
Towards a Proof-based SLA Management Framework
The SPECS Approach

Miha Stopar1, Jolanda Modic1, Dana Petcu2 and Massimiliano Rak3
1XLAB d.o.o., Pot za Brdom 100, Ljubljana, Slovenia

2Institute e-Austria Timisoara and West University of Timisoara, Timisoara, Romania
3Department of Information Engineering, Second University of Naples, Aversa, Italy

Keywords: Cloud Storage, Cloud Security, Security SLA, SLA Management.

Abstract: We present a framework that allows monitoring of the cloud-based applications and environments to verify
fulfilment of Service Level Agreements (SLAs), to analyse and remediate detectable security breaches that
compromise the validity of SLAs related to storage services. In particular, we describe a system to facilitate
identification of the root cause of each violation of integrity, write-serializability and read-freshness
properties. Such a system enables executing remediation actions specifically planned for detectable security
incidents. The system is activated in an automated way on top of storage services, according to an SLA,
which can be negotiated with customers.

1 INTRODUCTION

Most of the Cloud Service Providers (CSPs) today
offer their services through a Service Level
Agreement (SLA) and the importance of it is
undisputed. However, most of the SLAs are
relatively simple and usually cover at most
availability, support, and disaster recovery. While
having these properties defined in SLAs is
absolutely crucial, there are numerous incidents
which are not covered. Imagine, for example, the
scenario where for some reason the Cloud Service
Customer’s (CSC’s) data on the cloud server gets
corrupted. In this case, the service is still available
and thus no recovery of service is needed, the
support is available, too, but most probably the CSP
does not have a mechanism to restore the corrupted
file. Moreover, it is most likely that the data
corruption would be detected, by the CSC, only
when trying to access the file for the next time
(which might be months after the corruption date).

Thus, there is a need to introduce new properties
in SLAs. In this paper, we focus on security
properties that are the most critical in the cloud
storage SLAs, i.e., confidentiality (C), integrity (I),
write-serializability (i.e., consistency among up-
dates; denoted as WS), and read-freshness (i.e.,
assurance that the requested data is always fresh as
of the last update; denoted as RF). Apart from

providing C, I, WS, and RF guarantees to CSCs,
there are also other needs: i) to continuously monitor
the system in order to assure that the CSP’s
commitments with respect to these features are
fulfilled, and ii) to automatically react in case of
detected violations in order to guarantee business
continuity. Moreover, in order to enable the CSCs to
prove a violation of some commitment to the CSP
and to enable the CSP to disprove any potential false
accusations from the CSC, developing a proof-based
system is of utmost importance when it comes to
assuring and enforcing security in cloud storage
environment. We firmly believe that no SLA should
be signed without an assurance of the existence of
such a proof-based system (as without it the CSC
has no mechanism to claim the compensations). As
oppose to availability violations, which are usually
quickly noticed and reported in news, the violations
of integrity could be noticed only by the affected
CSC. Thus, the CSC should have an undisputable
proof of the SLA violation and should be notified
about it immediately when the violation occurs.

The authors of this paper are involved in a FP7-
ICT project SPECS (SPECS, 2013) whose objective
is to address the issue related to cloud SLAs as far as
security is concerned. To provide a solution to all
these issues, we adopt the SPECS SLA management
framework, enriching it with a proof system for the
security properties that the CSP guarantees for

240
Stopar, M., Modic, J., Petcu, D. and Rak, M.
Towards a Proof-based SLA Management Framework - The SPECS Approach.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 240-248
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

storage services. The SLA management framework
can be put on top of any cloud storage provider to
enhance it with the above mentioned security
features. The framework supports continuous
monitoring and automatic responses to violations of
assured security properties specified in SLAs. In the
following we focus on the innovative features
related to storage services, while we suggest (Rak et
al., 2015) for more details on the SPECS framework.

Some of the above discussed concerns have
already been tackled. How to enforce the above
mentioned security features with SLAs and how to
detect violations related to them has been discussed
earlier. For example, Popa et al. (2011) provided a
proof-based system (named CloudProof) for
enforcing and monitoring each of the properties C, I,
WS, and RF. We go one step further and provide an
extension of the system that is able to distinguish
among different types of attacks in case of their
violations (CloudProof only detects that some
security property is violated and it does not try to
determine the root cause). Root cause analysis is
important not only because it gives an insight into
what is going on in the system, but also because with
that kind of additional information CSPs can choose
and apply optimal reactive measures to recover from
the incident.

This paper gives the following contributions.

Auditor Extension. Our first novelty is the
extension of the CloudProof’s Auditor in order to
facilitate identification of the root cause of each
violation of I, WS and RF properties. Such an
extension enables us to develop and automatically
apply specific remediation actions.

Proof-based SLA Management Framework. In
addition to the extended design of the Auditor, we
provide a proof-based SLA management framework
that monitors the system to verify fulfilment of
SLAs, and analyses and remediates all detectable
eventualities that compromise validity of SLAs. The
proof-based system also assures proofs of violations
which are valuable not only to the CSC which can
prove CSP's misbehaviour, but also to the CSP
which can disprove any false accusation.

The paper is organized as follows. The current
state of the art is discussed Section 2. Further details
about SLAs and the introduced SLA management
framework are presented in Section 3. The initial
CloudProof’s Auditor is briefly discussed in Section
4 and its proposed extension is presented in Section
5. The proposed techniques for monitoring SLAs
and automatically remediating SLA violations
related to I, WS, and RF are elaborated in Section 6.

Implementation details are discussed in Section 7,
and the conclusions are discussed in Section 8.

2 RELATED WORK

An SLA is essential in formalizing a relationship
between a CSC and a CSP. It specifies the way both
parties share responsibilities and risks that are
attached to them. Security breaches and system
failures are just a few of the incidents that can occur.
In all of these cases the consequences can include
contractual termination and loss of customers,
financial penalties and lawsuits, severe damage to
CSP's business reputation and CSC's loss of
sensitive data. Therefore, a number of SLA
standardisation initiatives are working on defining a
standard format for cloud SLAs. For example, the
European Commission has developed
standardisation guidelines for cloud SLAs (European
Commission, 2014), Cloud Standards Customer
Council published a practical guide to understanding
cloud SLAs (Cloud Standards Customer Council,
2015), and ISO/IEC JTC1/SC38 standardisation
committee is actively working on defining a
standard for cloud SLA framework and terminology
(ISO/IEC, 2014).

Every CSC should negotiate the desired and
required cloud service and its security level in the
form of an SLA, and each CSP should continuously
monitor the provisioned service to assure the
fulfilment of all commitments specified in the SLA.
We consider every CSP to be untrusted, thus even
something better than just an SLA management
framework is needed, i.e., a proof-based system that
guarantees transparency of CSP's operations and
thus assures CSP's trustworthiness. For example,
SLA management frameworks like SLA@SOI
(SLA@SOI, 2009) and mOSAIC (mOSAIC, 2010)
can detect SLA violations and are even able to
recover from them, but no proof-based system is
integrated that would provide proofs of violations.
Thus nothing assures CSCs that they will be notified
about any SLA violation and, most importantly, they
will not be able to prove it and claim compensation.

Some solutions exist that cover these issues for
some specific security properties. For example,
direct anonymous attestation scheme (Brickell et al.,
2004) is a privacy enhancing scheme that enables
assertion of a physical or a virtual component by a
trusted source while preserving confidentiality and
privacy. The proof of data possession (see (Ateniese
et al., 2007); (Erway et al., 2015); (Kaaniche et al.,
2014)) and proof of retrievability (see (Juels et al.,

Towards a Proof-based SLA Management Framework - The SPECS Approach

241

2007); (Shacham and Waters, 2013); (Bowers et al.,
2009)) notions enable the detection of tampering of
the stored data. The first scheme allows the CSC to
verify the integrity of its data stored in the cloud and
the later scheme enables the CSC to verify that the
CSP possesses the originally stored data without
retrieving it.

Similarly, the concept of proof of data ownership
(Halevi et al., 2011) has been introduced to alleviate
the CSP from storing multiple copies of the same
data, and the transparency logging scheme (Pulls et
al., 2013) has been introduced to enable data
processors to inform users about the actual data
processing that takes place on their personal data.

Due to various laws and regulations requiring
data to be stored and processed in specific
geographic location, it is becoming very important
to enable the CSC to have a proof of data location
(see (Katz-Bassett et al., 2006); (Albeshri et al.,
2014); (Ateniese et al., 2011); (Watson et al., 2012)).

CloudProof (Popa et al., 2011) addresses the
issue of provable violations related to C, I, WS, and
RF. The authors designed a cloud storage mechan-
ism that enables detection (with a specific
monitoring system, namely the Auditor) and proofs
of SLA violations related to these properties.

The Auditor in CloudProof is based on
attestations which are signed messages that
accompany each CSC's request and each CSP's
response. The CSP stores CSC's attestations for
potential cases when the CSC would trigger false
accusations. Similarly, the CSC saves all attestations
received from the CSP. Additionally, the CSC sends
all attestations to the Auditor, which then checks
them in order to verify validity of I, WS, and RF
commitments. Once attestations are sent to the
Auditor, the Client can delete them.

CloudProof attestations enable detection of I,
WS, and RF violations. However, no work has yet
been done to either identify root causes or to
automatize the remediation actions. Note that once a
violation is detected either due to a security breach
or a system failure, more of them will most likely
follow. So it is crucial to first identify the root cause
of the event and then restore the system to the
normal state accordingly.

The Auditor can be used as a monitoring
component of an SLA management framework.
However, as opposed to many SLA management
frameworks (e.g., SLA@SOI (SLA@SOI, 2009),
mOSAIC (mOSAIC, 2010), SPECS (SPECS, 2013))
that have monitoring component tightly integrated
with the rest of the components of the framework
that is operated by the CSP, we claim that the

monitoring and auditing components need to be
independent and not operated by the service
provider.

To the best of our knowledge, none of the
existing SLA management frameworks deal with
automatic remediation of provable SLA violations.
The majority of proposed solutions either focus on
automatic deployment of cloud services (e.g.,
(Bonvin et al., 2011); (Addis et al., 2010); (Badidi,
2013); (SLA@SOI, 2009)), SLA monitoring (Sahai
et al., 2002), or prediction and detection of SLA
violations (like (Emeakaroha et al., 2012); (Leitner
et al., 2010)). Some SLA management solutions are
focused on detection and remediation of
performance related SLA violations (see
(SLA@SOI, 2009), (Brandic et al., 2010)).
However, a framework that would automatically
negotiate, enforce, and monitor security SLAs, and
remediate detectable security incidents through a
proof-based system does not yet exists.

To this end, the rest of the paper presents a new
approach to solving the above discussed issues that
was also adopted in SPECS (see (SPECS, 2013) and
(Rak et al. 2015)). We present an enhancement of
the CloudProof scheme and its integration into a
new proof-based SLA management framework that
not only detects and analyses security incidents and
system failures, but also reacts to them in an
automated way.

3 SLA MANAGEMENT
FRAMEWORK

An SLA specifies all aspects of the service being
provisioned by the CSP to the CSC. The agreement
details not only the infrastructure and resources to be
provisioned, but also the level of security to be
assured for the acquired service, along with
remedies for the failure to meet those levels. All
these aspects are formalised with Service Level
Objectives (SLOs) that represent CSP’s commit-
ments for a specific security property (i.e., for a
specific security metric, e.g., WS or RF).

Each SLA management framework and each
CSP that offers SLAs are in need of the followings
items: i) a system to negotiate CSP's services and
their security properties in terms of SLOs; ii) a
system that automatically deploys negotiated
services in a secure manner; iii) a system that
monitors negotiated commitments; and iv) a system
that manages detected incidents or system failures
that compromise validity of negotiated SLOs.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

242

The SLA management framework that we
propose aims at providing monitoring and remedia-
tion functionalities in the secure cloud storage
domain. We assume that negotiation and deployment
activities are managed by the CSP and are out of the
scope of this paper.

The framework comprises eight components and
involves three entities, as depicted in Figure 1.

The Client component handles all uploads and
downloads of data and provides client-side encrypt-
ion (enforcing confidentiality). It operates directly
on the CSC’s side independently from the CSP.

Figure 1: Proof-based SLA management framework.

The Main Server orchestrates all upload and
download requests from the Client and handles all
associated operations (i.e., writes and reads to the
Main DB, performs backups). Similarly, the Backup
Server and the Backup DB components manage and
store, respectively, a copy of all CSC's data that can
be retrieved in case of incidents or failures.

The Monitoring System component monitors
availability of both servers to guarantee business
continuity and thus the fulfilment of all undertaken
SLAs. In case of any SLA violation, either notified
by the Monitoring System or the Auditor, the
Remediation System component manages entire
remediation process. These components reside on
CSP's infrastructure.

Note that in the proposed architecture, in order to
increase security, both servers should be separated
from database components; they should all reside on
different VMs. In order to ensure the disaster-proof
system, the CSCs’ data, the Backup Server and
Backup DB should be physically separated from the
main components. Additionally, all four components
should be separated from the Monitoring and
Remediation Systems.

The functionalities of the Monitoring System and
Remediation System are further elaborated in
Section 6.

The last entity involved in secure storage chain is
a trusted Third Party (TP) that hosts the Auditor. I,
WS, and RF are continuously evaluated by the
Auditor. If any violations are detected, both CSP and
CSC are notified. It is up to the CSP's Remediation
System component to identify and apply the optimal
corrective measures. Note that violation of I is
evaluated and confirmed by the Auditor, but only the
Client can detect it.

Some might argue that a CSP cannot be trusted
and that there is no guarantee for the CSC that the
CSP will handle SLA violations in the CSC's best
interest. But since the Auditor is and independent
entity, there is no way for the CSP to not react to
detected violations and hide it. If I, WS, and RF
violations are not handled, the Auditor will keep
detecting violations and keep notifying the CSC
which might result in a termination of an SLA.

When the CSC signs an SLA with C, I, WS
and/or RF guarantees, the CSC is provided with the
Client component and an URL of the Auditor.

Confidentiality is enforced with the client-side
encryption. But since the Client component which
orchestrates encryption resides on the CSC’s infra-
structure, the CSP has no way of monitoring the
code and ensuring its correctness. Thus confidentia-
lity is enforced by the CSP in terms of providing the
CSC with the right Client code when the SLA is
signed, but it is up to the CSC to maintain the code
and assure its validity.

Details about how the Auditor detects I, WS, and
RF violations are presented in Section 4.

4 AUDITOR IN CLOUDPROOF

As mentioned in Section 2, the core objects of the
auditing process are attestations. Each time the CSC
wants to upload a file to the cloud, the Client
performs a put request which contains the CSC’s
data to be stored and a client put attestation. The
CSP (i.e., the Main Server component) stores the
data in the Main DB and returns the cloud put
attestation. The Client has to provide the client put
attestation in order to authorize the overwriting of a
certain existing data with a new content. The CSP
must respond to the request with the cloud put
attestation which affirms that CSP received the data
unchanged and successfully stored it.

Similarly, every time the CSC wants to down-
load data from the cloud, the Client performs a get

Towards a Proof-based SLA Management Framework - The SPECS Approach

243

request which contains the block ID of the desired
data. The CSP (i.e., the Main Server component)
returns the requested data along with the cloud get
attestation. With this attestation the CSP certifies
that the returned data is the right one.

The Client automatically sends all cloud attesta-
tions to the Auditor. After each epoch (i.e., a prede-
fined fixed period of time) the Auditor checks the
chain of attestations for the current epoch. The chain
of attestations is correct if for each two consecutive
attestations A1 and A2 the chain hash in A2 is equal
to the hash of A2’s data and A1’s hash.

For more details about the initial CloudProof
system see (Popa et al., 2011). Details about the
extension of the initial idea are discussed in the next
sections.

5 AUDITOR’S EXTENSION

As mentioned Section 4, the CloudProof's Auditor is
able to detect when CSC's commits have not been
handled consistently by the CSP (violation of WS or
modified illegitimately for some other reason;
however, it does not distinguish between the two)
and when the CSC has not received data when
executing put request (violation of RF).

The CloudProof’s Auditor can detect violations
of I, but only after each epoch, when it checks all
attestations (some get request attestation would not
have the same data as the put request attestation for
this data and this version). However, the Client can
detect such a violation immediately and can trigger
the auditing process right away to verify it (sends a
notification to the Auditor). The Client can detect
violation of I because it can calculate the hash of the
encrypted data and compare it with the value in the
attestation – also, authenticated encryption should be
used which means that decryption handled by the
Client would report an error when the data is
changed illegitimately.

An additional limit of the existing CloudProof’s
Auditor is that it is unable to determine what the root
cause of violations of WS and RF might be. It
cannot determine whether a violation is an attack or
a system error. But distinguishing between root
causes of violations is crucial because entirely
different incident responses are required for a system
error and an actual attack. While detection of an
attacker requires significant changes like restoring
the service on another virtual machine, the detection
of a database error might require only switching
from a primary database to the backup.

It has to be noted that CloudProof’s Auditor does
not take into account violations of I detected by
CSCs. The Auditor can by itself detect violation of I,
but not in real-time. The Client can detect in real-
time with a get request that a block has been
illegitimately changed and send a notification to the
Auditor immediately. When the Client sends the get
request to the server, the cloud get attestation is
returned and contains chain hash and block hash of
the requested data. With received chain hash the
Client can calculate the block hash itself and
compare it with the received block hash. If they do
not match, the Client detects a violation of I.

Moreover, not only integrity violations can be
detected by the Client, a chain hash incorrectness
can be discovered as well by checking whether the
chain hash returned by the server in the put request
is correct. The Client has a chain hash from the last
get request for a block and can calculate the chain
hash that is to be returned by the put request for the
block (the chain hash that is to be contained in the
returned cloud put attestation) using the hash of a
block and other block metadata. If the Client’s
calculated chain hash and the one returned from the
Main Server are not equal, the Client detected hash
incorrectness. Chain hash incorrectness means a WS
violation. It can be detected by the CloudProof’s
Auditor only at the end of an epoch.

Since all this information detected by the Client
is crucial for sustaining the security level specified
in an SLA, with our approach all integrity violations
and any detected chain hash incorrectness are imme-
diately notified to the Auditor for further analysis.

In the following we describe an algorithm
executed by the Auditor at the end of each epoch
and when (if) the Client detects integrity violations
or a chain hash incorrectness. The auditing process
is also depicted in Figure 2 where each end node
outlines metrics that have been affected by the
detected violation (in bold), and remediation actions
to be taken to recover from it.

When the auditing process starts (either after an
epoch or after a notification from the Client), the
Auditor first checks if the chain of attestations (CA)
is correct. If the chain of attestations is correct, the
Auditor has to consider possible system failures
notified by the Client. If the auditing process has not
been triggered by the Client, then there is no viola-
tion of any SLA and the monitoring process can
continue. If the auditing process has been Client trig-
gered due to a detected integrity violation, then the
result is a violation of I and WS. In this case, a new
Main Server and a new Main DB should be set up.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

244

Figure 2: Auditing process.

If the chain of attestations is not correct, the
Auditor has to check for the occurrence of the fork
attack, where the cloud maintains two copies of the
data and conducting some writes and reads on the
original data and others on its copy. In order to
confirm or rule out the fork attack, the Auditor
checks whether each put request has a correct chain
of attestations behind it.

If all put attestations have a correct chain behind
them, then at some point the fork attack occurred
which is a violation of WS. This is also a violation
of RF since the CSC did not get the latest changes
made by some other CSC. The Auditor can deter-
mine with which request the data has been forked.
This information can later be used to set the system
back to the time before the fork attack took place. In
this case, a new Main Server and a new Main DB
should be set up and the data should be restored
from the backup to the version before the attack.

In the case where some put request does not
have a correct chain of attestations behind it, the
Auditor has to check whether there exist two get
requests for the same block that received the same
version number but different block content.

If such a pair of get requests exists, an attack
might have happened. Two different CSCs received
different block data accompanied by the same
version and block number (violation of RF). This is
with high certainty due to a deliberate attack thus the
Main Server and the Main DB should be replaced.
Note that also I might be violated in both of these
get requests. If I is not violated in neither, it means

that either keys have been stolen or some old version
of the block (with old hash) has been returned – this
has to be checked and a special warning has to be
sent to the Client if keys are stolen. If I is violated in
either of the two get requests, this might be due to a
system error (e.g., failure of a disk where database
resides between the two requests). Regardless, it is
better to go with a stricter remediation action
(replacing Main server and Main DB).

When such a pair of get requests (for the same
block that received the same version but different
block content) does not exist, this means that some
put request was not executed correctly and this
represents a violation of the WS. In this case, the
further process depends on whether the Client
detected integrity violation.

If the Client triggered the auditing process after
detecting a violation of integrity (which the Auditor
now confirms), both the Main Server and the Main
DB have to be replaced. On the contrary, if the
Client did not detect any issues, the Auditor checks
whether the block meta-data (e.g., version number,
block number) has been changed in a way that
indicates a deliberate attack.

If some element of the block metadata has been
changed, e.g., the returned chain hash contains the
previous version number and previous block hash,
this might indicate a rollback attack. In this case, a
new Main Server and Main DB have to be set up.
On the contrary, if no metadata has been changed,
then there are no indications for an attack. And since
the assumption is that all issues are due to a system
error, the Main Server should be switched to the
Backup DB, which would then take the role of the
Main DB, and a new DB should be set up which
would take the role of the Backup DB.

Whenever the Auditor detects or confirms a
violation of any of the properties I, WS, and RF,
both CSP and affected CSCs are notified about the
violated property and the required remediation
action. It is up to the CSP’s Remediation System
component to execute remediation actions and it is
up to the affected CSCs to claim compensations for
the violation of the SLA. Of course, not all detected
violations affect all CSCs. For example, a violation
of WS only affects CSCs that have this property
guaranteed in their SLA.

In the next section we focus on the remediation.

6 SLA REMEDIATION

As described in Section 3, each SLA specifies CSC's
security requirements in the form of SLOs that are

Towards a Proof-based SLA Management Framework - The SPECS Approach

245

built on top of security metrics that the CSP can
enforce and monitor. In this paper our focus is on
secure storage metrics C, I, WS, and RF.

In the SLA negotiation phase, CSCs have the
opportunity to choose which of these properties
should be enforced and monitored by the CSP. Once
the SLA is signed, and all components are deployed
and configured, the CSC can start using the acquired
service. In order to fulfil all commitments in the
undertaken SLAs, the CSP not only considers and
manages notifications from the Auditor, but also
uses its own Monitoring System component, which
oversees availability of servers and databases.

In case when the Monitoring System detects that
one of the servers or databases is unresponsive or
unavailable, it has to react since this may not only
cause delays in the service but also errors that can
affect I, WS, or RF.

Monitoring system continuously checks
responsiveness of both servers and databases. If at
any moment any of them is unresponsive, the
occurrence is notified to the Remediation System
component which first tries to restart it. If that solves
the issue, monitoring continues. If restarting the
unresponsive component does not help, the
Remediation System tries to deploy another instance
of the unresponsive component. When there is a
need to deploy a new database, the Remediation
System also triggers backup or restoration of data. If
any of these steps fail to recover the system to a
normal state, this may threaten the success of future
put and get requests (i.e., validity of SLOs related
to I, WS, and RF metrics), thus the CSCs should be
notified about the event.

CSP’s Remediation System component has to
manage notifications of incidents and failures that
are sent not only from the Monitoring System, but
also the ones sent from the Auditor. As seen
previous section, the Auditor not only detects vio-
lation of secure storage metrics, but also performs
root cause analysis and identifies the proper
remediation action. When a notification of a viola-
tion is sent to the Remediation System, the Auditor
reports about which metrics are violated (so that the
CSP can determine the damage with respect to the
affected SLAs), what the remediation plan is (to
execute it), and which version of the data is the last
correct one (to restore the data to the right version).

Remediation actions considered by the Auditor
consist of either switching the Main DB to the
Backup DB and setting up a new DB to take the role
of the new Backup (case 1), or setting up a new pair
of Main Server and Main DB components and
restoring the data to a certain state (case 2).

In the first case, the Main Server is connected to
the Backup DB which takes the role of the new
Main DB. A new database is set up which takes the
role of the Backup DB. Backup of the entire
database is executed immediately.

When there is a need to set up a new Main
Server and a new Main DB, all data also have to be
restored from the backup DB to a certain version as
suggested by the Auditor.

7 IMPLEMENTATION

As seen from the remediation plans discussed above,
all activities orchestrated by the Remediation
System component (and also those managed by the
Monitoring System component) can be easily
automatized with one of the existing management
and orchestration tools like Chef (Chef, 2008).

In SPECS, remediation process is handled by
two components, namely Remediation Decision
System which identifies remediation actions needed
to recover from SLA violations and Implementation
component integrated with Chef which executes
remediation plans. Code and further details are
provided at (SPECS Team, 2015)).

Other components of the framework described in
Section 3 have also been implemented and are
available on Bitbucket (SPECS Team, 2015).

8 CONCLUSIONS

The main concerns in today’s cloud environment for
CSCs and CSPs are security and trustworthiness,
respectively. To this end, we have presented a
solution that assures security to CSCs in a
transparent way and consequently increases trust in
cloud providers. We have introduced an SLA
management framework that supports a proof-
system for security properties particularly related to
cloud storage providers, namely confidentiality,
integrity, write-serializability, and read-freshness.

The proposed framework is based on the existing
CloudProof solution which is able to detect
violations of the above mentioned security proper-
ties, but has been extended to enable root cause
analysis and remediation of detected violations.

In our future work, we aim to extend our root
cause analysis approach to include more
information. Currently, the root cause analysis is
conducted on the basis of the information provided
for one single event, whereas in our future research

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

246

we intend to include historical monitoring and
remediation data to perform broader threat analysis.

ACKNOWLEDGEMENTS

The research was partially supported by the grant
FP7-ICT-2013-11-610795 (SPECS).

REFERENCES

Addis, B., Ardagna, D., Panicucci, B., Zhang, L., 2010.
Autonomic management of cloud service centers with
availability guarantees. In CLOUD'10, Proceedings of
the 2010 IEEE 3rd International Conference on Cloud
Computing, IEEE.

Albeshri, A., Boyd, C., Gonzáles Nieto, J., 2014.
Enhanced GeoProof: Improved geographic assurance
for data in the cloud. International Journal of
Information Security 13(2):191-198.

Arcieri T., 2013. What's wrong with in-browser
cryptography. http://tonyarcieri.com/whats-wrong-
with-webcrypto.

Ateniese, G., Burns, R., Curtmola, R., Herring, J., 2007.
Provable data possession at untrusted stores. In
CCS'07, Proceedings of the 14th ACM Conference on
Computer and Communications Security, ACM.

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan,
O., Kissner, L., Peterson, Z., Song, D., 2011. Remote
data checking using provable data possessions.
Transactions in Information and System Security
14(1):1-34, ACM.

Badidi, E., 2013. A cloud service broker for SLA-based
SaaS provisioning. In Proceedings of the 2013
International Conference on Information Society,
IEEE.

Bonvin, N., Papaioannou, T. G., Aberer, K., 2011.
Autonomic SLA-driven provisioning for cloud
applications. In CCGRID'11, Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, IEEE.

Bowers, K. D., Juels, A., Oprea, A., 2009. Proofs of
Retrievability: Theory and implementation. In
CCSW'09, Proceedings of the 2009 ACM Workshop on
Cloud Computing Security, ACM.

Brandic, I., Emeakaroha, V. C., Maurer, M., Dustard, S.,
Acs, S., Kertesz, A., Kecskemeti, G., 2010. LAYSI: A
layered approach for SLA-violation propagation in
self-manageable cloud infrastructures. In
COMPSACW'10, Proceedings of the 2010 IEEE 34th
Annual Computer Software and Applications
Conference Workshop, IEEE.

Brickell, E. F., Camenisch, J., Chen, L., 2004. Direct
anonymous attestation. In CCS'04, Proceedings of the
11th ACM Conference on Computer and
Communications Security, ACM.

Chef, 2008. Chef Software web site. https://www.chef.io/.

Cloud Standards Customer Council, 2015. Practical guide
to cloud service agreement version 2.0.

Emeakaroha, V. C., Netto, M. A. S., Calheiros, R. N.,
Brandic, I., Buyya, R., De Rose, C. A. F., 2012.
Towards autonomic detection of SLA violations in
cloud infrastructure. Future Generation Computer
Systems 28(7):1017-1029.

Erway, C. C., Küpcü, A., Papamanthou, C., Tamassia, R.,
2015. Dynamic provable data possession.
Transactions on Information and System Security,
17(4):1-29, ACM.

European Commission, 2014. Cloud service level
agreement standardisation guidelines, C-SIG SLA
2014.

Feng, J., Chen, Y., Summerville, D., Ku, W. S., Su, Z.,
2011. Enhancing cloud storage security against roll-
back attacks with a new fair multiparty non-
repudiation protocol. In CCNC’11, Proceedings of the
IEEE Consumer Communications and Networking
Conference, IEEE.

Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.,
2011. Proofs of ownership in remote storage systems.
In CCS'11, Proceedings of the 18th ACM Conference
on Computer and Communications Security, ACM.

ISO/IEC, 2014. Information technology -- Cloud
computing -- Service level agreement (SLA)
framework and technology (Draft), ISO/IEC 19086.

Juels, A., Kaliski Jr., B. S., 2007. PORs: Proofs of
retrievability for large files. In CCS'07, Proceedings of
the 14th ACM Conference on Computer and
Communications Security, ACM.

Kaaniche, N., El Moustaine, E., Laurent, M., 2014. A
Novel zero-knowledge scheme for proof of data
possession in cloud storage applications. In
CCGrid'14, Proceedings of 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, IEEE/AMC.

Katz-Bassett, E., John, P. J., Ksishnamurthy, A.,
Wetherall, D., Anderson, T., Chawathe, Y., 2006.
Towards IP geoolocation using delay and topology
measurements. In IMC'06, Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement,
ACM.

Leitner, P., Michlmayr, A., Rosenberg, F., Dustard, S.,
2010. Monitoring, prediction and pevention of SLA
violations in composite services. In ICWS'10,
Proceedings of the 2010 IEEE International
Conference on Web Services, IEEE.

mOSAIC, 2010. The mOSAIC project web site.
http://www.mosaic-cloud.eu.

Popa, R. A., Lorch, J. R., Molnar, D., Wang, H. J.,
Zhuang, L., 2011. Enabling security in cloud storage
SLAs with CloudProof. In USENIX ATC’11, 2011
USENIX Annual Technical Conference.

Pulls, T., Peeters, R., Wouters, K., 2013. Distributed
Privacy-Preserving Transparency Logging. In
WPES’13, Proceedings of the 12th ACM workshop on
privacy in the electronic society, ACM.

Rak, M., Villano, U., Casola, V., De Benedictis, A., 2015.
SLA-based secure Cloud Application Development:

Towards a Proof-based SLA Management Framework - The SPECS Approach

247

the SPECS Framework, In Proceedings of the 17th
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing.

Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A. P.
A., Casati, F., 2002. Automated SLA monitoring for
web services. In DSOM'02, Proceedings of the 13th
IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management: Management
Technologies for E-Commerce and E-Business
Applications, Springer-Verlag.

Shacham, H., Waters, B., 2013. Compact Proofs of
Retrievability. Journal of Cryptology, 26(3):42-483.

SLA@SOI, 2009. The SLA@SOI project web site.
http://sla-at-soi.eu.

SPECS, 2013 The SPECS project web site.
http://www.specs-project.eu/.

SPECS Team, 2015. SPECS Team Bitbucket account.
https://bitbucket.org/specs-team/.

Watson, G. J., Safavi-Naini, R., Locasto, M. E., Narayan,
S., 2012. LoSt: Location based storage. In CCSW'12,
Proceedings of the 2012 ACM Workshop on Cloud
Computing and Security Workshop, ACM.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

248

