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Abstract: The number and size of genomic databases have grown rapidly the last years. Consequently, the number of 
Internet-accessible databases has been rapidly growing .Therefore there is a need for satisfactory methods for 
managing this growing information. A lot of effort has been put to this direction. Contributing to this effort 
this paper presents two algorithms which can eliminate the amount of space for storing genomic information. 
Our first algorithm is based on the classic n-grams/2L technique for indexing a DNA sequence and it can 
convert the Inverted Index of this classic algorithm to a more compressed format. Researchers have revealed 
the existence of repeated and palindrome patterns in DNA of living organisms. The main motivation of this 
technique is based on this remark and proposes an alternative data structure for handling these sequences. Our 
experimental results show that our algorithm can achieve a more efficient index than the n-grams/2L algorithm 
and can be adapted by any algorithm that is based to n-grams/2L The second algorithm is based on the n-
grams technique. Perceiving the four symbols of DNA alphabet as vertex of a square scheme imprint a DNA 
sequence as a relation between vertices, sides and diagonals of a square. The experimental results shows that 
this second idea succeed even more successfully compression of our index structure. 

1 INTRODUCTION 

The large volume of biological sequences demands 
effective data structures and techniques for storing this 
growing information. In addition, the DNA structure 
analysis has shown that these sequences are not 
random. This is somewhat expected if we consider that 
DNA structure reflects the organizational structure of 
living organisms so it must contain some logical 
organization in its structure. One of the first things that 
DNA sequencing disclosed was the occurrence of 
repeated patterns in its body. It is well known 
nowadays that the existence of repetitive sequences or 
palindromes in a DNA sequence is one of the main 
characteristics of DNA structure. We also know that 
repeated DNA sequences are liable for biological 
diversification (Grechko 2011) and that palindromic 
sequences are associated with sites of DNA breakage 
during gene conversion (Krawinke et al. 1986). 

From that point a lot of techniques for the 
identification of repeated or palindrome subsequences 
came to the fore and lots of them proposed efficient 
methods for handling sequences exploiting these 
properties of the DNA structure. (Ziv and Lempel 

1977), (Smith and Waterman 1981), (Welch 1984), 
(Grumbach and Tahi 1994), (Rivals et al. 1995), (Kurtz 
and Schleiermacher 1999), (Sun et al. 2004), 
(Bernstein and Zobel 2004), (Christodoulakis et al. 
2006), (Alatabbi et al.2012), (Diamanti et al. 2014). 
The majority of them relies on the extraction of 
repeated sequences. The detection of palindromes for 
better performance in terms of space or time has 
employed less research and that’s why palindrome 
techniques lacked in literature in contrast to the 
repeated sequence methods (Welch 1984), (Grumbach 
and Tahi 1994), (Rivals et al. 1995). 

The problem of a pattern detection into a DNA 
sequence, a well-known problem of information 
retrieval theory, is what we are going to solve. Our 
main purpose is to achieve a better space performance. 
Thus we propose two different techniques. The novelty 
of our first approach relies on the combination of the 
idea of palindromic sequences with n-grams to create 
an alternative inverted index for our DNA sequence. 
The second idea is a completely new technique which 
is completely new technique which is based on 
perceiving a DNA sequence as a geometric problem. It 
is combined with the n-grams technique too. 
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In information retrieval theory the n-grams 
technique seems very appealing for constructing the 
index of a sequence (Navarro and Baeza-Yates 1998), 
(Kim et al. 2005), (Mayfield and McNamee 2003). 
This is due to the two major advantages of this 
technique: a) its neutral language and b) its error 
tolerance. Due to the first advantage we can disregard 
the characteristics of the language and therefore we can 
apply it at any language (Asian, Korean, and languages 
where complicated knowledge is required) (Ogawa 
and Iwasaki 1995), (Lee and Ahn 1996). The second 
advantage allows us to retrieve information with some 
errors (Kim et al. 2007). 

The rest of the paper is organized as follows. In 
section 2, the related work as well as the contribution 
is presented. In section 3, we present the first 
technique for Space compaction due to palindrome 
extraction. Subsequently, in section 4, we present our 
second technique and we analyze the square scheme 
algorithm. The section 5 presents a reference to our 
experimental results and the final section 6 concludes 
the paper. 

2 RELATED WORK AND 
CONTRIBUTION 

Finding the exact occurrences of a pattern in a 
sequence of characters is one of the most fundamental 
issues in information retrieval theory. Many types of 
data structures and algorithms have been proposed 
over the past years for effective solutions to this 
problem. However it is still a challenging problem 
when handling a big amount of data. 

The n–grams technique (Navarro and Baeza-Yates 
1998) in response to that problem is one of the well-
known and most used techniques over the past years. 
We give the definition for n-grams below. 

Definition n-grams: Given a sequence of tokens S 
= (S₁, S₂……Sɴ + (n-1)) over the token alphabet A, 
where N and n are positive integers, an n-gram of the 
sequence S is any n-long subsequence of consecutive 
tokens. The ith-gram of S is the sequence (Sᵢ……Sᵢ + 
(n-1)). 

However, the n-grams structure for indexing a 
sequence has some drawbacks too. The size of index 
gets large and the performance of queries gets bad 
too. That is a result of the 1-sliding method that n-
grams technique uses for extracting terms. It 
increases the number of the extracted terms causing a 
drastic increment of the size of the index. That also 
affects the performance of queries since the number 
of postings accessed during query performance 

increases. For the reasons listed above a new data 
structure was proposed. That was a two-level scheme 
index that reduced the size and improved the query 
performance (Kim et al. 2005). 

The improved n-gram/2L algorithm that was 
proposed for the reduction of index exponential 
explosion is a two-level structure consisting from the 
back-end and the front-end index. On the first level, the 
algorithm extracts substrings of fixed length m from the 
DNA sequence and stores them along with their offsets 
to the back-end index. It subsequently applies the classic 
n-grams technique for the set of extracted subsequences 
and builds the front-end index.  

Finding repeated sequences has been a basic step 
for improving an information system performance 
and reducing the amount of the requiring space. The 
work of (Bernstein and Zobel 2004) proposed a 
technique for computing repeated n-grams for large 
text sequences. They proposed the SPEX multi pass 
algorithm for finding co-occurring text. The LZ77 
and LZ78 (Ziv and Lempel 1977) algorithms achieve 
compression by replacing repeated pattern 
occurrences in a sequence using references to a single 
copy of that pattern, existing earlier in the 
uncompressed data stream. Moreover, in (Diamanti et 
al 2014) we can observe that taking advantage of the 
repeatability of our subsequences in the back-end 
index of the n-grams/2L scheme can produce a 
smaller inverted index.  

As we mentioned earlier, the repetitiousness of a 
pattern can be revealed in terms of palindrome 
existence. A palindrome of a pattern is the sequence 
which arises if we traverse the pattern with reverse 
order. For example, the AATTC pattern’s palindrome 
is the CTTAA pattern. 

The palindromes' extraction as a base for an 
effective performance on genomics algorithms has 
been investigated in (Grumbach and Tahi 1994) and 
(Rivals et al. 1995). Both techniques are based on the 
work of (Welch 1984) and achieves space 
compression by searching for the  longest  exact  and 

 

 
Figure 1: Union of two palindrome grams. 

AG m1,m3,m7,m8 

GA m1,m3,m6,m8 

 

AG m1,m3,m7,m8,m1,m3,m6,m8 

 

AG m1,m3,m6,m7,m8 
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reverse repetitions. 
We should notice here that even if there is not an 

appearance of repeated patterns palindromes as a 
result of some structure mechanism of DNA, the fact 
that the DNA alphabet is too small (only 4 characters) 
leads us to the outcome that it is quite possible to find 
palindromes or repeating patterns in a DNA data 
stream. 

Our first technique is concerned only to find 
palindrome relations and take advantage of their 
properties in order to achieve a better space 
performance. We will also show that our idea could 
be adapted from any algorithm that relies on the two 
level scheme data structure for n-grams. 

Bibliography lacks from references similar to our 
second technique thus we will be the first to present 
this approach for handling DNA sequences. 

3 FIRST PROPOSED 
TECHNIQUE (PALINDROME 
ALGORITHM) 

This novel two level scheme is based on the two-level 
n-grams scheme of the work of (Kim et al. 2005). We 
will separate the process in two steps. The first step 
introduces the construction of our two-level index and 
the second step applies our algorithm on the front-end 
index. 

STEP1 
1: The initial DNA sequence produces the 

subsequences of fixed m-length. 
2: An inverted Index called back-end for the sub 

sequences with the pointers of their initial index to the 
DNA sequence for every subsequence. 

3: All the n-grams in each substring are produced. 
4: The inverted index called front-end index is 

being created for all the grams of the subsequences 
with the pointers to the subsequences that include the 
n-grams. 

STEP 2 
At this step we apply our palindrome method to 

the front-end index in order to attain a smaller index 
for our DNA sequence. 

The algorithm computes the palindrome relation 
between the grams of our front-end index. At first we 
check every gram of our index and scan our list to see 
if it contains its palindrome. When we find a 
palindrome of a gram we concatenate the two posting 
lists, the list of the gram and the list of its palindrome. 

What we need to remark at this point is that 
searching for a palindrome of a pattern is exactly the 
same as looking for the same pattern in the sequence. 

The only difference is that when looking for an exact 
match we scan the sequence from left to right until we 
find the pattern, while in the second occasion when 
we look for the palindrome we need to scan the 
sequence from right to left until we find an exact 
match for our given pattern. 

Remark: It is not necessary to keep two separate 
lists for two grams that are palindromes. We can 
delete all the terms of a gram posting list and merge 
it with the list of its palindrome gram. Figure 1 depicts 
the adjustment of this idea on two palindrome grams. 

Obviously we don’t have to keep the same indexes 
for a gram so we can eliminate these same positions 
from our posting lists as shown to figure 1. We can 
already notice that our front-end index transformed 
into a more compressed format based on the idea 
above. Also, we can see that we are talking about a 
lossless algorithm since no information gets lost 
during this alteration. All the information that was 
included in the list of the GA gram can be found in 
the AG gram list now. 

It is clear that since we have got a merged list for 
two palindromes, our algorithm needs a refining step 
for ensuring the validity of our results. Thus, every 
time we search for a pattern in a sequence we ensure 
that we check the right gram of a list and not its 
palindrome. 

The previous method can be directly adapted by 
the two-level scheme structure and offer to the front-
end index a more compacted format. This is very 
important if we consider that the front-end index is 
responsible for the drastic increment of the size of the 
two-level scheme data structure. 

In conclusion, we observe that after this 
transformation our new index occupies less space. It 
is clear that if we had a bigger subsequence we could 
possibly find more palindromes that could lead to an 
even more compressed format of our table. 

4 SECOND TECHNIQUE 
(SQUARE SCHEME 
REPRESENTATION) 

The novelty of this idea relies on a different approach 
of the way we encounter a DNA sequence. Instead of 
considering a DNA sequence as a random sequence, 
which consists of symbols of a given DNA alphabet, 
we consider it as a depiction of the relation of a 
square’s sides, diagonal and vertices. 

In that way genomic problems could acquire 
geometrical concept. The assignment of DNA 
characters to square vertexes is  obviously  a  one-to- 
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one correspondence, which indicates that there is no 
loss of information after the substitution. The above 
mentioned idea is illustrated on Figure 2 

 
Figure 2: DNA bases as square vertices. 

Hence, a DNA sequence can be transformed into 
a vertex traversing depiction of a square. Assuming 
that every two consecutive symbols in DNA sequence 
are not identical we can transform the vertex 
traversing into a sides and diagonals traversing 
problem. 

Following the above approach in the sequence S 
=ACGT we may observe the depiction of two parallel 
sides of the square which are the {AC} and the {GT} 
sides. This is the way that the concept of the idea 
works. 

4.1 Square Scheme 

At this stage we use a definition from mathematics 
field in order to proceed with our technique. The 
concept of the absolute value is introduced. For 
example for a two character string S=GA, we call 
absolute value of S, and we symbolize, it as |S| or 
|GA|, the sequence that arise if the first character is 
lexicographically smaller than the second character. 
So |GA| =AG. 

We will convert our DNA sequence to a new one 
based on the square scheme and the absolute value 
concept. We scan our sequence, extracting all the 
consecutive 2 –character strings that do not overlap 
each other. Every extracted string is converted to its 
absolute value. For example we are indifferent about 
the succession of characters in every extracted string. 
Either it is AG or GA, we will consider it as AG. 

Based on the above remarks we will take this 
analysis on a further step. First of all we segment our 
DNA sequence in corpuses of four DNA characters that 
do not overlap each other. Every corpus can be divided 
in two pairs of 2-character strings that do not overlap 
each other and (if every two symbols are not identical) 
can be transformed into a depiction of square sides and 
diagonals, provided that in every pair of strings the 
characters are not identical. (We will confront the case 
of identical characters later). 

Considering  that  every   corpus   of   four   DNA 

symbols depicts a relation of square diagonals and 
sides we can divide every DNA sequence to certain 
categories based on these relations. Thus if we find 
all the possible associations between square sides and 
diagonals we can correspond every four DNA 
characters string to a certain association of this square 
scheme. 

We now check all the relations that occur between 
two square elements: 

1) Parallel Sides: The four DNA symbols encode 
two sides that are parallel. That occurs at the 
following four cases: 

Α) ΑC – GT       B) GT - AC 
C) AG – CT     D) CT - AG 
As we mentioned before we transpose the two 2-

character strings that compose the 4 symbol string 
that we examine, into their absolute values. 

2) Vertical Sides: We have vertical sides on the 
following cases: 

Α) AC – AG     Ε) GT - CT 
Β) AG – AC     F) CT - GT 
C) AG – GT     G) CT - AT 
D)  GT – AG     H) AT - CT 
So we have finally 8 different categories. 
3) A Side with a Diagonal: Each side can be 

paired with the two diagonals so we have eight 
categories related to this case: 

A) AC – AT     E) CT - AT 
B) AC – CG     F) CT - CG 
C) AG – AT     G) GT - AT 
D) AG – CG     H) GT - CG 
If we consider the reverse relations, where the first 

pair forms a diagonal and the second pair forms a side 
of the square, we have finally sixteen categories. 

4) Diagonal with Diagonal: This occurs on the 
following four cases. 

Α) AT – CG      C) AT - AT 
Β) CG – AT      D) CG| - CG 
5) Repeated Sides: This occurs on the following 

four cases: 
Α) AC - AC       C) GT - GT  
B) AG – AG      D) CT - CT 
Figure 3 illustrates the process of the proposed 

technique. 
All the above categories are related to the case in 

which, the 4-character DNA corpus is divided in two 
character string pairs, while the characters are not 
identical. From a geometrical aspect, all the above 
cases, can be expressed as a traversal on a square. 

In the case that a repeated character appears in an 
extracted 2-character string, indicates that we don’t 
observe any movement in the square scheme thus no 
side or diagonal is forming. In this case we assume 
that  we are  indifferent  on  which  is   the   repeated  
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Figure 3: At S1 sequence we have substituted the 2 –
character consecutive strings that consist the S1 with their 
absolute values. At S2 we segment our new sequence in 
corpuses of four characters in order to encode them with 
their geometrical correlation. At S3 we can see our new 
sequence after the encoding. 

character (vertex) appearing in each 2-character 
string. For instance, in case we trace GG string (same 
for CC or TT), we have to classify the string on the 
same category that we would in case we had traced 
the AA vertex. At a later stage, we will clarify, which 
character appears in each 2-character string pair that 
divides every 4-character DNA corpus. Thus we will 
group together the following two categories on the 
above case analysis 

6) Two Repeated Vertexes: No movement at all. 
(Repeated characters at both 2-character pair strings): 
Since every repeated vertex is encountered as AA we 
have only one case reflecting to this category. 

A) AA - AA 
7) One Repeated Vertex: The repeated vertex 

can be paired with the two diagonals plus the four 
vertices which means that we have totally six possible 
relations in this case. 

A) AA – AC     D) AA - GT 
B) AA – AG     E) AA - AT 
C) AA – CG     F) AA - CG 
Considering the reverse relations where the first 

pair forms a diagonal or a side and the second pair 
forms the repeated vertex (AA) we finally get twelve 
cases. 

4.2 Converting the Sequence to a New 
One based to Square Scheme 
Categories 

Thus if we traverse the DNA sequence and encode 
every corpus of four characters with the above 
technique we can produce a new sequence where each 

corpus is a representative of the category it belongs 
in. 

Encoding each category of the above scheme, in a 
single symbol we can produce a new sequence where 
every 4 symbols string corresponds to a new single 
symbol. All the possible 4-character strings can be 
classified to the 49 categories we have previously 
described. Consequently, using the English alphabet 
(Lowercase and Uppercase) and a terminal symbol 
(#) for the case of repeated Vertex (AAAA) we will 
be able to represent all these cases using just one 
symbol for each one of these. Using this encoding, we 
can reduce the size N of our initial sequence to a size 
of N/4.We will save the index of the new sequence 
using the one –level n-gram scheme and not the two-
level n-grams/2L .This is due to the structure of our 
new alphabet. The sequence, contains a large number 
of different symbols and that implies that we have less 
possibilities to encounter repeated subsequences. 
Thus, based on the relevant literature (Diamanti et al. 
2014) we choose to save it on one-level scheme. 

4.3 Converting the Pattern to a New 
One based to Square Scheme 
Category 

At the next step we are going to encode our pattern to 
our new alphabet in order to apply the n-grams 
technique. Following the same approach we can 
convert our initial pattern of size P to a new one of 
size P/4. 

After we have encoded our pattern, due to the 
square scheme, we can apply the well-known n-grams 
technique to extract its occurrences in the DNA 
sequence. But our process won’t stop there. There are 
more to be done in order to extract all the appearances 
of our initial pattern. Let’s give a simple example to 
clarify this: 

Assuming we have the pattern P =AGCTATGA 
which will be segmented to the following strings: 

AGCT     -      ATGA 
  1st                  2nd   
The pattern P will be encoded as P΄= {Parallel 

sides A} {Side with diagonal B}. The problem here 
is that we only search for encoded strings of the initial 
pattern that have been encoded with this specific 
order. But what happens if the AG has not been 
encoded as the first two characters of a 4-character 
string but it has been encoded as the last two 
characters of another 4-character string? For example, 
the pattern M =AGAGCTATGACT which with the 
above technique will be segmented to the following 
three strings: 

S=ACTGATGCACACAGAC 

 

S1=ACGTATCGACACAGAC 

 

S2=ACGT ATCG ACAC AGAC 

 

S3= {Parallel sides A}{Diagonal with diagonal 
A}{Repeated side A}{Vertical sides B} 
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AGAG   -   CTAT -   GACT 
  1st               2nd           3rd 
The previous pattern will be encoded as M΄= 

{repeated side B} {side with a diagonal D} {Parallel 
side C}. So even if the pattern AGCTATGA is still 
there, we cannot find it because we will be looking 
for a different sequence of symbols after the encoding 
(P΄ # M΄). This remark leads us to the conclusion that 
in order to trace a pattern of DNA sequence after the 
encoding we have to look not only for one pattern .In 
particular we have to look for four patterns. Every 
pattern will start the encoding at each one of the four 
starting positions of the pattern.  

The remaining symbols that cannot form a 4-
character string cannot be encoded. Therefore we 
check for the encoded corpus of the sequence first and 
if we have a match we subsequently check if the 
remaining DNA symbols are identical. We can see for 
the example above that P3 pattern can now detect the 
existence of our initial pattern in the M sequence. 

Thus, instead of searching for a pattern of size P 
in a sequence with N size we are looking for four 
patterns of size P/4 each one into a sequence of total 
size N/4. 

4.4 Refining Results 

After the occurrences of these patterns have been 
traced we proceed with the final step of our method. 
At this step the final results for the occurrences of our 
pattern are derived. The occurrences which are 
extracted until now are just a sign of possible 
existence of our pattern in the current positions. That 
is due to the simplifications we made on the first steps 
of our algorithm. Specifically, this is due to the 
following two factors. 

1) We have estimated the absolute values of 
every 2-character string which have been extracted 
from our initial DNA sequence. For instance there is  
 

 
Figure 4: Refining List for the Subsequence S. 

no distinction if the AG or the GA string appears.  
2) We have represented every repeated vertex 

(character) by a single representation (the AA string). 
For instance there is no distinction if it is the CC or 
the GG string.  

Hence, we need to refine the prospective results to 
produce our final answers. To do this we maintain for 

our initial DNA sequence (of size N) a list that is 
called Refining List. We examine every pair of two 
character string that compose each 4-character string 
that have been extracted provided that these two 
character strings do not overlap each other. If the first 
character of each pair is lexicographically smaller 
than the second we register “0” in our Refining List. 
On the opposite occasion we register “1”. Obviously 
the size of our Refining List will be N/2. For the 
repeated characters of a two character string we made 
the following convention for our Refining List: 

• If we find AA we entry 0. 
• If we find CC we entry 1. 
• If we find GG we entry 2. 
• If we find TT we entry 3. 

Figure 4 exhibits the construction of our Refining 
List for a given sequence. 
This is all that is needed in order to detect the exact 
DNA symbol at every position of our transformed 
sequence. Assuming that in a certain position in our 
DNA sequence, the pattern ACGT is traced. 
According to the square scheme algorithm analysis 
we ascertain that this pattern corresponds to the 
“parallel sides A” category, supposing that this 
category has been encoded with the symbol U. 
Moreover, we trace in our Refining List the numbers 
0 and 1 at the corresponding position. This implies 
that we have the string ACTG in the current position 
on the DNA sequence. With the above process we can 
clarify which DNA symbol lies behind the encoded 
string. 

 
Figure 5: Percentage space compaction of palindrome 
algorithm in comparison to n-grams/2L algorithm for 
varying size of n. 

After we have extracted the prospective sequences 
that match our pattern, this technique is applied on 
our pattern extraction step. At each one of our 
equivalent patterns we also create a Refining List. 
When there is a match at a current position we cross 
examine the Refining List of our pattern with the 
corpus of our DNA sequence Refining List that 

S=ACGGTAGCAT 

 

Refining List = 02110 
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corresponds to the appearance of the pattern in the 
sequence. If we have a match, then our pattern 
definitely appears in our initial DNA sequence at this 
current position. Otherwise there is no appearance of 
this pattern at this position. 

5 EXPERIMENTS 

In our experiments we use random synthetic 
sequences of 100000 DNA symbols in order to 
examine the performance of our constructions and the 
space compaction that they achieve. The computer 
system, where the experiments were performed, was 
an Intel Core i3-M380 2.53 GHz CPU with a 4GB 
RAM. We used initials to describe the metrics of our 
problem.  

In particular we symbolize with m the length of 
our subsequences and with n the length of grams. The 
presentation of the results of each algorithm are 
depicted in relation with the percentage of the space 
compaction they achieve compared to the n-gram/2L 
algorithm. In the first algorithm we estimated the 
space efficiency of the front-end index (because the 
method offers space efficiency only on the front-end) 
while in the second algorithm we compared the whole 
two-level index of the two techniques. 

5.1 Palindrome Algorithm Results 

As is depicted in figure 5 this method behaves better 
and offers better space efficiency for the case of 2- 
grams. This is a bit of expected if we consider that the 
algorithm achieves compaction in case it detects 
palindrome grams within the same subsequence. 
There are more possibilities to find a palindrome of a 
2-gram than palindromes of larger grams within a 
subsequence. Since this technique exploits the 
reciprocity of the DNA structure it is reasonable to  

 
Figure 6: Percentage space compaction of palindrome 
algorithm for palindromic DNA sequence in comparison to 
n-grams/2L algorithm for varying size of n. 

achieve even better efficiency on sequences which 
show large volume of palindromes on their body. This 
can be depicted in figure 6 where a higher space 
compaction can be observed. In both figures we can 
patently see that our method is more efficient for 
substrings of length from 8 to 12.The reason for this 
efficiency is that our palindrome algorithm takes 
advantage of the substrings of length from 8 to 12 
which seems to show larger volume of palindromes 
on their body. 

5.2 Square Scheme Algorithm Results 

As far as the second technique is concerned, we can 
observe that we are led to very compact inverted file 
sizes (Figure 7). It is also very important to notice that 
this method cannot be affected from the nature of 
DNA structure (repetitions, palindromes).It is clear 
from the algorithm analysis that this technique can 
guarantee this high efficiency for every biological 
sequence. Since this method uses the one level 
scheme it doesn’t affected by the length of our 
subsequences. That’s why we observe a slight 
reduction of the efficiency for larger values of m. This 
is due to a possible space compaction that appears to 
the two level n-gram/2L technique in contrast to the 
one –level n-gram for higher values of m.(Due to the 
work of  (Diamanti et al. 2014)this can happen 
because there is a large number of  repeated substring 
on our back-end index). 

6 GENERAL CONCLUSION  

We presented two novel techniques that can lead us 
to new compact inverted index file sizes. Especially 
the palindrome algorithm can be perceived as a 
“black box” and thus can be adapted by any algorithm 
that uses the n-gram/2L technique in order to provide  

 
Figure 7: Percentage space compaction of square scheme 
algorithm in comparison to n-grams/2L algorithm for 
varying size of n. 
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a more compressed index. The second technique can 
obviously offer higher efficiency especially when 
handling a big amount of data. Moreover this new 
approach for handling DNA sequences as a 
geometrical problem could possibly lead in future to 
new and efficient ideas about DNA algorithms. 
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