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Abstract: This paper provides a new variant of primal-dual interior-point method for solving a SemiDefinite Program 
(SDP). We use the PDIPA (primal-dual interior-point algorithm) solver entitled SDPA (SemiDefinite 
Programming Algorithm). This last uses a classical Newton descent method to compute the predictor-
corrector search direction. The difficulty is in the computation of this line-search, it induces high 
computational costs. Here, instead we adopt a new procedure to implement another way to determine the 
step-size along the direction which is more efficient than classical line searches. This procedure consists in 
the computation of the step size in order to give a significant decrease along the descent line direction with a 
minimum cost. With this procedure we obtain à new variant of SDPA. The comparison of the results 
obtained with the classic SDPA and our new variant is promising.  

1 INTRODUCTION 

We consider the standard primal form of 
semidefinite program (1), and its dual (2) in block 
diagonal form: 

 							ݔ்ܿ		݁ݖ݅݉݅݊݅݉			:∗݌

.ݏ 	ܺ			.ݐ ൌ ෍ ௜ݔ௜ܨ െ ଴ܨ
௠

௜ୀଵ
, 																			ܺ ≻ 0 

(1)

଴ܨ		݁ݖ݅݉݅ݔܽ݉			:∗݀ • ܻ							 
.ݏ ௜ܨ							.ݐ • ܻ ൌ 	 ܿ௜			ሺ݅ ൌ 1,2,… ,݉ሻ,			ܻ ≻ 0, (2)

Where ܨ௜	, ܺ  belong to the space ܵ௡ of 	݊ ൈ ݊		 
real symmetric matrices, c	ൌ ሺܿଵ,… , ܿ௠ሻ் ∈ Թ௠ is 
the cost vector and x	ൌ 	 ሺݔଵ, … , ௠ሻ்ݔ ∈ Թ௠	 is the 
variables vector. The operator • denotes the standard 
inner product in  ܵ௡, i.e., ܨ଴ • ܻ ൌ ଴ܻሻܨሺݎݐ ൌ
∑ ௜ݔ௜ܨ െ ଴ܨ
௠
௜ୀଵ ,  and ܺ ≻ 0 means that  ܺ is positive 

semidefinite (ܺ ∈ ܵା௡ሻ, see for example Figure 1.1. 
The values  ݌∗  and  ݀∗ are the optimal value of the 
primal objective function and the optimal value of 
the dual objective function respectively. 

Semidefinite Program is an extension of LP 
(Linear Program) in the Euclidean space to the space 
of symmetric matrices. These problems are linear. 
Their feasible sets involving the cone of positive 
semidefinite matrices, a non polyhedral convex cone 
and they are called linear semidefinite programs. 
Such problems are the object of a particular attention 
since the papers by Alizadeh (Alizadeh, 1995) and 

(Alizadeh at al., 1994), as well on a theoretical or an 
algorithmical aspect, see for instance the following 
references (Alizadeh and Haberly, 1998; Benterki et 
al., 2003; Jarre, 1993; and Nesterov and 
Nemirovskii, 1990. 

 

Figure 1.1: Boundary of the set of semidefinite matrices 
in	ܵଶ. 

SDP is not only an extension of LP but also 
includes convex quadratic optimization problems 
and some other convex optimization problems. It has 
a lot of applications in various fields such as 
combinatorial optimization (Goemans and 
Williamson, 1995), control theory (Boyd et al., 
1994), robust optimization (Ben-Tal and  
Nemirovskii, 2001) and (Wolkowicz et al., 2000) 
and quantum chemistry (Nakata at al., 2001) and 

204
Orkia, D. and Ahmed, L.
Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems.
DOI: 10.5220/0005813802040209
In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016), pages 204-209
ISBN: 978-989-758-171-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



(Nakata et al., 2002). See (Todd, 2001), 
(Vandenberghe and Boyd, 1994), (Vandenberghe 
and Boyd, 1995) and (Wolkowicz et al., 2000) for a 
survey on SDPs and the papers in their references. 

The duality theory for semidefinite programming 
is similar to its linear programming counterpart, but 
more subtle (see for example (Alizadeh, 1995), 
(Alizadeh et al., 1994), (Alizadeh and  Haberly, 
1998)). The programs 	ሺ1ሻ and 	ሺ2ሻ satisfy the weak 
duality condition: ݀∗ ൑  at the optimum, the ,∗݌
primal objective	்ܿݔ	is equal to the dual 
objective	ܨ଴ • ܻ. 

Our objective is to solve the SDP in optimal time 
following our work (Derkaoui and Lehireche, 2014). 
The SDP problem is solved with interior point 
methods. These last use a classical Newton descent 
method to compute the search direction. The 
difficulty is in the line-search, it induces high 
computational costs in classical exact or 
approximate line-searches. Here, instead we use the 
procedure of (Crouzeix and Merikhi, 2008). This last 
proposes another ways to determine the step-size 
along the direction which are more efficient than 
classical line searches. 

This paper is organized as follows. In Section 2, 
we present some useful notions and results about 
semidefinite programming. In Section 3, an 
overview of the interior point methods used for the 
resolution of SDP is considered. In Section 4, the 
primal-dual and the step size procedure algorithms, 
bases of the new variant, are described. In Section 5, 
the computational experience is described. A brief 
description of the used tools is given and the 
obtained results with the new versions and the 
classical method are compared. 

2 BACKGROUND FOR 
SEMIDEFINITE 
PROGRAMMING 

Semidefinite Programming is currently the most 
sophisticated area of Conic Programming that is 
polynomially solvable. More precisely, SDP is the 
optimization over the cone of positive semidefinite 
matrices of a linear objective function subject to 
linear equality constraints. It can also be viewed as a 
generalization of Linear Programming where the 
nonnegativity constraints on vector variables are 
replaced by positive semidefinite constraints on 
symmetric matrix variables. 

The past few decades have witnessed an 
enormous interest for SDP due to the identification 

of many theoretical and practical applications, e.g., 
combinatorial optimization (graph theory), spectral 
optimization, polynomial optimization, engineering 
(systems and control), probability and statistics, 
financial mathematics, etc... In parallel, the 
development of efficient SDP solvers, based on 
interior point algorithms, also contributed to the 
success of this method. 

Although many solvers have been developed in 
the last twenty years to handle semidefinite 
programming, this area, unlike LP, is still in its 
infancy, and most codes are offered by researcher to 
the community for free use and can handle moderate 
sized problems. The Table 2.1 identifies the different 
software and their associated programming 
language. Another simple possibility for comparing 
several solvers is to use the standard file format 
SDPA (Fujisawa and Kojima, 1995), where several 
LMI (Linear Matrix Inequality) constraints are 
possible. This format is accepted by most of the SDP 
solvers. 

Table 2.1: The different SDP solvers. 

Software Algorithm Interface 

CSDP IPM (Primal-Dual path) C 

DSDP Potential reduction C, Matlab 
SeDuMi Self-dual method Matlab 
SB Bundle method C/C++ 

SDPA IPM (Primal-Dual path) C++ 

SDPLR Augmented Lagrangian C, Matlab 

For more details about these solvers see 
respectively  (Borchers. 1999), (Benson et al., 2000), 
(Sturm, 1998),  (Helmberg and  Rendl, 2000), 
(Yamashita et al., 2010) and (Burer and  Monteiro, 
2003). 

The PDIPA (primal-dual interior-point 
algorithm) (Jarre, 1993), (Nesterov and Todd, 1995), 
(Helmberg et al., 1996) and (Monteiro, 1997) is 
known as the most powerful and practical numerical 
method for solving general SDPs. The method is an 
extension of the PDIPA (Wolkowicz et al., 2000) 
and (Tanabe, 1988) developed for LPs. The SDPA 
presented in this paper is a PDIPA software package 
for general SDPs based on the paper (Fujisawa et al., 
1997) and (Jarre, 1993). 

3 RESOLUTION OF SDP 

Interior-points methods (IPM) for SDP have 
sprouted from the seminal work of Nesteror & 
Nemirovksi (Nesterov and Nemirovskii, 1994) and 
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(Nesterov and Nemirovskii, 1993). Indeed, in 1988, 
a major breakthrough was achieved by them 
(Alizadeh, 1995), (Alizadeh et al., 1994) and 
(Alizadeh and  Haberly, 1998).  

They stated the theoretical basis for an extension 
of interior-methods to conic programming and 
proposed three extensions of IPM to SDP : the 
Karmarkar’s algorithm, a projective method and 
Ye’s potential reduction method. In parallel, in 
1991, Alizadeh (Alizadeh, 1995) also proposed a 
potential reduction projective method for SDP. Then 
in 1994, Boyd and Vandenberghe presented an 
extension of Gonzaga & Todd algorithm for LP that 
uses approximated search direction and able to 
exploit the structure of the matrix. These methods 
conserve the polynomiality under relevant 
conditions. For this reason, these methods are crucial 
for convex optimization. To explain the basic idea of 
interior point method we need two ingredients: 
Newton’s method for equality constrained 
minimization and barrier functions. 

Interior-point methods can be classified into 
three major categories depending on the type of  
algorithm: 
 Affine-scaling algorithms ; 
 Projective methods with a potential function ; 
 Path-following algorithms. 
However, in extending primal-dual interior-point 

methods from LP to SDP, certain choices have to be 
made and the resulting search direction depends on 
these choices. As a result, there can be 
several search directions for SDP corresponding to 
a single search direction for LP. We can cite the 
following four search directions: 
 HRVW/KSH/M direction (proposed by 

Helmberg, Rendl, Vanderbei and Wolkowicz 
(Helmberg et al., 1996)), 

 MT direction (proposed by Monteiro and 
Tsuchiya (Monteiro and Tsuchiya, 1996)), 

 AHO direction (proposed by Alizadeh, 
Haeberly, and Overton (Alizadeh et al., 
1994)), 

 NT direction (proposed by Nesterov and 
Todd (Nesterov and Todd, 1995)).  

The convergence property of  the interior-point 
methods algorithm varies depending on the choice of 
direction. 

To compute the search direction, the SDPA 
employs Mehrotra type predictor-corrector 
procedure (Mehrotra, 1992) with use of the 
HRVW/KSH/M search direction (Helmberg et al., 
1996), (Vandenberghe and Boyd, 1994) and (Kojima 
et al., 1989). 

With this work, we intend to obtain a predictor-
corrector primal-dual interior point algorithm with 
better performance and more precise than the other 
algorithms of the same type already known. 

We present a new variant of the algorithm used 
in the SDPA solver with the procedure proposed in 
(Crouzeix and Merikhi, 2008) in order to determine 
the step-size along the direction which is more 
efficient than classical line searches. 

4 PRIMAL-DUAL PATH 
FOLLOWING ALGORITHM 
FOR SDPA WITH  
PREDICTOR -CORRECTOR 
TECHNIQUE 

In this paragraph, we report the algorithm proposed 
in (Helmberg et al., 1996) and implemented in the 
solver SDPA (Fujisawa and Kojima, 1995). This 
primal-dual path following method uses the 
predictor-corrector technique of Mehrotra and has 
the advantage of not requiring any specific structure 
of the problem matrices.  

Roughly speaking, the SDPA starts from a given  
initial  point ݔ, ܺ, ܻ  satisfying  ܺ ≻ 0, ܻ ≻ 0and 
numerically traces the central path  ܥ ൌ
ሼ	ሺܺሺߤሻ, ,ሻߤሺݔ ܻሺߤሻ:	ߤ	 ൐ 0	ሽ that forms a smooth 
curve converging to an optimal solution ݔ, ܺ, ܻ  
which corresponds to an optimal solution of  (1) and 
(2), as ߤ	 → 0. Letting ߤ, it chooses a target point  
ܺሺߤሻ, ,ሻߤሺݔ ܻሺߤሻ on the central path to move from 
the current point . Then the SDPA compute a search 
direction to approximate the point, and updates the 
current point ሺݔ, ܺ, ܻሻ.Then the SDPA computes a 
search direction	ሺ݀ݔ, ݀ܺ, ܻ݀ሻ to approximate the 
point	ሺݔ, ܺ, ܻሻ ← ൫ݔ ൅ ,dx	௣ߙ ܺ ൅ ,dX	௣ߙ ܻ ൅
 ௗ are primal and dual stepߙ ௣ andߙ dY൯, where	ௗߙ
lengths to keep ܺ ൅ ܻ dX and	௣ߙ ൅  dY positive	ௗߙ
definite.  The  SDPA  repeats  this procedure  until it 

 

Figure 4.1: The graphical representation of the interior 
points algorithm. 
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attains an approximate solution ሺݔ∗, ܺ∗, ܻ∗ሻ of 
problems (1) and (2), see Figure 4.1. 

In our work, we propose a new variant of  SDPA 
with another computation of the step sizes. We use 
the procedure in (Crouzeix and Merikhi, 2008) that 
gives an  alternative ways to determine the step-size 
along the direction which are more efficient than 
classical line searches. 

4.1 The Step-Size Procedure 

In (Crouzeix and Merikhi, 2008), the problem (1) is 
approximated by a barrier problem. This problem is 
solved via a classical Newton descent method. The 
difficulty is in the line-search: the presence of a 
determinant in the definition of the barrier problem 
induces high computational costs in classical exact 
or approximate line-searches. Here, instead of 
minimizing the barrier problem  along the descent 
direction at the current point ,  we minimize a 
function  ߠ with its upper-approximaty 
functions. This last reduce the computational cost of 
the algorithm compared with classical methods. This 
function needs to be appropriately chosen so that the 
optimal step length is easily obtained and to be close 
enough to	ߠ in order to give a significant decrease of 
the barrier problem  in the iteration step. In 
(Crouzeix and Merikhi, 2008), they  propose  
functions θ for which the step-size optimal solution  
is explicitly obtained. For more details about this 
procedure see (Chouzenoux et al., 2009), (Crouzeix 
and Merikhi, 2008), (Benterki and Merikhi, 2001) 
and (Benterki at al., 2003). In this paper we apply 
this procedure to compute the step length in the 
Primal-Dual Interior-Point Algorithm of SDPA. 

4.2 Description of the Algorithm 

SDPA has the highest version number 6.0 among all 
generic SDP codes, due to its longest history which 
goes back to December of 1995. We use the  version 
6.0 of  SDPA. 

The Primal-Dual Interior-Point Algorithm 
(PDIPM) of SDPA 

Step 0 (Initialization): Choose an initial point 
,଴ݔ ܺ଴, ܻ଴ satisfying ܺ଴ ≻ 0 and		ܻ଴ ≻ 0. Let k = 0. 

Step 1 (Checking Feasibility): If ݔ௞, ܺ௞, ܻ௞ is an 
߳-approximate optimal solution of the  (1) and (2), 
stop the iteration. 

Step 2 (Computing a search direction): As 
described in (Mehrotra, 1992), apply Mehrotra type 
predictor-corrector procedure to generate a search 
directionሺ݀ݔ, ݀ܺ, ܻ݀ሻ. 

Step 3 (Generating a new iterate): We use the 

procedure (Crouzeix and Merikhi, 2008) to compute 
 ௗ  as  primal and dual step lengths so thatߙ ௣ andߙ	
ܺ௞ାଵ ൌ ܺ௞ ൅ ௣݀ܺ and  ܻ௞ାଵߙ	 ൌ ܻ௞ ൅  ௗܻ݀ߙ	
remain positive semidefinite. 

We set the next iterate   ሺݔ௞ାଵ, ܺ௞ାଵ, ܻ௞ାଵሻ ൌ
ሺݔ௞ ൅ ,ݔ௣݀ߙ	 ܺ௞ ൅ ,௣݀ܺߙ	 	ܻ௞ ൅  .ௗܻ݀ሻߙ	

Let ݇ ← ݇ ൅ 1. Go to Step 1. 

5 COMPUTATIONAL 
EXPERIENCE 

Now, we will describe the computational experience 
that we have done to compare the  new version of 
our predictor-corrector variant and the classical 
predictor-corrector method, described in the 
previous sections. 

5.1 Brief Description of the Used Tools 

The computational tests were performed in Intel(R) 
Core™ i5 2.50 GHz with 4Go memory under Linux 
11. To implement the new predictor-corrector 
variant we used the 6.0 version of the source code of 
the package SDPA by Makoto Yamashita, Katsuki 
Fujisawa and Masakazu Kojima (Fujisawa and 
Kojima, 1995). The code was modified to achieve 
two main purposes: it was adapted to be possible to 
implement the different version  of  the predictor-
corrector variant and it was optimized to become 
faster and more robust. 

To compare the performance of the algorithms, 
we generated automatically particular quadratic 
programs. These results are preliminaries. 

5.2 Results 

We present the results corresponding to the new  
predictor-corrector variant described earlier and 
compare those results with the ones obtained with 
the classical predictor-corrector algorithm.  To test 
our procedure, we generated particular quadratic 
programs automatically for which we know the 
primal objective value. We thus allow to validate our 
procedure in experiments with comparison.  We 
solved  the semidefinite relaxation of the problem 
considered with the two variants of SDPA and then 
we compare the results. 

The motivation to consider this example is to 
show the effectiveness and the realizability of our 
procedure and to generate big instances. 

We use the graphic with information about some 
instances of the problem and the CPU time (in 
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seconds), see Figure 5.1. 
We consider the quadratic program: 

ܳܲ ቐ
݉݅݊෍ ௜ݔ

௠

௜ୀଵ

.ݏ .ݐ ௜ݔ													
ଶ ൌ 2, 									ሺ݅ ൌ 1. .݉ሻ.

 (3)

 

Figure 5.1: Comparison of the CPU with SDPA classic 
and SDPA new variant. 

6 CONCLUSION AND FUTURE 
WORKS 

In this paper, we have applied a new procedure to 
solve the SDP in optimal time. The logarithmic 
barrier approach with the technique of upper-
approximaty functions reduce the computational cost 
of the algorithm compared with classical methods. 
The preliminaries numerical results show the 
performance of this procedure. This work opens 
perspectives for exploring the potentiality of 
semidefinite programming to provide tight 
relaxations of  NP-hard, combinatorial and quadratic 
problems. Our future work is to program another 
line-searches and another barrier functions. We will 
test the performance of the algorithms with the 
SDPLIB collection of SDP test problems (Borchers, 
1999) . 
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