, B7, B8, B9}, A6{B3, B4, B5,
B6, B7, B8, B9}, A7{B4, B5, B6, B7, B8, B9, B10, B11},
A8{B8, B9, B10, B11}, A9{B9, B10, B11, B12},
A10{B11, B12, B13}, A11{B12, B13}, A12{B14, B15},
A13{B14, B15, B16}, A14{B14, B15, B16}, A15{B17},
A16{B18}, A20{B20}.

In order to prevent the false negative, we have
carried out exhaustive co-location tests for all
possible VM combination in all three experiments,
in other words, 400 co-location tests for each
experiment. It turns out that no false negative has
been produced. In terms of efficiency, the number of
co-location test has been greatly reduced with the
help of pre-filtration. The efficiency is improved
indeed.

5.2 Experimental Data of Second Set

The time interval for experiment 2-1 is 12 hours. We
first use account A to launch 20 VM instances, and
use account B to launch 20 VM instances after 12
hours. The time interval for experiment 2-2 is 24
hours. During the time interval, there might happen
a lot of reboot operations, which will consume the
domid. We set these two experiments to simulate
that special case, and test the rate of false negative
for Sift.

Figure 7 illustrates the process of pre-filtration in
experiment 2-1. There were 5 co-location tests need
to be done in total. After that, we got 5 pairs of VMs
that were co-resident. They were A1-B3, A3-B7,
A4-B11, A5-B13, A18-B18.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

428

Figure 7: The result of pre-filtration is: A1(B3), A3(B7),
A4(B11), A5(B13), A18(B18).

Figure 8 illustrates the process of pre-filtration in
experiment 2-2. There were 14 co-location tests
need to be carried out in total. But unfortunately,
there were no VMs proved to be co-resident in
experiment 2-2 as well.

Figure 8: The result of pre-filtration is: A4(B5), A5(B5),
A6(B5, B6), A7(B6), A9(B10), A10(B11), A11(B10,
B11), A12(B12, B13, B14), A13(B14), A15(B19).

We can learn from the experimental data, the
biggest difference of domid between co-resident
VMs is 13, these two VMs are A3 and B7 in
experiment 2-1. The reason why we arrange this set
of experiment is to simulate the special case we
discussed in previous section. We have carried out
exhaustive co-location tests for all possible VM
combination in both two experiments. But this
exceptional case has not occurred as we expect, and
no false negative has been produced. We speculate
that this special case is a small probability event. It
might happen, but its impact on Sift is negligible.

5.3 Performance Analysis

We can find that the number of co-location tests in
five experiments have been greatly reduced from
400 to 4, 12, 73, 5, 14 respectively. While the
filtration on VMs consumes very little time, close to
the time needed for a co-location test.

Suppose there are M accounts, each account can
launch N VMs. Considering the fact that VMs
launched by same account are not co-resident, we
have C(M,2)•N2 possible VM combinations for co-
location test. So the time complexity is O(M2•N2),

e.g., we use two accounts and each account can
launch 20 VMs, as a result, we have 400 possible
VM combinations for co-location test. In contrast, if
we implement a pre-filtration procedure before co-
location test, we can improve the time complexity.
Considering the extreme case that each cluster has
2(x-1) elements, we need to do M•N(x-1) co-location
tests at most. As x can be considered as a constant,
so the time complexity is O(M•N). It can be seen by
comparing the time complexity that the adoption of
a pre-filtration procedure can significantly reduce
the time of co-residency detection.

6 DISCUSSION

The value of x depends on the following factors: the
performance of physical machine, instance’s type,
and the number of VMs that a physical machine
should hold defined by CSP. In general case, the
capacity of physical machine for different types of
instance is diverse, for example, the capacity for
medium type VM on Amazon EC2 is 8 (Ristenpart
et al., 2009). Furthermore, the value of x we set
could directly affects the efficiency and accuracy of
co-residency detection. When the selected value of x
is greater, the accuracy is higher, but the efficiency
would be lower. When the selected value of x is
smaller, the accuracy would be relatively reduced,
and it may appear some omissions. You could adjust
the value of x according to the result of the
experiment to find the most accurate value of x.

The reason why we choose domid as the
filtration criteria during pre-filtration procedure on
Amazon EC2 is that a VM will be assigned a new
domid by increasing 1 when it boot. So co-resident
VMs have adjacent domid. If Amazon EC2 changes
the assignment scheme of domid, for example, using
a randomized assignment scheme. It is a problem
what impact there will be. Actually, the output
number sequence is fixed when the seed of pseudo
random number generator is certain. So it is possible
for us to define a mapping from this random number
sequence to a linear growth sequence.

We have mentioned that the domid will not be
recycled when a domain reboot, which could lead to
a special case that two VMs co-reside on same host
with domid differs a lot. We have to admit that this
special case does exist, so we have arranged
experiment 2-1 and 2-2 to simulate this special case.
However this special case has not occurred as we
expect, and no false negative has been produced. We
speculate that this special case is a small probability
event. It might happen, but its impact on Sift is

Sift - An Efficient Method for Co-residency Detection on Amazon EC2

429

negligible.

7 CONCLUSIONS

In this paper, we proposed Sift, an efficient and
reliable approach for co-residency detection. A
detailed introduction of this detection scheme was
presented, and the threat model for Sift was
explained as well. Through an extensive series of
tests, we have implemented Sift on Amazon EC2.
Through the analysis of experimental data and the
computation of complexity, we have proved its
practicality and efficiency. Finally, we made a
discussion about how to select a proper value for x
and several problems of Sift.

Our future work will focus on improving Sift.
We will solve the leftover problems first and then
implement it on other cloud platforms to assure
whether Sift is still feasible.

ACKNOWLEDGEMENTS

This work is supported by the National High
Technology Research and Development Program
(“863” Program) of China under Grant No.
2015AA016009, the National Natural Science
Foundation of China under Grant No. 61232005, and
the Science and Technology Program of Shen Zhen,
China under Grant No. JSGG20140516162852628.

REFERENCES

Bijon, K., Krishnan, R., & Sandhu, R. (2015, June).
Mitigating Multi-Tenancy Risks in IaaS Cloud
Through Constraints-Driven Virtual Resource
Scheduling. In Proceedings of the 20th ACM
Symposium on Access Control Models and
Technologies (pp. 63-74). ACM.

Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., &
Butler, K. (2012, October). Detecting co-residency
with active traffic analysis techniques. In Proceedings
of the 2012 ACM Workshop on Cloud computing
security workshop (pp. 1-12). ACM.

Godfrey, M., & Zulkernine, M. (2014). Preventing Cache-
Based Side-Channel Attacks in a Cloud Environment.
Cloud Computing, IEEE Transactions on, 2(4), 395-
408.

Godfrey, M., & Zulkernine, M. (2013, June). A server-
side solution to cache-based side-channel attacks in
the cloud. In Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on (pp. 163-170).
IEEE.

Han, Y., Chan, J., Alpcan, T., & Leckie, C. (2014, June).
Virtual machine allocation policies against co-resident
attacks in cloud computing. In Communications
(ICC), 2014 IEEE International Conference on (pp.
786-792). IEEE.

Hund, R., Willems, C., & Holz, T. (2013, May). Practical
timing side channel attacks against kernel space
ASLR. In Security and Privacy (SP), 2013 IEEE
Symposium on (pp. 191-205). IEEE.

Ristenpart, T., Tromer, E., Shacham, H., & Savage, S.
(2009, November). Hey, you, get off of my cloud:
exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference
on Computer and communications security (pp. 199-
212). ACM.

Raj, H., Nathuji, R., Singh, A., & England, P. (2009,
November). Resource management for isolation
enhanced cloud services. In Proceedings of the 2009
ACM workshop on Cloud computing security (pp. 77-
84). ACM.

Shen, Q., Wan, M., Zhang, Z., Zhang, Z., Qing, S., & Wu,
Z. (2013). A covert channel using event channel state
on xen hypervisor. In Information and
Communications Security (pp. 125-134). Springer
International Publishing.

Varadarajan, V., Zhang, Y., Ristenpart, T., & Swift, M.
(2015, August). A placement vulnerability study in
multi-tenant public clouds. In 24th USENIX Security
Symposium (USENIX Security 15)(Washington, DC
(pp. 913-928).

Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T.,
& Swift, M. M. (2012, October). Resource-freeing
attacks: improve your cloud performance (at your
neighbor's expense). In Proceedings of the 2012 ACM
conference on Computer and communications security
(pp. 281-292). ACM.

Wu, Z., Xu, Z., & Wang, H. (2012, August). Whispers in
the Hyper-space: High-speed Covert Channel Attacks
in the Cloud. In USENIX Security symposium (pp.
159-173).

Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M.,
& Schlichting, R. (2011, October). An exploration of
L2 cache covert channels in virtualized environments.
In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (pp. 29-40). ACM.

Yarom, Y., & Falkner, K. E. (2013). Flush+ Reload: a
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. IACR Cryptology ePrint Archive, 2013, 448.

Zhang, Y., Juels, A., Oprea, A., & Reiter, M. K. (2011,
May). Homealone: Co-residency detection in the cloud
via side-channel analysis. In Security and Privacy
(SP), 2011 IEEE Symposium on (pp. 313-328). IEEE.

Zhang, Y., Juels, A., Reiter, M. K., & Ristenpart, T.
(2012, October). Cross-VM side channels and their
use to extract private keys. In Proceedings of the 2012
ACM conference on Computer and communications
security (pp. 305-316). ACM.

Zhang, Y., Juels, A., Reiter, M. K., & Ristenpart, T.
(2014, November). Cross-tenant side-channel attacks
in paas clouds. In Proceedings of the 2014 ACM

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

430

SIGSAC Conference on Computer and
Communications Security (pp. 990-1003). ACM.

Zhou, F., Goel, M., Desnoyers, P., & Sundaram, R.
(2011). Scheduler vulnerabilities and attacks in cloud
computing. arXiv preprint arXiv:1103.0759.

Sift - An Efficient Method for Co-residency Detection on Amazon EC2

431

