
XIS-CMS: Towards a Model-Driven Approach for Developing
Platform-Independent CMS-Specific Modules

Paulo Filipe, André Ribeiro and Alberto Rodrigues da Silva
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Keywords: Content Management Systems, Model-Driven Development, Platform-Independent Models, Modeling
Languages.

Abstract: Content Management Systems (CMS) are popular web application platforms used in multiple domains.
CMS allow non-technical users to manage the content and features of websites with web modules that
abstract functionality without requiring particular software programming background. However, without the
development of specific web modules, a CMS usually cannot support complex scenarios or specific
business needs. In those situations, developers have to build custom modules using the CMS-specific
language, which implies that they must master the corresponding programming and other technical skills.
This paper proposes a model-driven approach, named XIS-CMS, which aims to increase the productivity
and portability of developing these modules in a more abstract and platform-independent way. XIS-CMS
approach includes a domain-specific modeling language, defined as a UML profile, and a companion
framework defined on top of Sparx Systems Enterprise Architect and Eclipse Modeling Framework
technologies. This paper introduces the XIS-CMS approach, its corresponding language and framework, and
compares it with related work.

1 INTRODUCTION

Content Management Systems (CMSs) are a popular
class of software framework that abstracts the
technical features concerning the development and
management of web applications. CMS-based
applications are defined as the orchestration of
multiple web pages with multiple contents presented
and managed by particular use of web modules, such
as HTML, Image, and List of Links. A web module
consists in a collection of code and resource files
organized in a library that allows to extend a CMS
framework with specific features and can be
instantiated in multiple pages of a website or web
application (Suh et al., 2002; Boiko, 2001).

A website is mainly composed of static content
that needs to be maintained by a developer or
webmaster. On the other hand, a web application
provides a dynamic experience to the user focusing
on his interaction to determine the content that is
displayed. A CMS platform supports web
applications development and management, because
it provides several features to manage the structure,
content and presentation of these applications. CMS
provide a ready-to-use editor for managing and

creating new pages and menus, and for applying user
interface layouts and visual templates. They also
offer several out-of-the-box modules with basic
functionality, such as HTML editor, images, list of
links and news or file management (Souer et al.,
2008). However, custom modules must be
implemented whenever more complex functionality
or more specific business requirements are needed.
This kind of customer modules requires an
additional analysis and development by software
developers (Souer and Kupers, 2009).

CMSs show important features and properties
such as modularity, extensibility and integration
with other services through toolkits of modules.
CMSs also promote the separation between the
presentation and the content through the application
skins, page templates and module views. CMSs offer
great adaptability to define and manage the structure
of web applications, but do not provide a high-level
view of the data that is being used and/or
manipulated. Thus, an approach that closes this gap
would be an important contribution, by allowing
developers and non-technical stakeholders to easily
discuss strategic changes or business requirements.
This would result in a shorter time-to-market and an

Filipe, P., Ribeiro, A. and Silva, A.
XIS-CMS: Towards a Model-Driven Approach for Developing Platform-Independent CMS-Specific Modules.
DOI: 10.5220/0005745805350543
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 535-543
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

535

easier maintainability of this class of applications.
With the emergence and evolution of many

CMSs frameworks (see for example, the popular
CMS Matrix website: http://www.cmsmatrix.org),
the adoption of a development approach that can
keep the core development portable and easy to
apply to new CMS would be also a great advantage.
For this reason, such an approach should be as much
cross-platform as possible, meaning it should be
independent of any CMS framework.

Model-Driven Development (MDD) is an
approach that tries to mitigate the above problems in
multiple application domains (Schmidt, 2006);
(Selic, 2008); (Hutchinson et al., 2014). MDD is a
software development paradigm that combines
domain-specific languages (DSLs) with
transformation engines and generators. DSLs are
textual or graphical languages used to specify an
application domain, the requirements and
functionalities (Deursen, 2000); (da Silva, 2015).
DSLs might be described by metamodels that define
the domain concepts and associations established
between them. Additionally, transformations engines
are tools that process a model (defined in a DSL)
and generate other models, through Model-to-Model
(M2M) transformations, or textual artifacts such as
source code, through Model-to-Text (M2T)
transformations (Hermans et al., 2009).

This paper proposes the XIS-CMS approach for
the development of CMS-specific modules by
defining platform-independent domain models with
simple or medium complexity, and then to generate
the corresponding source code automatically. This
approach includes the XIS-CMS language and the
XIS-CMS framework that is its companion
supporting tool. The XIS-CMS language is a DSL,
defined as a UML profile, organized in multiple
views that describe several aspects of a set of CMS
modules, such as domain model, types of users and
permissions. In turn, the XIS-CMS framework
supports that language by offering features like
design, validation and model transformations.

The outline of this paper is as follows. Section 2
describes the context in which the XIS-CMS
approach is based. Section 3 presents the definition
of the XIS-CMS language, describing each view and
illustrating their use with a very simple case study.
Section 4 describes the XIS-CMS framework and
the tools used to support the applicability of the XIS-
CMS language. Section 5 presents the results of the
evaluation of XIS-CMS. Section 6 refers and
discusses the related work. Finally, Section 7
presents the conclusion and issues for future work.

2 BACKGROUND

XIS-CMS derives from previous work, namely from
the XIS and XIS-Mobile UML profiles. XIS is
focused on the design of interactive systems at a
Platform-Independent Model (PIM) level following
a MDD approach. XIS (Silva et al., 2007) comprises
three major sets of views: Entities, Use-Cases and
User-Interfaces. First, the Entity view is composed
of the Domain and BusinessEntities views. The
Domain view represents the relevant classes to the
problem domain, their attributes and the
relationships among them. In turn, the
BusinessEntities view defines higher-level entities,
known as business entities, that aggregate entities of
the Domain view or other business entities that can
be more easily manipulated in the context of a given
use case. Second, the Use-Cases view contains the
Actors and the UseCases views. The Actors view
defines the entities that interact with the system
under study. The UseCases view specifies the
operations that the actors can perform over the
business entities, when interacting with the system.
Third, the User-Interfaces view comprises the
NavigationSpace and InteractionSpace views. The
NavigationSpace view defines the navigation flow
between the several screens of the system
(designated by interaction spaces) with which the
user interacts. In turn, the InteractionSpace view
represents the elements of the graphical interface
contained in each interaction space and can also
specify the access control of the actors to these
elements.

XIS also proposes two modeling approaches: the
smart approach and the dummy approach (Silva et
al., 2007). When using the smart approach, the
designer only needs to define the Domain,
BusinessEntities, Actors and UseCases views. Then,
the User-Interfaces views are automatically
generated through M2M transformations (based on
the models defined in the Domain and UseCases
views). After that, it is possible to refine these
generated UI models through direct authoring or
design. On the other hand, in the dummy approach,
the designer needs to define manually the entire
Domain, Actors, NavigationSpace and
InteractionSpace views. XIS was originally defined
to develop desktop or web interactive applications
and to generate code for software frameworks, such
as Windows Forms.NET and Microsoft ASP.NET,
while XIS-CMS is specifically focused on CMS
modules applications, particularly in CMS module
development.

More recently, XIS-Mobile, an extension of XIS,

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

536

was defined with the focus on developing cross-
platform mobile applications (Ribeiro and da Silva,
2014a); (Ribeiro and da Silva, 2014b). XIS-Mobile
is a DSL that reuses some of the best concepts
proposed on XIS, namely its multi-view
organization and design approaches. Additionally, it
introduces new concepts (e.g. new types of widgets,
internet connection, localization and gesture
support) in order to be more appropriate to design
mobile applications scenarios. Thus, the XIS-Mobile
language is organized in six views: Domain,
BusinessEntities, UseCases, InteractionSpace,
NavigationSpace and Architectural. While the first
four views share the same goals as in XIS (however
with different stereotypes and adjustments), the
latter is totally new and represents the interactions
between the mobile application and external entities
(e.g. web servers or providers). XIS-Mobile is
supported by a framework that allows designing and
validating models described in the XIS-Mobile
language, generating other models from them
(through M2M transformations) and ultimately
generating native source code for multiple mobile
platforms (Android, iOS and Windows Phone),
through M2T transformations (Ribeiro & da Silva,
2014a).

3 XIS-CMS LANGUAGE

There are few languages that attempt to design the
whole structure and management of a web
application (i.e., including menus, pages, modules
and page deployment), such as CMS-ML (Saraiva,
2013) and JooMDD (http://icampus.thm.de/joomdd).
Unlike these languages, the XIS-CMS language is
focused on the design and development of toolkits of
CMS modules, with the respective features for data
and modules management. The XIS-CMS language
adopts some concepts defined in the XIS language,
but introduces new views and an appropriate multi-
view organization. As depicted in Figure 1, XIS-
CMS models are organized in a Toolkit view that
includes three major views: Entities, Modules and
Roles views. In turn, the Entities view contains two
sub-views: Domain and BusinessEntities views. The
Modules view contains two sub-views: UseCases
and User-Interfaces views. At last, the User-
Interfaces view comprises the NavigationSpace and
the InteractionSpace views.

XIS-CMS proposes two modeling approaches:
the smart approach and the dummy approach. While
in the dummy approach all views must be manually
defined, in the smart approach, the NavigationSpace

and the InteractionSpace views are automatically
generated, through M2M transformations, from the
Domain, BusinessEntities, Roles and UseCases
views.

Figure 1: The multi-view organization of XIS-CMS.

For the sake of better understand the XIS-CMS
language, we introduce a simple case study:

«The MySuppliers web application allows
managing the products and the suppliers of a generic
store. A supplier is defined by his personal
information (name, registration date, address and
city) and can supply several products until a
configured maximum value (defined by the module
setting). Each product has a name, width and height.
The products are managed by a Product Manager,
while the suppliers are managed by a Supplier
Manager. The Supplier Manager can also view, but
not edit, the products. For this purpose, it is
necessary to define a toolkit with two modules: one
for the product management and another for the
supplier management. This toolkit can be deployed
on multiple CMS platforms.»

3.1 Toolkit View

The Toolkit view includes all the other views and
represents the logical aggregation of shared business
concepts and modules. It also provides configuration
through the use of tagged values. The Toolkit view

XIS-CMS: Towards a Model-Driven Approach for Developing Platform-Independent CMS-Specific Modules

537

has tagged values to identify the owner of the
toolkit, the type of repository data and the
connection information to access the repository.

3.2 Entities View

The Entities view contains the Domain and the
BusinessEntities views, and describes the domain
and business entities and their relationships at
different abstraction levels.

Domain View. The Domain view defines the
problem domain entities commonly captured from a
domain analysis. It is possible to specify the
attributes of the domain entities and the relationships
among them using associations, aggregations or
inheritances. Each domain entity is represented by a
XisEntity stereotype, which in turn contains one or
more attributes, defined as XisAttributes stereotypes.
Both stereotypes are used, instead of just simple
UML Classes or Attributes, to provide useful
information to the M2T transformations.

Regarding this case study, the MySuppliers
application only manages two domain entities:
Product and Supplier, as shown in Figure 2. The
Supplier entity has a n-ary association with the
Product entity.

Figure 2: Domain view of the MySuppliers.

Business Entities View. The BusinessEntities view
defines high-level entities called business entities.
Each business entity is defined as a
XisBusinessEntity that aggregates XisEntities. The
goal of these business entities is to provide context
to the use cases and interaction spaces, which will be
useful during the model transformation stages. A
XisBusinessEntity defines a master entity (from the
Domain View) through a XisMasterAssociation and
can also define detail and reference entities through
XisDetailAssociations and XisReferenceAssociation
respectively. Both association types contain a tagged
value named “filter” that allows the restriction of the
entity’s attributes that can be used in the context of
the respective XisBusinessEntity. The definition of a
master entity restricts the set of detail and reference
entities that can be used by a XisBusinessEntity.
Both detail and reference entities must be associated

to the master entity in the Domain View,
respectively through aggregations and associations.

There are two business entities in the
MySuppliers application: ProductBE and
SupplierBE. The ProductBE defines the Product as
master entity, whereas the SupplierBE defines the
Supplier as master entity and the Product as a
reference entity.

3.3 Roles View

The Roles view defines the actors or roles that
interact with the system and that are specific to the
defined toolkit. Each role is defined with the
XisRole stereotype and can be organized in a
hierarchy of sub-roles. These roles will be
instantiated in the CMS roles list, but during the
M2T transformation the system may detect that
some CMS standard roles already exist (e.g.
Administrators, Registered users) and will just add
the corresponding permissions to these roles.

3.4 Modules View

The Modules view defines the intended web
modules. Each module contains a UseCases and a
User-Interfaces views, which define its management
operations over a business entity and its module
interface elements, respectively.
UseCases View. The UseCases view describes the
operations that each role is allowed to perform
regarding a specific business entity. A CMS module
is represented as a XisModule, which may contain
XisModuleConfigurations, represented as attributes
and operations. Permissions to the operations are
defined by the XisRole-ModuleAssociation
established between a XisRole and a XisModule.

Figure 3: Metamodel of the UseCases view.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

538

Figure 3 shows these stereotypes and their
relationships. The UseCases view provides the
higher-level information of a CMS module, namely:
which data is manipulated; the operations that can be
performed; and who can perform which operation.

The MySuppliers application is composed of two
modules: Product and Supplier. Figure 4 illustrates
the UseCases view for the Product module, where
the Product Manager role can perform all available
operations (view, create, edit and delete) while the
Supplier Manager role can only view information.

Figure 4: UseCases view of the MySuppliers.

User-Interfaces View. The User-Interfaces view
comprises the InteractionSpace and the
NavigationSpace views, which define the UI screens
of each module and the flows between them.
InteractionSpace View. The InteractionSpace view
defines each screen (or “interaction space”) detailing
all UI elements and associated events. Each screen is
defined as a XisInteractionSpace associated to a
XisModule through a XisIS-ModuleAssociation and
aggregates one or more XisWidgets. A
XisInteractionSpace is defined by the “isEntry” and
“isDefault” tagged values. Only one
XisInteractionSpace per module can have the
“isDefault” value set to true, causing the CMS to
initiate the module in this screen. But more than one
XisInteractionSpace can be defined as an entry
screen (if “isEntry” is set to true), allowing the CMS
to define multiple views of the same module. The
XisWidget represents a web control or UI element
and is refined in two groups: XisSimpleWidgets
(e.g. button, label or input field) and
XisCompositeWidgets (e.g. controls that group other
widgets like a grid or a panel). XisWidgets can have
actions associated with them, which trigger events or
navigation flows. This view is the most labor-
intensive view of the XIS-CMS language, because it
represents all of the UI elements and their layout and
allows the aggregation of multiple UI elements.
Thus it is recommended to use the smart approach to
generate this view, leveraging the M2M
transformations. After that, the designer can
customize and refine directly the generated views if

they do not fulfill the desired requirements.
Considering the MySuppliers application, the

SupplierIndex is the entry screen of the Supplier
module. It contains a XisGrid widget that describes a
grid with columns for each supplier’s attributes:
name, registrationDate, address and city. The
XisGrid has a context menu associated with the
actions “View” and “Edit”. The “View” action
causes the navigation to the SupplierView screen
and the “Edit” action to the SupplierEdit screen in
edit mode. The SupplierIndex also contains a
XisButton with the “Create” action that allows
navigating to the SupplierEdit screen in create mode.

Figure 5: NavigationSpace view of the MySuppliers.

NavigationSpace View. The NavigationSpace view
defines the navigation flow between the several
screens accessible to the end-user when interacting
with a module. The navigation flows between the
XisInteractionsSpaces are defined by
XisInteractionSpaceAssociations. Such associations
have the “actionName” tagged value to identify the
action that triggers the navigation. This view also
provides an overview of the structure of a module
and its interactions, which is useful both to technical
and non-technical stakeholders.

Regarding the MySuppliers application, the
Supplier module’s NavigationSpace view is
composed of eight XisInteractionSpaceAssociations
and four XisInteractionSpaces (see Figure 5): (1)
SupplierIndex shows all the suppliers; (2)
SupplierView shows a read-only screen with the
information of the selected supplier; (3) SupplierEdit
allows the creation/edition of a supplier; and (4)
SupplierSettings represents a custom settings screen
to configure the maximum number of products.

Table 1 summarizes the main stereotypes
defined in each view of the XIS-CMS language and
the stereotypes used from other views. For example,

XIS-CMS: Towards a Model-Driven Approach for Developing Platform-Independent CMS-Specific Modules

539

the UseCases view uses stereotypes defined in the
BusinessEntities and the Roles views in order to
define which entities are managed and the
corresponding access permissions.

Table 1: XIS-CMS views and stereotypes.

View Stereotypes Uses

Domain
XisEntity
XisEntityAttribute
XisEntityAssociation

BusinessEntiti
es

XisBusinessEntity XisEntity
XisMasterAssociation
XisDetailAssociation
XisReferenceAssociation

Roles XisRole

UseCases

XisModule
XisBusiness
Entity

XisModuleConfigurations XisRole
XisModule-
BEManageAssociation

XisActor-
ModuleAssociation

InteractionSpa
ce

XisInteractionSpace XisModule
XisIS-ModuleAssociation
XisWidgets
XisSimpleWidget
XisCompositeWidget
XisForm
XisField
…

NavigationSpa
ce

XisInteractionSpaceAssociat
ion

XisInteractio
nSpace

4 XIS-CMS FRAMEWORK

XIS-CMS approach only becomes relevant when
combines the language with a support MDD-based
framework. The XIS-CMS framework is
implemented using the Model Driven Generation
(MDG) Technologies provided by Sparx Systems
Enterprise Architect (EA) along with the EMF
(Eclipse Modeling Framework). XIS-CMS suggests
a development process comprising the following
steps: (1) the definition of the required XIS-CMS
views using the Visual Editor; (2) the validation of
those views through the Model Validator; (3) the
generation of the User-Interfaces views using the
Model Generator; and (4) the generation of the
application’s source code for the target CMS
platform through the Code Generator. If the models
generated after step (3) do not meet all the
designer’s requirements, the process should return to
step (1) for a new iteration where the designer
performs his corrections. With the exception of step

(1), which is manual, the other three steps are
automatic, only requiring the designer to trigger
their execution.

The XIS-CMS framework is composed of four
modules: Visual Editor, Model Validator, Model
Generator, and Code Generator. First, the Visual
Editor is implemented on top of EA through the
development of an MDG Technology plug-in. This
plug-in allows the definition of the XIS-CMS
language as a UML profile fully compliant with the
OMG specification for UML2. Additionally, it also
allowed the creation of toolboxes, diagram types and
diagram templates customized to the XIS-CMS
language. Second, the Model Validator is
implemented as a plug-in leveraging EA’s Model
Validation API. This solution allowed to
programmatically define validation constraints,
assigning severity levels (error or warning) to them,
and in runtime to navigate directly to the error-
causing element. Despite that, it is not an OMG
standard, like OCL. The Model Validator plays a
decisive role in the XIS-CMS approach, namely
detecting errors produced by the designer at an early
stage of development, enforcing the quality of the
models and, consequently the quality of the
generated models and code. Third, the Model
Generator is also implemented using EA’s
environment, namely through EA’s Automation
Interface. It allows accessing the repository
containing the created models, as well as creating
new ones. The Model Generator is the responsible
for performing the M2M transformations, using the
information of the Domain, BusinessEntities, Roles
and UseCases views. Fourth, the Code Generator is
based on Acceleo, a template-based code generator
framework available as an Eclipse plug-in. Acceleo
implements the MOF Model to Text Language
standard and allows defining code templates for any
kind of model compatible with EMF. The code
templates are composed of regular text (static part of
the template) and annotations (dynamic part of the
template) which are replaced by values of the model
during generation time. For now, the XIS-CMS
framework supports the generation of CMS modules
applications for the DotNetNuke (DNN) platform. It
is important to emphasize that whenever the
designer requires the support of other CMS
platforms, he only needs to define the corresponding
code templates using Acceleo. Figure 6 shows the
generated toolkit modules of the MySuppliers
application and a sample of the Product module.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

540

Figure 6: Modules generated by XIS-CMS.

5 EVALUATION

XIS-CMS has been subject to a two-fold evaluation.
The first evaluation consisted in the development
and analysis of case studies using XIS-CMS, and
their comparison with manually programmed
modules. This phase produced successful results.
However, the development of these case studies
focused on CRUD operations and gave minimum
support to custom operations.

The second phase involved the realization of
user test sessions to evaluate XIS-CMS from the
perspective of users not involved in this work. The
tests session occurred in laboratory sessions and
involved a total of ten users with at least a Bachelor
degree and ages between 22 and 48 years old. Six
participants had previous experience in the
development of CMS applications, namely in
module development, and eight had professional
experience in the IT field. The test session was
composed of a short presentation introducing XIS-
CMS, followed by a simple demonstration. Then
each user received a document with the installation
instructions and how to implement a case study
regarding managing appointments in a medical
clinic. In the end, the users were asked to fill an
online questionnaire to provide their opinion. The
questionnaire was divided in three sections
concerning the assessment of the following aspects
of XIS-CMS: Language, Framework and Approach,
and the results were promising, namely 3,87
(Language), 4,55 (Framework) and 4,2 (Approach),
in a scale from 1 (Very Low) to 5 (Very Good).
Although the sample of participants was small, the
results were relevant and provided enough feedback
to detect flaws, especially considering that it was an
evaluation of the first version of XIS-CMS.

6 RELATED WORK

Although the idea of using MDD approaches to
develop web applications is not new, it is not widely
applied to the domain of CMS and therefore is still
not fully explored and challenged.

JooMDD (http://icampus.thm.de/joomdd) applies
a reverse-engineering method to obtain the model
for the Joomla CMS platform. It has two
components: one for developing extensions and
another for managing the web application structure.
Despite it achieved some success (Priefer, 2014), it
is a platform-specific approach and not satisfying
our goal of platform independence.

The CM Data Architect and the Web Application
Architect are tools developed by IBM resulting from
the attempt to implement a MDD approach to the
IBM Content Management System (Deshpande et
al., 2005). These tools separate the views from the
architect (to manage the entities involved and the
relationships between these entities) and the user
interface designer (to create and manage the UI
artifacts). Although it performs M2T
transformations to accelerate the generation of
source code, it does not use M2M transformations to
generate the user interface view. Thus, the user
interface designer must manually develop it.

The Web Specific Language (WSL), developed
in the University of Oxford, adopts MDD to
generate web applications from models with a focus
on the data and workflows (based on workflows
engines). WSL is a textual language that uses
syntax-to-metamodel and M2T transformations
engines to create the artifacts needed to run the
application. These engines were implemented using
the EMF. Although WSL is an easy and
comprehensive language due to its closeness to
natural language, it lacks the visual modeling
environment. Furthermore, despite adopting a
platform-independence approach, it is more oriented
to applications focused on integration and automatic
services than on web applications with user
interaction (Svansson and Lopez-Herrejon, 2014).

Similarly to XIS-CMS, CMS-ML (de Sousa
Saraiva and da Silva, 2009) is a graphical language
and is organized in multiple views. However, CMS-
ML has a wider scope than XIS-CMS in the sense
that it allows specifying website templates and how
toolkits will be deployed in a given website. In turn,
XIS-CMS targets the development on a toolkit level
assuming that the user has to manually load each
toolkit and manage its configurations. Extending
XIS-CMS to support the definition of website
templates and multi-tenancy is an interesting future

XIS-CMS: Towards a Model-Driven Approach for Developing Platform-Independent CMS-Specific Modules

541

work that we intend to research. XIS-CMS shares
some concepts with the Toolkit View of CMS-ML.
Namely, both languages have Domain and Roles
views; CMS-ML’s WebPage and WebComponent
concepts are equivalent to XIS-CMS’s
XisInteractionSpace and XisWidget, respectively
(Saraiva, 2013). Additionally, comparing to CMS-
IL, XIS-CMS is in a higher level of abstraction and
does not provide concepts that allow specifying too
technical features. Also, XIS-CMS is supported by a
technological framework, while CMS-ML and
CMS-IL do not.

XIS-CMS does not aim to replace the role of the
software developer, but creates the structure of the
modules and accelerates the production of common
and boilerplate code, which is a considerable portion
of the final application’s source code. Then, the
developer can customize the source code to better
refine and implement the application requirements.

7 CONCLUSIONS

In this paper we presented the XIS-CMS approach,
which includes both a domain-specific language and
a framework, as a solution to model and develop
cross-CMS modules. XIS-CMS intends to allow
both technical and non-technical stakeholders to
understand and eventually define these modules and
respective applications. XIS-CMS follows a MDD
approach, using M2M and M2T transformations, in
order to increase the productivity by automatically
generating models but also other artifacts, such as
source code, simplifying the development and
maintenance of these applications. XIS-CMS
promotes a cross-platform solution through its
platform-independent modeling language, in order to
increase the portability of its models regardless of
the CMS platform used. The XIS-CMS language is a
UML profile that applies the “separation of
concerns” principle by defining multiple views to
represent each aspect of the CMS modules. Namely,
it comprises three main views: Entities (including
the sub-views Domain and BusinessEntities), Roles
and Modules (including the sub-views Use-Cases
and User Interfaces) views. On the other hand, the
XIS-CMS framework is based on EA MDG
technologies and EMF, and provides features like a
Visual Editor, a Model Validator and applies M2M
and M2T transformations to generate respectively
more complex models and source code ready to use
in the targeted CMS.

As future work, we intend to apply XIS-CMS in
more complex and real-world domains, which

represent opportunities to better employ and
evaluate all the concepts that XIS-CMS provides and
further explore its requirements. Also, research has
to be developed in order to extend XIS-CMS so that
it would support the modeling and implementation
of a complete CMS web application structure
including, for example, the deployment and
management of its menus, pages and containers.

ACKNOWLEDGEMENTS

This work was partially supported by national funds
through FCT, under the projects
POSC/EIA/57642/2004, CMUP-EPB/TIC/0053/
2013, UID/CEC/50021/2013 and DataStorm
Research Line of Excellency funding (EXCL/EEI-
ESS/0257/2012).

REFERENCES

Boiko, B., 2005. Content Management Bible. John Wiley
& Sons, Inc.

Da Silva, A.R., 2015. Model-Driven Engineering: A
Survey Supported by a Unified Conceptual Model.
Computer Languages, Systems & Structures, 43.

Deshpande, P. et al., 2005. Model Driven Development of
Content Management Applications. COMAD.

De Sousa Saraiva, J., & da Silva, A.R., 2009. CMS-based
Web-Application Development Using Model-Driven
Languages. Proc. of ICSEA, IEEE.

Deursen, A., 2000. Domain-specific languages: an
annotated bibliography. ACM SIGPLAN Notices,
35(6).

Hermans, F., Pinzger, M. & Van Deursen, A., 2009.
Domain-specific languages in practice: A user study
on the success factors. Model Driven Engineering
Languages and Systems, LNCS 5795.

Hutchinson, J., Whittle, J. & Rouncefield, M., 2014.
Model-driven engineering practices in industry:
Social, organizational and managerial factors that lead
to success or failure. Science of Computer
Programming, 89.

Priefer, D., 2014. Model-Driven Development of Content
Management Systems based on Joomla. Proc. of
ACM/IEEE ASE.

Ribeiro, A. & da Silva, A.R., 2014. Evaluation of XIS-
Mobile, a Domain Specific Language for Mobile
Application Development. Journal of Software
Engineering and Applications, 7(11), Scientific
Research Publishing.

Ribeiro, A. & da Silva, A., 2014. XIS-Mobile: A DSL for
Mobile Applications. Proc. of SAC, ACM.

Saraiva, J., 2013. Development of CMS-based Web
Applications with a Multi-Language Model-Driven
Approach (PhD Thesis), Universidade de Lisboa.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

542

Schmidt, D., 2006. Guest Editor's Introduction: Model-
Driven Engineering. IEEE Computer, 39(2).

Selic, B., 2008. Personal reflections on automation,
programming culture, and model-based software
engineering. Automated Software Engineering, 15(3-
4).

Silva, A., Saraiva, J., Silva, R. & Martins, C., 2007. XIS-
UML Profile for eXtreme Modeling Interactive
Systems. MOMPES, IEEE.

Souer, J., Honders, P., Versendaal, J. & Brinkkemper, S.,
2008. A framework for web content management
system operation and maintenance. Journal of Digital
Information Management, 6(4).

Souer, J. & Kupers, T., 2009. Towards a Pragmatic Model
Driven Engineering Approach for the Development of
CMS-based Web Applications. Proc. of MDWE, .

Suh, P., Ellis, J. & Thiemecke, D., 2002. Content
Management Systems. Peer Information.

Svansson, V. & Lopez-Herrejon, R., 2014. A Web Specific
Language for Content Management Systems.
OOPSLA Workshop on Domain-Specific Modeling.

XIS-CMS: Towards a Model-Driven Approach for Developing Platform-Independent CMS-Specific Modules

543

