
UniQue: An Approach for Unified and Efficient Querying of
Heterogeneous Web Data Sources

Markku Laine, Jari Kleimola and Petri Vuorimaa
Department of Computer Science, Aalto University, Espoo, Finland

Keywords: Mashup Applications, Web Querying, Web Standards, XML Technologies.

Abstract: Governments, organizations, and people are publishing open data on the Web more than ever before. To
consume the data, however, requires substantial effort from web mashup developers, as they have to
familiarize themselves with a diversity of data formats and query techniques specific to each data source.
While several solutions have been proposed to improve web querying, none of them covers aforementioned
aspects in a developer friendly and efficient manner. Therefore, we devised a unified querying (UniQue)
approach and a proxy-based implementation that provides a uniform and declarative interface for querying
heterogeneous data sources across the Web. Besides hiding the differences between the underlying data
formats and query techniques, UniQue heavily embraces open W3C standards to minimize the learning
effort required by developers. Pursuing this further, we propose Unified Query Language (UQL) that
combines the expressiveness of CSS Selectors and XPath into a single and flexible selector language. We
show that the adoption of UniQue and UQL can effectively streamline web querying, leverage developers’
existing knowledge, and reduce generated network traffic compared to the current state-of-the-art approach.

1 INTRODUCTION

Traditional database experts rely on well-defined
data formats and query language APIs. The query
API, such as SQL, provides precisely focused access
to the data. Although the persistent data and its
structure vary between development projects, the
data format and the query API remain the same.
Database experts are thus able to leverage their
previous experience, tools, and reusable code
snippets from past development efforts.

Web mashup developers (hereinafter referred to
as “developers”) are less fortunate. First, web data is
served in a variety of data formats, and it is not
uncommon to mix and match XML, JSON, or even
HTML and CSV in a single mashup application.
Second, to access the data, developers need to
conform to several proprietary APIs. This requires
(re-)learning, since even if data providers offer
RESTful APIs, the query string parameters are likely
to differ. The APIs are often also inefficient and
return substantial amount of redundant data, which
needs to be filtered on the client side with yet
another API.

While semantic web technologies (e.g., RDF and
SPARQL) have been proposed (Harth et al., 2011)

as a solution to uniform data access, they are not
broadly adopted due to their inherent complexity and
unfamiliarity among developers. Indeed, the
majority of web data providers are still relying on
more mainstream data formats and developers on
less complex selector languages.

Therefore, we propose a unified web querying
approach that a) builds on these prevailing practices
and b) takes full advantage of developers’ existing
experience with standard web technologies and
associated tools. This approach, which we call
UniQue, provides a uniform and declarative query
interface that allows developers to perform precise
selection queries against heterogeneous data on the
Web. We focus on efficient querying of text-based
data originating from web data sources and services
(e.g., static files and Web APIs, respectively).
Querying of big data sets and databases is beyond
the scope of this work.

The main contributions of this paper are:
 We propose an approach (UniQue) for unified

and efficient querying of heterogeneous web data
sources.

 We propose improvements to the guidelines for
mapping JSON and CSV data into a single form
(XML); a special focus is put on

84
Laine, M., Kleimola, J. and Vuorimaa, P.
UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 84-94
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

friendliness and round-trippability.
 We propose a unified query language (UQL),

which extends CSS Selectors with XPath
expressions for improved expressiveness.

 We report on the results of an experimental
study, in which we compared the UniQue
approach with the current state-of-the-art
approach.

The rest of this paper is organized as follows.
Section 2 presents a motivating example of querying
heterogeneous web data sources and the challenges
related to it. Section 3 defines the requirements for a
unified and efficient web querying approach. Section
4 introduces the design of the proposed approach,
while Section 5 describes our proxy-based
implementation. Section 6 evaluates the approach
and presents the results with discussion. Section 7
compares our approach to related work and Section
8 draws conclusions.

2 MOTIVATING EXAMPLE AND
CHALLENGES

As a motivating example, consider Alice, who is a
developer and an avid climber. Alice has decided to
build a web mashup application that provides a
central place for climbers alike to stay updated on all
the latest from elite rock climbers.

Figure 1 shows a basic design for Alice’s
mashup application. According to the design, the
application needs to connect to the total of eight web
data sources in order to retrieve all the required data.
Moreover, the data sources are completely different
from each other, as shown in Table 1. First, Alice
needs to scrape data from hardclimbs.info to
generate a list of world’s top 10 climbers, and later
to retrieve their hardest ascents. She also needs to
read climbers’ social media account IDs and
competition results from static files. This requires
writing custom data wrappers or data
transformations. Finally, to retrieve climbers’ basic
information, tweets, and photos from social media
services, Alice needs get familiar with the
documentation and query parameters of each Web
API endpoint.

2.1 Challenges

We identified three major challenges that developers
(i.e., Alice) face in building web mashup
applications.

Figure 1: Web mashup application accessing multiple web
data sources and services.

Table 1: Information about the data sources used by the
web mashup application.

2.1.1 Challenge 1: Heterogeneous Data
Formats

Web data exists in many different formats. As a
result, Alice needs to learn and understand the
differences and similarities between multiple data
models, and deal with the impedance mismatch
problem.

2.1.2 Challenge 2: Heterogeneous Query
Techniques

The heterogeneity of web data formats leads to a
situation where Alice needs to master a diverse
range of query techniques, including web scraping,
writing custom data wrappers, and consuming Web
APIs. Each query technique in turn involves specific
technologies and specifications that Alice needs to
get familiar with.

2.1.3 Challenge 3: Inefficient Use of
Network Resources

Many web data sources (e.g., static files, web pages,
and web feeds) lack of an API. Therefore, Alice
needs to pull the full response data to the client, even
if all that she needs is a fraction of that data. Web

UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources

85

APIs partially suffer from the same problem, as their
filtering capabilities are usually rather limited.

In summary, these challenges not only decrease
Alice's productivity as a developer, but also increase
the application complexity for data access and
querying.

3 REQUIREMENTS

Based on our motivating example and the literature
review (cf. Section 7), we derived a list of
requirements that fall within the scope of this paper.

3.1 Technology Requirements

R1: Ease of Authoring. Technologies must be
familiar to a broad range of developers.
Generally, declarative languages are
considered easier to reason about than
imperative ones (Van Roy and Haridi, 2004),
and thus should be preferred.

R2: Web Integration. Technologies must be
open and standardized to enable
interoperability with existing tools, broad
adoption, and future uses on the Web.

3.2 Data Format Requirements

R3: Uniform Data Representation.
Heterogeneous web data must be converted
into a single, human and machine-readable
format in order to minimize the knowledge
required by developers.

R4: Friendly and Round-Trippable Mappings.
Mapping original data to a single format must
produce data that is both easy to consume and
query, i.e., friendly. Additionally, it must be
possible to map the data back to its original
format, i.e., round-trippable, for data updates.
Focus should be put on friendliness, while
preserving round-trippability.

3.3 Data Access and Query
Requirements

R5: Uniform Data Access. Heterogeneous web
data sources must be accessible and
queryable through a single interface (e.g.,
Web API) in order to minimize the learning
effort required by developers. Moreover, the
interface must provide a means of executing
queries also against web data sources without
available APIs.

R6: Flexible Query Language. The query
language must be simple yet expressive
enough for retrieving data of interest (less
data to be transferred). Moreover, it must be
possible to extend its expressiveness while
keeping the learning curve to a minimum
(MacLean et al., 1990).

3.4 System Requirements

R7: Client Independence. The system must
support various clients (e.g., web browsers
and HTTP client software/libraries), without
requiring any additional software installation.

R8: Server-Side Processing. The system must
perform all processing on the server side in
order to elicit reductions in response data.

R9: Data Source Server Independence. The
system must support existing web data source
servers, without requiring any modifications
to them.

4 THE UNIQUE APPROACH

In this section, we present our unified querying
approach to meet the requirements presented in
Section 3. We set out to give an overview of the
proposed approach and continue with a detailed
description of its essential parts.

4.1 The Approach in a Nutshell

We propose the UniQue approach to help developers
in accessing and querying JSON / CSV / HTML /
XML data originating from heterogeneous web data
sources, such as static files and Web APIs. The
design of the proposed approach fulfills the
requirements R1-R6, while the system
implementation focuses on the requirements R7-R9.

The basic idea is to expose a uniform query
interface (cf. R5) through which the developers can
explore target data and perform selection queries
against it. Consequently, only data of interest is
retrieved. The interface is based on markup
languages (XML) and element selection queries
(CSS Selectors); the core concepts and declarative
technologies that web developers learn from day one
(cf. R1). Besides being open W3C standards (cf.
R2), both of the technologies are expressive and
flexible enough to serve as a basis for the rest of the
design requirements of our approach.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

86

Figure 2: Overview of the UniQue processing.

The overview of the UniQue processing shown
in Figure 2 crystallizes the concepts and
technologies behind the proposed approach. On
receiving the data and the selection query, the data
goes through a unification process. In the Data
format unification process (details in Section 4.2),
JSON / CSV / HTML / XML data is converted into
friendly and round-trippable XML by following a set
of mapping rules. In Query language unification
(details in Section 4.3), a similar conversion process
is applied to a selection query written in UQL /
XQuery to translate it into XQuery. Finally, in the
Query processing phase, the resulting XQuery
(unified) is evaluated and executed against the
resulting XML (unified) to produce output XML,
which includes only data of interest.

4.2 Data Format Unification

In the following subsections, we provide guidelines
for mapping varying data formats into a single form.
We chose XML as the unified data format because it
is more verbose than JSON or CSV. Data mappings
minimize developers’ effort, since they need to
master only a single data format and related
tools/libraries (cf. R3). While studying the
mappings, a special focus was put on two major
aspects, friendliness (primary) and round-
trippability (secondary), identified by (Boyer et al.,
2011) (cf. R4).

4.2.1 JSON to XML

For mapping JavaScript Object Notation (JSON)
(Bray, 2014) to XML, we used the mapping rules

described in the forthcoming W3C XForms 2.0
specification1 (Boyer et al., 2016). Briefly, each
JSON name/value pair becomes an XML element,
whose name is the JSON name and whose value is
the JSON value. In the case of a JSON array, a
separate XML element following the afore-
mentioned rules is created for each value of the
array. Additionally, XML attributes are added to the
element to store the type of the JSON value along
with other metadata required for round-trippability.
In case round-trippability is not required, i.e., the
data is meant for consumption only, the attributes
can be omitted.

We contributed to the design of these mapping
rules in earlier revisions. Specifically, we pointed
out deficiencies regarding round-trippability and
suggested improvements.

Figure 3 gives an example of the JSON to XML
mapping rules. In the example, (a) a JSON response
and (b) its XML equivalent are shown when calling
the Instagram API method “users/{user-id}” to
get basic information about a user, in this case, a
climber named Chris Sharma. As can be seen, the
resulting XML has meaningful element names,
making the data easy to query (i.e., friendly).
Further, the type and order information of the
original JSON are preserved in attributes for round-
trippability.

1 Revision as of March 18, 2015

UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources

87

Figure 3: Example of mapping data between (a) JSON and
(b) XML. The data of interest in line 10 is bolded (referred
later in the paper), whereas attributes required for round-
trippability are de-emphasized in gray.

4.2.2 CSV to XML

The forthcoming XForms 2.0 specification (Boyer et
al., 2016) also describes mapping rules for
converting Comma-Separated Values (CSV)
(Shafranovich, 2005) data into friendly and round-
trippable XML. Briefly, each label in the header row
(if present) becomes an XML element whose name
and value are same as the label. Illegal characters in
the XML element name are replaced (or prepended
in case of the first character) with the underscore
character “_”. Additionally, all these XML header
elements are enclosed by an <h> element. Then,
each field value in the (subsequent) record rows is
mapped to an XML element whose name is the
corresponding label (or <v>, in case headers are
absent) and whose value is the corresponding field
value. The XML record elements of each row are
enclosed by an <r> element.

We extended the mapping rules to better support
both round-trippability and differences among
implementations generating CSV data. Specifically,
we added two attributes to the root element of the
resulting XML: separator and quote. Their values
define the character to separate fields and the
character to quote fields on header and record rows,

Figure 4: Example of mapping data between (a) CSV and
(b) XML. The data of interest in lines 7–11 is bolded
(referred later in the paper), whereas attributes required for
round-trippability are de-emphasized in gray.

respectively. In addition, we propose to add the type
attribute to converted XML header elements to store
the type of values in each CSV column. While
adding the type information may not improve round-
trippability (all field values in CSV are treated as
strings), it increases the semantic level of data.

Figure 4 shows an example, in which (a) CSV
data containing information about Chris Sharma’s
competition results is converted into (b) XML by
following the above-described mapping rules.

4.2.3 Other Mappings

The rules for converting a HyperText Markup
Language (HTML) (Hickson et al., 2014) document
into a well-formed XML document (namely,
XHTML) are already well established and follow a
small set of guidelines defined in (Pemberton et al.,
2002). These guidelines require that, for instance, all
elements must have a closing tag and attribute
values must be quoted. The resulting XML cannot
be converted back into its original HTML form.
However, all relevant information is preserved
during the conversion process, as it only involves
tidying up the HTML markup.

Since Extensible Markup Language (XML)

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

88

(Bray et al., 2008) data is already represented in
well-formed XML, there is no need to apply any
mappings.

4.3 Query Language Unification

The following subsections present UQL and
XQuery. The former is a flexible selector language,
whereas the latter supports more demanding query
scenarios. We describe their commonalities and the
unification process. We also show how developers
can make a smooth transition from one language to
another without introducing major learning barriers
(cf. R6).

4.3.1 Unified Query Language

In this paper, we propose Unified Query Language
(UQL) to efficiently retrieve (and transfer) only data
of interest from target data sources. UQL is based on
widely adopted W3C Selectors (Çelik et al., 2011)
that developers use, for instance, to bind style
properties to elements in CSS and match a set of
elements in a document with W3C Selectors API
(e.g., querySelectorAll()) or jQuery2. To give
an example of Selectors’ functionality, consider a
scenario, in which the number of followers needs to
be shown next to the Instagram icon. With the
selector “followed_by”, we can easily pull the
desired data bolded in line 10 of Figure 3b.
Obviously, Selectors allow much more sophisticated
queries, as they can be combined and joined in many
ways to achieve great specificity. However,
Selectors have certain limitations, such as lack of
content matching and cumbersome range selectors.

UQL addresses these limitations and improves
the expressiveness of Selectors by extending it with
a new functional pseudo-class :xpath(). With our
extension, developers can make a natural and easy
switch to similar but more expressive XPath (Robie
et al., 2014a)—another widely adopted W3C
selector language—whenever Selectors’
expressiveness is not powerful enough. In other
words, the extension exposes the full potential of
XPath, including its functions, to developers.
Consequently, UQL can cover a wide variety of use
cases and requires only minimal learning effort from
developers already familiar with Selectors.

We demonstrate the usefulness of UQL in a
simple example, in which we want to select only
those Chris Sharma’s competition results from
Figure 4b that took place at “Rock Master”. By

2 jQuery, http://jquery.com/

Figure 5: Example of translating a query from (a) UQL to
(b) XPath / XQuery. Our :xpath() extension in UQL is
bolded.

using our extension with the UQL query
“r:xpath('[event/starts-with(., "Rock
Master")]')” we discover that he has partici-
pated the competition three times (2010, 1999,
1999).

In our approach, UQL queries are translated to
XPath equivalents for query processing. Hence, the
semantics of UQL follow the semantics of XPath.
Mapping Selectors parts to XPath is straightforward
as both languages use path-based expressions and
are syntactically very similar, as shown in Figure 5.

4.3.2 XQuery

For completeness and more demanding scenarios,
we also support XQuery (Robie et al., 2014b).
XQuery is a Turing-complete query language
designed by the W3C for extracting and
manipulating data from any data source that can be
viewed as XML. XQuery extends XPath, so
developers can transfer their knowledge gained from
UQL to XQuery when writing queries. XQuery also
supports the missing features of UQL, such as data
grouping and sorting. Its increased expressiveness,
however, comes at the expense of added complexity.

5 UNIQUE SYSTEM
IMPLEMENTATION

In the following, we discuss the concrete
implementation of the UniQue approach.
Specifically, this section details the system
architecture and its operation as well as the
individual components realizing it.

5.1 System Architecture

Figure 6 illustrates the architecture of the UniQue
system implementation. In our architecture, the
UniQue system operates as a proxy server between

UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources

89

the client (e.g., a web browser) and the data source
servers (e.g., Web APIs, web pages, JSON / CSV /
XML files, and RSS / Atom feeds). The proxy was
implemented in XQuery 3.0 on top of the 28.io3
platform. The platform itself is based on Zorba4,
which supports XQuery / JSONiq and other XML
technologies relevant to our approach. The
communication with the proxy takes place by
making HTTP calls to its API.

We chose a proxy-based implementation for
three reasons. First, a wide variety of clients can take
advantage from the services it exposes. Second, it
can significantly reduce network traffic between the
client and the proxy. Third, it does not require any
modifications to existing data source servers. Thus,
the system conforms to the requirements R7-R9
outlined in Section 3.4.

5.2 Operation and Components

Figure 6 depicts the components and processing
steps involved when the client invokes the UniQue
Web API. The process starts by forming the URL
for an HTTP GET request, which consists of an
endpoint URL and query string parameters, such as
data, format, and query.

Below is an example URL,

http://unique.28.io/processor.xq?
data={data}&
format={format}&
query={query}

where data points to a single target data source

(absolute URL or inline text), format indicates its
output format (e.g., json), and query holds a query
expression in UQL in order to retrieve data of
interest from the target data source. The HTTP GET
request, i.e., UniQue query, is then sent to the proxy
(1), where the UniQue processor reads the query
string parameters and makes an HTTP GET request
to retrieve the entire original data from the given
URL (2). After receiving the result of the original
response (3), the processor invokes the Data
converters and Query converters modules to
perform data and query unification, respectively.
Next, the unified query is evaluated and executed
against the unified data, yielding result data in XML
(4). In case the client supports data compression, the
proxy compresses the produced data before
returning the result to the client (5). As a result of

3 28msec, http://www.28.io/
4 Zorba, http://www.zorba.io/

Figure 6: Architecture of the UniQue system
implementation.

the whole process, the response data now contains
only data of interest in a compressed form, which
may reduce network traffic significantly.

5.2.1 UniQue Processor

The UniQue processor is the main component that is
responsible for reading inputs, processing queries,
and returning results. It invokes the Data converters
and Query converters modules.

5.2.2 Data Converters

The data converters module provides functions
necessary to parse input data (a string) and convert it
into XML. The module contains four public
functions—one for each data format supported, i.e.,
JSON, CSV, HTML, and XML—that implement the
mappings discussed in Section 4.2. All the four
function implementations use a dedicated built-in
Zorba function as a basis for their data conversion.
In the case of JSON to XML and CSV to XML, the
built-in Zorba functions by themselves were
incapable of directly producing the desired XML
structure. Therefore, an additional data processing
phase is applied with those two data conversions to
transform a generic, unfriendly XML result
generated by the Zorba functions into the desired,
friendly XML representation format. To the best of
our knowledge, this module provides the first and
improved implementation of the XForms 2.0
conversion rules for mapping data between JSON
and XML as well as CSV and XML.

5.2.3 Query Converters

The query converters module provides a public

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

90

function to parse input query (a string) and convert it
into an XQuery expression, as defined in Section
4.3. First, the function parses the input query with an
assumption that the syntax follows a case-sensitive
Extended Backus-Naur Form (EBNF) grammar of
UQL 1.0 / Selectors 3.0 (both have the same
grammar). The parser’s XQuery code was generated
semi-automatically from the EBNF grammar using
the REx5 parser generator (version 5.30). After
successfully finishing the parsing process, the parser
returns an XML parse tree. Next, the returned XML
is parsed, and as a result, the input query given in
UQL 1.0 / Selectors 3.0 is translated into an XPath
1.0 expression. Finally, an XQuery 3.0 expression is
constructed by prepending the XPath expression
with version and given namespace declarations. In
case the parser fails to parse the input query, the
function assumes that the syntax is XPath 1.0 /
XQuery 3.0 compliant and prepends namespace
declarations if provided.

5.3 Availability

The UniQue system implementation is made
available to the public under the MIT license. The
latest source code release can be downloaded from
the project website at
https://mediatech.aalto.fi/publications
/webservices/unique/.

6 EXPERIMENTAL
EVALUATION

In this section, we evaluate UniQue with respect to
the challenges identified in Section 2.1. Our
evaluation also includes a comparison against a
similar proxy-based approach called YQL (Yahoo,
2016), which represents the current state-of-the-art.
Next, we describe our experimental design and
results, followed by a brief discussion.

6.1 Experimental Design

We developed two versions of Alice’s web mashup
application depicted in Figure 1; one using UniQue
and one using YQL for accessing the data sources
(eight in total) shown in Table 1. To compare the
approaches in terms of used data formats and query
techniques, and to measure generated network
traffic, we extracted the related data source queries

5 REx Parser Generator, http://bottlecaps.de/rex/

from both applications. Each data source was then
queried separately by sending an HTTP GET request
from Chrome 45 web browser running on Mac OS X
10.8.5 with 3.06 GHz Intel Core 2 Duo processor
and 4 GB of RAM over a wireless network
connection. The proxies and data sources were
running on third-party servers. To ensure a fair
comparison, we requested both proxies to return
response data in a format as similar as possible, i.e.,
XML and without attributes required for round-
trippability. For capturing the browser's network
traffic with the proxies, we used the HTTP Archive
(HAR)6 format.

The data sets, queries, and their associated
evaluation results are all available at the project
website.

6.2 Results

6.2.1 Data Formats

As shown by the last column of Table 1, the original
data sources used varying data formats to return
data. Nevertheless, both proxies succeeded in
converting all the data retrieved from the original
data sources into well-formed XML. There were no
major differences between the conversion results;
the resulting data appeared natural and used
elements only (as opposed to having relevant data
placed within attributes), making it easy to work
with. From the developer’s perspective, we observed
that consuming the data required no or very little
understanding of data formats other than XML.

6.2.2 Query Techniques

In both approaches, the data from the original data
sources was accessed through the proxy’s own Web
API (endpoint URL with appropriate parameters).
To select exactly the data of interest, a query
expression was passed as a query parameter in the
URL. With UniQue, the expressiveness of UQL was
found sufficient in 7 out of 8 queries. Specifically,
the use of pure Selectors was enough in five queries,
while the proposed :xpath() extension was needed
in two queries to match against element values. The
more expressive XQuery was leveraged with Data
Source I to construct a highly specific XML output
from the original data. YQL in turn used SQL-like
query statements accompanied with dot-style syntax
as a basis for filtering the data. In 5 out of 8 queries,

6 HTTP Archive 1.2,

http://www.softwareishard.com/blog/har-12-spec/

UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources

91

the syntax was found sufficient. With the three
remaining queries, there was a need for a
supplementary selector language, i.e., Selectors or
XPath, within an SQL statement. Additionally,
XSLT was needed to query Data Source I.

In conclusion, the main difference between the
two approaches was in the selection of query
languages. UniQue leveraged web mashup
developers’ prior knowledge on W3C-standardized
Selectors and provided a gentle slope to extend its
expressiveness. YQL in turn relied on SQL-like
syntax, which is more familiar to database experts,
and other rather different query languages to
increase its expressiveness.

6.2.3 Network Traffic

Figure 7 presents the results of our comparative
performance study regarding generated network
traffic. From the figure we clearly see that the
generated network traffic was significantly smaller
with UniQue; 2 115 bytes on average compared to
4 332 bytes of YQL (about 51% reduction ratio).
The high reduction ratio mainly results from the fact
that our proxy compresses HTTP response body data
whenever the requesting client supports it7, whereas
the YQL proxy never does so. Moreover, even
without the effects of additional gzip compression
on our proxy, the generated network traffic would
still have been about 3% smaller with UniQue
compared to YQL.

6.3 Discussion

The results from our experimental evaluation
suggest that UniQue is a promising approach for
querying heterogeneous web data sources. The
benefits of adopting our approach were particularly
apparent in terms of effective use of developers’
prior knowledge on W3C standards and reduced
network traffic through extendable query capabilities
and data compression. Additionally, the process of
web querying was simplified. We believe that these
results will be of particular interest to the XForms
community.

Our evaluation case study also revealed potential
areas of improvement for the proposed UniQue
approach. For instance, UQL could natively cover
most typical use cases for the :xpath() extension
in the future, such as matching against element
values. Many of the current shortcomings of

7 All modern web browsers support HTTP compression.

Figure 7: Comparison of generated network traffic per
data source between UniQue and YQL.

Selectors (Level 3)—which UQL uses as a basis—
will also be addressed in its future specifications
(Etemad and Atkins, 2016; Kosek and Atkins,
2016).

We also noted that web mashup applications
using our proposed approach could be
complemented with a web performance solution,
such as (Akamai, 2016; Google, 2016). These
solutions provide automated web content and
connection optimizations, such as image transcoding
and HTTP multiplexing. As a result, the browser’s
overall network traffic can be reduced even further.
Further, we believe that potential savings in data
transfers might be of special interest for end users
behind a slow network connection or on mobile,
especially if they have limited bandwidth and/or a
monthly data quota.

7 RELATED WORK

Over the years, numerous web query languages and
techniques have been proposed in the literature; cf.
Bailey et al. (2005) for a comprehensive survey.
More recently, efforts have also been made to query
newer web data formats, such as JSON. One of the
most prominent query languages for it is JSONiq
(Florescu and Fourny, 2013). JSONiq borrows
several ideas from XQuery, such as a powerful
FLWOR (For, Let, Where, Order by, and Return)
construct as well as a declarative and functional
style of programming. OXPath (Furche et al., 2013)
in turn focuses on effectively scraping data from
complex web applications. As its name suggests, the
technique is based on an extended XPath language
that allows declarative interaction with scripted
HTML documents and the extraction of data from
them. Giribet’s (2005) proposal is another example
of using XPath in querying web content. The

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

92

technique combines XPath with URLs. Specifically,
it uses XPath in the fragment identifier of an URL to
explicitly specify the parts of XML data that are of
interest. Similarly, Hausenblas et al., (2014) uses
fragment identifiers with tailor-made methods to
select specific rows, columns, or cells from CSV
data. The main disadvantage of using fragment
identifiers lies, however, in their inefficient data
delivery. Namely, fragment identifiers are only
interpreted by the client upon first receiving full
response data. In contrast, UniQue performs data
filtering on the proxy server and returns only data of
interest to the client, and thus reduces network
traffic. Additionally, it supports querying of all the
above-mentioned data formats through a single,
uniform, and declarative query interface.

According to Bischof et al. (2012), most of the
existing approaches for querying heterogeneous data
formats can be divided into two categories: data
translation and language integration. In data
translation, data is transformed from one
representation format into another using predefined
mapping rules. For example, 28.io (28msec, 2016)
provides proprietary XQuery / JSONiq functions for
converting data between different formats, including
XML, JSON, HTML, and CSV. Boyer et al. (2011)
go beyond straightforward data conversions of this
nature and discuss different mapping approaches
between XML and JSON from the aspects of
friendliness and round-trippability. The same aspects
are also considered important in the design of
XForms 2.0 (Boyer et al., 2016) mappings used in
UniQue. In language integration, approaches (e.g.,
Bischof et al. (2012)) combine and/or extend
existing query languages to enable querying of
different data formats. This category also includes
such approaches, in which queries are translated
from one language into another, as in (Progress
Software Corporation, 2016). The UniQue approach
applies both language integration principles: UQL
extends the expressiveness of Selectors with XPath,
which in turn is translated to an equivalent XPath /
XQuery before executing the query.

To overcome common challenges of querying
heterogeneous web content, Berger et al. (2006)
propose a novel language called Xcerpt. Xcerpt is a
versatile query language (Bry et al., 2005) that is
capable of accessing web data in all formats, such as
XML and RDF. MashQL (Jarrar and Dikaiakos,
2012) is another example of a completely new query
language. Because of the originality of Xcerpt and
MashQL, however, the query languages have not
gained popularity among web mashup developers.
Tsai et al. (2011) and YQL (Yahoo, 2016) present a

proxy-based solution that uses a more mainstream
query language as a basis, namely SQL. In these two
approaches, an SQL-like query language is used to
perform CRUD operations on heterogeneous web
data sources and RESTful APIs, respectively. Our
approach aims to minimize the learning effort and
technologies required by developers, and thus takes
full advantage of developers’ existing knowledge on
open W3C standards.

8 CONCLUSIONS

In this paper, we introduced a unified querying
(UniQue) approach that provides a uniform and
declarative query interface across heterogeneous
web data sources. The proposed approach is based
on the idea of data format and query language
unification. Additionally, our approach leverages
web mashup developers’ prior knowledge on open
W3C standards to enable broad adoption. We
proposed Unified Query Language (UQL) that
seamlessly extends the expressiveness of CSS
Selectors with XPath expressions to query our
unified data model. Both the UniQue approach and
UQL were realized in our proxy-based
implementation, which is made available under the
terms of the MIT license at
https://mediatech.aalto.fi/publications
/webservices/unique/. The evaluation results
from our case study indicate that UniQue can
effectively streamline web querying, and show up to
51% (with compression) and 3% (without
compression) reduction in generated network traffic
compared to the current state-of-the-art approach.

ACKNOWLEDGEMENTS

The authors thank William Candillon and Dr.
Ghislain Fourny at 28.io for their exceptional
support with XQuery.

REFERENCES

28msec, 2016. 28msec. http://www.28.io/.
Akamai, 2016. Ion Web Performance Optimization |

Akamai. https://www.akamai.com/us/en/solutions/pro
ducts/web-performance/web-performance-optimizatio
n.jsp.

Bailey, J., Bry, F., Furche, T., Schaffert, S., 2005. Web
and Semantic Web Query Languages: A Survey. In

UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources

93

First International Summer School 2005, LNCS 3564,
pp. 35–133. Springer.

Berger, S., Bry, F., Furche, T., Linse, B., Schroeder, A.,
2006. Beyond XML and RDF: The Versatile Web
Query Language Xcerpt. In Proceedings of the 15th
International Conference on World Wide Web, pp.
1053–1054. ACM.

Bischof, S., Decker, S., Krennwallner, T., Lopes, N.,
Polleres, A., 2012. Mapping between RDF and XML
with XSPARQL. Journal on Data Semantics, vol. 1,
no. 3, pp. 147–185. Springer.

Boyer, J.M., Bruchez, E., Klotz, L.L. Jr., Pemberton, S.,
Van den Bleeken, N., 2016. XForms 2.0 - W3C
XForms Group Wiki (Public). http://www.w3.org/Mar
kUp/Forms/wiki/XForms_2.0.

Boyer, J., Gao, S., Malaika, S., Maximilien, M., Salz, R.,
Simeon, J., 2011. Experiences with JSON and XML
Transformations. In W3C Workshop on Data and
Services Integration.

Bray, T., 2014. The JavaScript Object Notation (JSON)
Data Interchange Format - RFC 7159 (Proposed
Standard). http://tools.ietf.org/html/rfc7159.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.,
Yergeau, F., 2008. Extensible Markup Language
(XML) 1.0 (Fifth Edition) - W3C Recommendation.
http://www.w3.org/TR/xml/.

Bry, F., Koch, C., Furche, T., Schaffert, S., Badea, L.,
Berger, S., 2005. Querying the Web Reconsidered:
Design Principles for Versatile Web Query
Languages. International Journal on Semantic Web
and Information Systems, vol. 1, no. 2, pp. 1–21. IGI
Global.

Çelik, T., Etemad, E.J., Glazman, D., Hickson, I., Linss,
P., Williams, J., 2011. Selectors Level 3 - W3C
Recommendation. http://www.w3.org/TR/selectors/.

Etemad, E.J., Atkins, T. Jr., 2016. Selectors Level 4 -
W3C Editor’s Draft. https://drafts.csswg.org/selec
tors/.

Florescu, D., Fourny, G., 2013. JSONiq: The History of a
Query Language. IEEE Internet Computing, vol. 17,
no. 5, pp. 86–90. IEEE.

Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers,
A., 2013. OXPath: A Language for Scalable Data
Extraction, Automation, and Crawling on the Deep
Web. The VLDB Journal, vol. 22, no. 1, pp. 47–72.
Springer.

Giribet, D., 2005. Merging XPath and URLs for Enhanced
Web and Web Service Data Retrievals. In Proceedings
of the IADIS International Conference on Applied
Computing, pp. 27–33. IADIS.

Google, 2016. Data Saver - Google Chrome.
https://developer.chrome.com/multidevice/data-
compression.

Harth, A., Norton, B., Polleres, A., Sapkota, B., Speiser,
S., Stadtmüller, S., Suominen, O., 2011. Towards
Uniform Access to Web Data and Services. In W3C
Workshop on Data and Services Integration.

Hausenblas, M., Wilde, E., Tennison, J., 2014. URI
Fragment Identifiers for the text/csv Media Type –

RFC 7111 (Informational). http://tools.ietf.org/html/rf
c7111.

Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Doyle
Navara, E., O'Connor, E., Pfeiffer, S., 2014. HTML5:
A Vocabulary and Associated APIs for HTML and
XHTML - W3C Recommendation. http://www.w3.org
/TR/html5/.

Jarrar, M., Dikaiakos, M.D., 2012. A Query Formulation
Language for the Data Web. IEEE Transactions on
Knowledge and Data Engineering, vol. 24, no. 5, pp.
783–798. IEEE.

Kosek, J., Atkins, T. Jr., 2016. Non-Element Selectors
Module Level 1 - W3C Editor’s Draft.
https://drafts.csswg.org/selectors-nonelement/.

MacLean, A., Carter, K., Lövstrand, L., Moran, T., 1990.
User-Tailorable Systems: Pressing the Issues with
Buttons. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 175–182.
ACM.

Pemberton, S., Austin, D., Axelsson, J., Çelik, T.,
Dominiak, D., Elenbaas H., Epperson, B., Ishikawa,
M., Matsui, S., McCarron, S., Navarro, A.,
Peruvemba, S., Relyea, R., Schnitzenbaumer, S.,
Stark, P., 2002. XHTMLTM 1.0 The Extensible
HyperText Markup Language (Second Edition): A
Reformulation of HTML 4 in XML 1.0 - W3C
Recommendation. http://www.w3.org/TR/xhtml1/.

Progress Software Corporation, 2016. DataDirect XQuery
Product Architecture Overview. http://www.progress.c
om/products/data-integration-suite/xquery/xquery-pro
duct-architecture.

Robie, J., Chamberlin, D., Dyck, M., Snelson, J., 2014.
XML Path Language (XPath) 3.0 - W3C
Recommendation. http://www.w3.org/TR/xpath-30/.

Robie, J., Chamberlin, D., Dyck, M., Snelson, J., 2014.
XQuery 3.0: An XML Query Language - W3C
Recommendation. http://www.w3.org/TR/xquery-30/.

Shafranovich, Y., 2005. Common Format and MIME
Type for Comma-Separated Values (CSV) Files - RFC
4180 (Informational). http://tools.ietf.org/html/rfc
4180.

Tsai, C.-L., Chen, H.-W., Huang, J.-L., Hu, C.-L., 2011.
Transmission Reduction between Mobile Phone
Applications and RESTful APIs. In Proceedings of the
2011 ACM Symposium on Applied Computing, pp.
445–450. ACM.

Van Roy, P., Haridi, S., 2004. Concepts, Techniques, and
Models of Computer Programming, The MIT Press.
Cambridge, Massachusetts, 1st edition.

Yahoo, 2016. Yahoo Query Language (YQL).
http://developer.yahoo.com/yql/.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

94

