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Abstract: There are various activity recognition approaches that rely on manual definition of precondition-effect rules to
describe human behaviour. These rules are later used to generate computational models of human behaviour
that are able to reason about the user behaviour based on sensor observations. One problem with these ap-
proaches is that the manual rule definition is time consuming and error prone process. To address this problem,
in this paper we propose an approach that learns the rules from textual instructions. In difference to existing
approaches, it is able to learn the causal relations between the actions without initial training phase. Further-
more, it learns the domain ontology that is used for the model generalisation and specialisation. To evaluate
the approach, a model describing cooking task was learned and later applied for explaining seven plans of
actual human behaviour. It was then compared to a hand-crafted model describing the same problem. The re-
sults showed that the learned model was able to recognise the plans with higher overall probability compared
to the hand-crafted model. It also learned a more complex domain ontology and was more general than the
hand-crafted model. In general, the results showed that it is possible to learn models of human behaviour from
textual instructions which are able to explain actual human behaviour.

1 INTRODUCTION

Assistive systems support the daily activities and al-
low even people with impairments to continue their
independent life (Hoey et al., 2010). Such systems
have to recognise the user actions and intentions,
track the user interactions with a variety of objects,
detect errors in the user behaviour, and find the best
way of assisting them (Hoey et al., 2010). This can
be done by activity recognition (AR) approaches that
utilise human behaviour models (HBM) in the form
of rules. These rules are used to generate probabilistic
models with which the system can infer the user ac-
tions and goals (Krüger et al., 2014; Hiatt et al., 2011;
Ramirez and Geffner, 2011). Such types of models
are also known as computational state space mod-
els (CSSM) (Krüger et al., 2014). They treat activ-
ity recognition as a plan recognition problem, where
given an initial state, a set of possible actions, and a
set of observations, the executed actions and the user
goals have to be recognised (Ramirez and Geffner,
2011). These approaches rely on prior knowledge
to obtain the context information needed for building
the user actions and the problem domain. The prior
knowledge is provided in the form of precondition-
effect rules by a domain expert or by the model de-
signer. This knowledge is then used to manually build

a CSSM. The manual modelling is however time con-
suming and error prone (Nguyen et al., 2013; Krüger
et al., 2012).

To address this problem, different works propose
the learning of models from sensor data (Zhuo and
Kambhampati, 2013; Okeyo et al., 2011). One prob-
lem these approaches face is that sensor data is ex-
pensive (Ye et al., 2014). Furthermore, sensors are
sometimes unable to capture fine-grained activities
(Chen et al., 2012), thus, they might potentially not
be learned.

To reduce the need of domain experts and / or sen-
sor data, one can substitute them with textual data
(Philipose et al., 2004). More precisely, one can
utilise the knowledge encoded in textual instructions
to learn the model structure. Textual instructions
specify tasks for achieving a given goal without ex-
plicitly stating all the required steps. On the one
hand, this makes them a challenging source for learn-
ing a model (Branavan et al., 2010). On the other
hand, they are usually written in imperative form,
have a simple sentence structure, and are highly or-
ganised. Compared to rich texts, this makes them a
better source for identifying the sequence of actions
needed for reaching the goal (Zhang et al., 2012).

According to (Branavan et al., 2012), to learn a
model of human behaviour from textual instructions,
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the system has to: 1. extract the actions’ semantics
from the text, 2. learn the model semantics through
language grounding, 3. and, finally, to translate it
into computational model of human behaviour for
planning problems. To address the problem of learn-
ing models of human behaviour for AR, we extend
the steps proposed by (Branavan et al., 2012). We add
the need of 4. learning the domain ontology that is
used to abstract and / or specialise the model. Further-
more, we consider computational models for activ-
ity recognition as the targeted model format, as they
represent the problem in the form of a planning prob-
lem and are able to reason about the human behaviour
based on observations (Hiatt et al., 2011; Ramirez and
Geffner, 2011).

In this work we concentrate on the problem of (1)
learning the precondition-effect rules that describe the
human behaviour; (2) learning the domain ontology
that describes the context information and its seman-
tic structure; and (3) the ability of the learned models
to explain real human behaviour in the form of plans.

2 RELATED WORK

There are various approaches to learning models of
human behaviour from textual instructions: through
grammatical patterns that are used to map the sen-
tence to a machine understandable model of the sen-
tence (Zhang et al., 2012; Branavan et al., 2012);
through machine learning techniques (Sil and Yates,
2011; Chen and Mooney, 2011; Kollar et al., 2014); or
through reinforcement learning approaches that learn
language by interacting with an external environment
(Branavan et al., 2012; Branavan et al., 2010; Kollar
et al., 2014).

Models learned through model grounding have
been used for plan generation (Li et al., 2010; Brana-
van et al., 2012), for learning the optimal sequence
of instruction execution (Branavan et al., 2010), for
learning navigational directions (Chen and Mooney,
2011), and for interpreting human instructions for
robots to follow them (Kollar et al., 2014; Tenorth
et al., 2010). To our knowledge, any attempts to ap-
ply language grounding to learning models for AR
rely on identifying objects from textual data and do
not build a computational model of human behaviour
(Perkowitz et al., 2004; Ye et al., 2014). This, how-
ever, suggests that models learned from text could
be used for AR tasks. AR here is treated as a plan
recognition problem, thus the plan elements have to
be learned. Existing approaches that learn human
behaviour from text make simplifying assumptions
about the learning problem, making them unsuitable

for more general AR problems. More precisely, the
preconditions and effects are learned through explicit
causal relations, that are grammatically expressed in
the text (Li et al., 2010; Sil and Yates, 2011). They
however, either rely on initial manual definition to
learn these relations (Branavan et al., 2012), or on
grammatical patterns and rich texts with complex sen-
tence structure (Li et al., 2010). They do not address
the problem of discovering causal relations between
sentences, but assume that all causal relations are ex-
pressed within the sentence (Tenorth et al., 2010).
They also do not identify implicit relations. However,
to find causal relations in instructions without a train-
ing phase, one has to rely on alternative methods, such
as time series analysis (Yordanova, 2015a). Further-
more, they rely on manually defined ontology, or do
not use one. However, one needs an ontology to deal
with model generalisation problems and as a means
for expressing the semantic relations between model
elements.

Moreover, there have been previously no attempts
at learning CSSMs from textual instructions. Exist-
ing CSSM approaches rely on manual rules defini-
tion to build the preconditions and effects of the mod-
els. For example, (Hiatt et al., 2011) use the cog-
nitive architecture ACT-R, a sub-symbolic produc-
tion system. It allows the manual description of ac-
tions in terms of preconditions and effects, while the
state of the world is modelled as information chunks
that can be retrieved from the memory of the system.
Other approaches rely on a PDDL1-like notations to
describe the possible actions (Ramirez and Geffner,
2011; Krüger et al., 2013). Then, based on a set of
observations, the agent’s actions and goals are recog-
nised.

In this work we represent the learned CSSM in
a PDDL-like notation and use the learned model to
explain plans that describe actual human behaviour.

3 APPROACH

3.1 Identifying Text Elements of
Interest

To extract the text elements that describe the user ac-
tions, their causal relations to other entities and the
environment have to be identified. This is achieved
through assigning each word in a text the correspond-
ing part of speech (POS) tag. Furthermore, the depen-
dencies between text elements are identified through
dependencies parser.

1Planning Domain Definition Language
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To identify the human actions, the verbs from the
POS-tagged text are extracted. We are interested in
present tense verbs, as textual instructions are usually
written in present tense, imperative form.

After identifying the actions, we extract any nouns
that are direct objects to the actions. These will be the
objects in the environment with which the human can
interact. Furthermore, we extract any nouns that are in
conjunction to the identified objects. These will have
dependencies to the same actions, to which the objects
with which they are in conjunction are dependent.

Moreover, any preposition relations such as in, on,
at, etc. between the objects and other elements in
the text are identified. These provide spacial or di-
rectional information about the action of interest. For
example, in the sentence “Put the apple on the table.”
our action is put, while the object on which the action
is executed is apple. The action is executed in the
location table identified through the on preposition.

Finally, we extract “states” from the text. The
state of an object is the adjectival modifier or the nom-
inal subject of an object. As in textual instructions
the object is often omitted (e.g. “Simmer (the sauce)
until thickened.”), we also investigate the relation be-
tween an action and past tense verbs or adjectives that
do not belong to an adjectival modifier or to nominal
subject, but that might still describe this relation. The
states give us information about the state of the envi-
ronment before and after an action is executed.

3.2 Extracting Causal Relations from
Textual Instructions

To identify causal relations between the actions, and
between states and actions, we use an approach pro-
posed in (Yordanova, 2015a). It transforms every
word of interest in the text into a time series and then
applies time series analysis to identify any causal re-
lations between the series. More precisely, each sen-
tence is treated as a time stamp in the time series.
Then, for each word of interest, the number of occur-
rences it appears in the sentence is counted and stored
as element of the time series with the same index as
the sentence index.

Generally, we can generate a time series for each
kind of word, as well as for each tuple of words. Here
we concentrate on those describing or causing change
in a state. That means we generate time series for all
actions and for all states that change an object.

To discover causal relations based on the gener-
ated time series, we apply the Granger causality test.
It is a statistical test for determining whether one
time series is useful for forecasting another. More
precisely, Granger testing performs statistical signifi-

cance test for one time series, “causing” the other time
series with different time lags using auto-regression
(Granger, 1969). The causality relationship is based
on two principles. The first is that the cause hap-
pens prior to the effect, while the second states that
the cause has a unique information about the fu-
ture values of its effect. Based on these assump-
tions, given two sets of time series xt and yt , we can
test whether xt Granger causes yt with a maximum
p time lag. To do that, we estimate the regression
yt = ao+a1yt−1+ ...+apyt−p+b1xt−1+ ...+bpxt−p.
An F-test is then used to determine whether the lagged
x terms are significant.

3.3 Building the Domain Ontology

The domain ontology is divided into argument (ob-
ject) and action ontology. The argument ontology de-
scribes the objects, locations, and any other elements
in the environment that are taken as arguments in the
actions and predicates. The action ontology repre-
sents the actions with their arguments and abstraction
levels.

To learn the argument ontology, a semantic lex-
icon (e.g. WordNet (Miller, 1995)) is used to build
the initial ontology. As the initial ontology does not
contain some types that unify arguments applied to
the same action (see Fig. 1), the ontology has to be
extended. To do that, the prepositions with which
actions are connected to indirect objects are also ex-
tracted (e.g. in, on, etc.). They are then added to the
arguments ontology as parents of the arguments they
connect. In that manner the locational properties of
the arguments are described (e.g. water has the prop-
erty to be in something). During the learning of the
action templates and their preconditions and effects
(see Section 3.4), additional parent types are added
to describe objects used in actions that have the same
preconditions. Furthermore, types that are not present
in the initial ontology, but which objects are used only
in a specific action, are combined in a common par-
ent type. Fig. 1 shows an example of an argument
ontology and the learning process.

To learn the action ontology, the process for
building action ontology proposed in (Yordanova and
Kirste, 2015) is adapted for learning from textual
data. More precisely, based on the argument ontology,
the actions are abstracted by replacing the concrete ar-
guments with their corresponding types from an upper
abstraction level. In that manner, the uppermost level
will represent the most abstract form of the action.
For example, the sentence “Put the apple on the ta-
ble.” will yield the concrete action put apple table,
and the abstract action put object location. This
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Figure 1: Learning the argument ontology. Step 1 (blue): objects identified through POS-tagging and dependencies; step 2
(black): hierarchy identified through WordNet; step 3 (red): types identified through the relations of objects to prepositions;
step 4 (green): types identified based on similar preconditions; step 5 (yellow): types identified through action abstraction.

representation will later be used as a basis for the
precondition-effect rules that describe the actions.

3.4 Generating Precondition-effect
Rules

Having identified the actions, their causal relations,
and the domain ontology, the last step is the genera-
tion of precondition-effect rules that describe the ac-
tions and the way they change the world. The basis
for the rules is the action ontology. Each abstract ac-
tion from the ontology is taken and converted to an
action template that has the form shown in Fig. 2. Ba-

(:action put
:parameters (?o - object ?to - location)
:precondition (and

(not (executed-put ?o ?to)))
:effect (and

(executed-put ?o ?to))
)

Figure 2: Example of an action template put in the PDDL
notation.

sically, the action name is the first part of the abstract
entity put object location, while the two parameters
are the second and the third part of the entity. Further-
more, the default predicate (executed-action) is added
to both the precondition and the effect, whereas in the
precondition it is negated.

Now the causal relations extracted from the text
are used to extend the actions. The execution of each
action that was identified to cause another action is
added as a precondition to the second action. For ex-
ample, to execute the action put, the action take has
to take place. That means that the predicate executed-
take ?o has to be added to the precondition of the ac-
tion put.

Furthermore, any states that cause the action are
also added in the precondition. For example, imag-
ine the example sentence is extended in the following
manner: “If the apple is ripe, put the apple on the ta-
ble.” In that case the state ripe causes the action put.

For that reason the predicate (state-ripe) will also be
added to the precondition.

This procedure is repeated for all available ac-
tions. The result is a set of candidate rules that de-
scribe a given behaviour.

As it is possible that some of the rules contradict
each other, a refinement step is added. This is done by
converting the argument ontology to the correspond-
ing PDDL format to represent the type hierarchy of
the problem. Then a concrete problem is manually
provided. It describes the initial state of the world
and the goal state to be reached. Later, the problem
as well as the rules and the type hierarchy are fed to a
general purpose planner and any predicates that pre-
vent the reaching of the goal are removed from the
preconditions.

4 EXPERIMENTAL SETUP

To evaluate the approach, textual instructions de-
scribing a kitchen experiment were used to generate
precondition-effect rules. The instructions were ob-
tained from the annotation of an activity recognition
experiment where a person prepares a carrot soup,
then serves the meal, has lunch, then cleans the table
(Krüger et al., 2015; Krüger et al., 2014). The instruc-
tions consisted of 80 sentences, with an average sen-
tence length of 6.1 words, and an average of 1 action
per sentence. The instructions were parsed with the
Stanford Parser to obtain the POS-tags and the depen-
dencies. They were then used as an input for identi-
fying the model elements and for generating the time
series. The time series were then tested for station-
arity by using the Augmented Dickey–Fuller (ADF)
t-statistic test. It showed that the series are already
stationary. The generated time series are available at
the University Library of the University of Rostock
(Yordanova, 2015b). Using the Granger causality test,
18 causal relations were discovered. They were then
used as an input for building the precondition-effect
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rules. Furthermore, WordNet was used to build the
initial argument ontology. It was later extended by
the proposed process and resulted in the ontology in
Fig. 1. The initial state and the goal were manually
defined and a planner (Yordanova et al., 2012) was
used to identify any rules that contradict each other.

The resulting model CSSMl was compared to a
hand-crafted model developed for the same problem
CSSMm. The reason for that was to evaluate the model
complexity in comparison to that of a model built by
a human expert.

Later, the models were used to recognise seven
plans, based on the video log from the cooking
dataset. Landmarks were used as action selection
heuristic (Richter and Westphal, 2010). This allowed
the computation of the approximate goal distance to
the goal. The actions in the plans were represented
according to the action schema learned in each of the
models. The plans were between 67 and 86 steps
long. Cohen’s kappa was calculated to determine the
plans’ similarity. The mean kappa was 0.18, which
indicates that the overlapping of the plans was low.

5 RESULTS

Table 1 provides information about the model dimen-
sions of both CSSMl and CSSMm. The model designer
in CSSMm identified 16 action classes. The learning
method in CSSMl discovered 15 action classes. That
is due to the fact that the action wait was introduces in
CSSMm. As this action was not present in the textual
instructions, it was not discovered in CSSMl . The ac-
tion wait, however, is causally unrelated to any of the
other actions so its presence did not change the causal
structure of the model.

Furthermore, CSSMl discovered 18 arguments in
the textual instructions, while the designer modelled
17 in CSSMm. This is due to the fact that in the tex-
tual instructions after the carrots are cooked, they are
transformed into a soup. Thus, soup is also an argu-
ment in the model. On the other hand, the system
designer decided to use the argument carrots also for
describing the soup. This shows that the approach is
able to learn also context information that is discarded
in the manual model.

CSSMl learned less operator (action) templates
and predicates than those modelled in CSSMm. On
the other hand, the rules resulted in smaller number
of ground operators and predicates in CSSMm than in
CSSMl . This indicates that CSSMl is more general
than CSSMm. This can be explained by the fact that
there are less restrictions in the form of predicates in
CSSMl than in CSSMm.

Table 1: Model parameters of CSSMm and CSSMl .

parameters CSSMl CSSMm
action classes 15 16
operator templates 22 28
predicate templates 17 36
ground operators 189 110
ground predicates 204 160
arguments 18 17
max. arg. per template 2 3
ontology elements 66 41
ontology levels 7 5
states 46,845,389 10,312

The model designer implemented action templates
with maximum of three arguments in CSSMm. On
the other hand, in CSSMl templates with maximum of
two arguments were learned. This indicates that the
learned templates in CSSMl are of lower complexity
than those in CSSMm. Furthermore, the model de-
signer in CSSMm introduced several additional predi-
cates aiming at reducing the model size and increas-
ing the action probability. This made the precondi-
tions and effects in CSSMm more complex than those
in CSSMl

2. Moreover, the proposed approach was
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Figure 3: Median number of possible actions in CSSMl
given the plan (top), and in CSSMm (bottom).

able to learn an argument ontology with seven levels
of abstraction and with 66 elements in total (See Fig.
1). The model designer in CSSMm modelled a sim-
pler ontology with five levels of abstraction and with
41 elements in total. This indicates that the learning
approach is able to discover more complex semantic
structures, given the same problem domain. Further-
more, an iteratively deepening depth first search with
maximum depth of seven was applied to analyse the

2For example, the action wash in CSSMl consists of
three rules in the form of predicates in the precondition and
one rule in the effect clause. On the other hand, the same
action in CSSMm consists of seven rules in the precondition
and three rules in the effect.
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state space graph. It discovered over 46 million states
in CSSMl and 10,312 states in CSSMm. Due to the
size of the models, the complete state space graphs
were not traversed. The larger number of discovered
states in CSSMl once again stands to show that the
learned model is more general than the manually de-
veloped one. The number of plans in both models was
not computed because the whole state space was not
completely explored.

CSSMl and CSSMm were also applied to seven
plans produced by observing the video log of the
kitchen experiment and by using the action schema
from the corresponding model. Fig. 3 shows the me-
dian branching factor in each plan. There the number
of possible actions from a given state in CSSMl (Fig.
3 (top)) was relatively high (between 30 and 55 exe-
cutable actions). This is explained by the model gen-
erality. In other words, CSSMl does not have many
restrictions which results in high behaviour variabil-
ity. It can also be seen that the first plan had a slightly
smaller branching factor than the rest of the plans.
This is due to the fact that the instructions describing
the experiment were compiled based on the execution
sequence in the first experiment. This means that the
learned model was overfitted for the first plan. Still, it
was able to successfully interpret the remaining plans.
In comparison, CSSMm had a median branching factor
of 10 (Fig. 3 (bottom)). This is due to the additional
modelling mechanisms applied by the designer to re-
duce the model complexity (Yordanova et al., 2014).

Regardless of the lower branching factor, having
ten choices from a given state reduced the action prob-
ability. This was reflected in the probability of ex-
ecuting an action in the plan given the model. Fig.
4 (top) shows that the probability was very low for
both models. Surprisingly, with nearing the goal state,
the probability in CSSMl increased (Fig. 4 (top left)),
while the probability in CSSMm stayed low until the
goal state was reached (Fig. 4 (top right)). This can
be explained by the shorter goal distance in CSSMl
(Fig. 4 (bottom left)) compared to that in CSSMm
(Fig. 4 (bottom right)). The distance to the goal in
CSSMl starts with 11 states to the goal and generally
decreases with each executed action. On the other
hand, the goal distance in CSSMm is 50 at the begin-
ning of the problem and it stays relatively long during
the execution of the plan. As the estimated goal dis-
tance is used as an action selection heuristic, the long
distance decreased the action probability in CSSMm.

6 DISCUSSION

In this paper we presented an approach to learning

models of human behaviour from textual instructions.
The results showed that the approach is able to learn
a causally correct model of human behaviour. The
model was able to explain the behaviour of seven ex-
periment participants that executed kitchen tasks.

In difference to existing approaches, the proposed
method was able to learn a complex domain ontology.
It was then used for generalising the model. This was
reflected in the large state space and branching factor
of the resulting model.

It also applied a new method for causal relation
discovery, that was previously not applied to model
learning problems. The method yielded good results
without the need of a learning phase.

The model was compared to a hand-crafted CSSM
model. The results showed that the learned model is
more general than the hand-crafted model. On the
other hand, they also showed that the learned model
has smaller estimated goal distance. This resulted in
the higher action probability when executing a plan,
compared to the hand-crafted model.

Some of the limitations, the learned model had,
are as follows. The model was able to learn actions
with simple predicates. This resulted in the model
generalisation. However, if applied to activity recog-
nition, general models tend to decrease the model per-
formance due to the high branching factor. This can
be solved through reliable action selection heuristics,
or through strategies for reducing the model complex-
ity trough more complex predicates (Yordanova et al.,
2014). In the future, we intend to include mechanisms
for utilising these strategies during the learning pro-
cess.

The model was unable to learn repeating actions,
such as repetitively eating or drinking. This is due to
the fact that the model learned that the precondition
for executing the action is that it still has not been
executed3. Then to repeat the action, the precondition
that the action was not executed is violated. To solve
this problem, a mechanism has to be introduced for
identifying repeating actions in the text.

Another aspect of model learning is how to learn
the initial and goal states. In this work we defined
them manually. In the future we intend to investigate
methods for learning the initial and goal state based
on possible predicate combinations and reinforcement
learning techniques.

Furthermore, in this work we only addressed the
problem of learning the model structure through its
domain ontology and the preconditions and effects

3This is not a problem for action pairs like open and
close as they negate each other’s effects. However, for ac-
tions that do not have negating action, the executed predi-
cate cannot be negated, rendering the action impossible.
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Figure 4: Probability of selecting the action in the plan, given CSSMl (top left) and given CSSMm (top right), and estimated
distance to goal, given the action executed in the plan for CSSMl (bottom left) and for CSSMm (bottom right). To improve the
visibility of overlapping lines, each line was shifted with 1% from the preceding.

describing the actions. However, if we want to ap-
ply the models to activity recognition tasks, the model
needs to be optimised to increase the probability of
selecting the correct action. This can be done by em-
ploying reinforcement learning techniques based on
observations similar to those proposed in (Branavan
et al., 2012).

In the future, we intend to extend our approach
to learning models for AR problems based on sensor
observations. To achieve that, methods for optimising
the model structure will be investigated.
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Krüger, F., Hein, A., Yordanova, K., and Kirste, T. (2015).
Recognising the actions during cooking task (cooking
task dataset). University Library, University of Ros-
tock. http://purl.uni-rostock.de/rosdok/id00000116.
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