
Towards a Real-time Game Description Language

Jakub Kowalski1 and Andrzej Kisielewicz2

1Institute of Computer Science, University of Wrocław, Wrocław, Poland
2Institute of Mathematics, University of Wrocław, Wrocław, Poland

Keywords: General Game Playing, Knowledge Representation, Game Description Language, Real-time Games.

Abstract: For the sake of the General Game Playing competition, the Game Description Language (GDL) has been
developed as a high-level knowledge representation formalism, able to describe any finite, n-player, turn-
based, deterministic, full-information game. The last two restrictions were removed by the later extension
called GDL-II. In this paper, we discuss our extension of GDL, called rtGDL, that makes it possible to describe
a large variety of games involving a real-time factor. We consider its effectiveness and expressiveness, arguing
that this is a promising direction of research in the field of General Game Playing.

1 INTRODUCTION

The aim of General Game Playing (GGP) is to de-
velop a system that can play a variety of games with
previously unknown rules. Unlike standard AI game
playing, where designing an agent requires special
knowledge about the game, in GGP the key is to cre-
ate a universal algorithm performing well in different
situations and environments.

The beginning of the GGP field dates from 1968
with the work (Pitrat, 1968) concerning the class of
arbitrary chess-like board games. In 2005 General
Game Playing was identified as a new Grand Chal-
lenge of Artificial Intelligence and from this year the
annual International General Game Playing Compe-
tition (IGGPC) has taken place to foster and moni-
tor progress in this research area (Genesereth et al.,
2005). For a more detailed survey of General Game
Playing and International GGP Competition, its his-
tory, achievements and actual research challenges, we
refer to (Genesereth and Thielscher, 2014).

For the purpose of IGGPC, a new language called
the Game Description Language (GDL) (Love et al.,
2006) was developed. GDL has enough power to de-
scribe all turn-based, finite and deterministic n-player
games with full information. Playing a game given
by such a description requires not only developing a
move searching algorithm, but also implementing a
reasoning approach to understand the game rules in
the sense of computing legal moves, the state update
function, and the goal function.

In 2010, GDL-II (for Game Description Language

with Incomplete Information), the extension to GDL
removing deterministic and full information restric-
tions was proposed in (Thielscher, 2010), and the
claim has been made that GDL is now the complete
language, without any need for further extensions.

In our opinion, if GDL is to be a general artificial
intelligence language it has still too many restrictions.
In particular, one of such restrictions is the require-
ment that the game has to be turn-based. In (Kowal-
ski and Kisielewicz, 2015), we proposed the exten-
sion of GDL called the Real-time Game Description
Language (rtGDL) that can represent games involv-
ing time-based events, where the exact moment of an
action is relevant. This concerns most current video
games such as Real-time Strategies, Shooters, Sport
Games and Role-playing Games. Research towards
playing these games by AI agents did not enter (yet)
a phase of generalization, and it is focused on using a
specially designed algorithms (Ontanón et al., 2013;
Hingston, 2010).

This paper is to argue that the properties of rtGDL
make it a potentially useful and interesting direction
of research in the GGP domain. No real number arith-
metic is required inside the rule engine, which unlike
some other proposed extensions, e.g. (Thielscher and
Zhang, 2010), preserve the pure declarative charac-
ter of GDL, and allows to re-use the same reasoning
engine as in plain GDL. We show that this extension
ensures finite derivability and effectiveness required
for practical use. We address the problem of possi-
ble lags during the communication, and discuss the
expressiveness of the language.

494
Kowalski, J. and Kisielewicz, A.
Towards a Real-time Game Description Language.
DOI: 10.5220/0005816904940499
In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2, pages 494-499
ISBN: 978-989-758-172-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 REAL-TIME GDL

GDL is a high-level, strictly declarative language us-
ing logic programming-like syntax. Every game de-
scription contains declarations of player roles, the ini-
tial game state, legal moves, state transition func-
tion, terminating conditions and the goal function.
GDL does not provide any predefined functions: nei-
ther arithmetic expressions nor game-domain specific
structures like board or card deck. Every function and
declaration must be defined explicitly from scratch,
and a few provided keywords serve as a minimal set
of instructions required to grant to the rules a proper
semantic. This ensures that, given the game rules, any
additional, background knowledge is not required for
the player.

A surprisingly simple, but very powerful GDL-
II extension proposed by Thielscher allows non-
deterministic, imperfect information games, by
adding only two additional keywords, and slightly
changing the communication protocol.

The extension of GDL presented in (Kowalski and
Kisielewicz, 2015) is intended to remove another im-
portant restriction of GDL games that they need to be
turn-based. It preserves the purely declarative style,
so that the state computing inference engine can re-
main unchanged. In general, dealing with real-time
games may involve real number arithmetic, which
cannot be encoded in pure GDL in a simple way.
The proposed approach requires real arithmetic on the
level of search engine reasoning only. On the level
of the rule engine, numbers are treated like standard
terms without additional semantics (in a manner sim-
ilar to natural numbers in the goal relation).

Changes between rtGDL and GDL keywords are
summarized in Table 1. Keywords that are not listed:
role, legal, does, terminal and goal remain un-
changed. Parameter T∈R+∪{∞} linked with the fact
F encodes the lifetime of this fact, that is, the time for
which this fact will be true. After the time is over, the
state update is performed and the additional relation
expired(F) indicates that F have just expired and al-
lows changes based on this knowledge.

Table 1: The rtGDL keywords: the top three are modified
GDL keywords, while the last two are the new keywords.

init(T,F) F lasts for time T in the initial state
true(T,F) F lasts for time T in the current state
next(T,F) F lasts for time T in the next state
infinity stands for ∞ time value
expired(F) holds when F becomes obsolete

State updates are performed after a player makes a
move or when some fact becomes obsolete. Before

such an update is computed, all times assigned to the
set of holding facts are properly updated according to
the time since the last update.

Keywords restrictions taking into account their in-
tended meaning remain the same as in standard GDL
(Love et al., 2006), with the addition that the new key-
word expired is restricted in the same way as true.
Also, we adopt the convention that to be considered as
valid, rtGDL game description must be stratified (Apt
et al., 1988), allowed (Lloyd and Topor, 1986), and
satisfy the general recursion restriction (see (Schiffel
and Thielscher, 2014, Definition 3.)). These restric-
tions ensure that game rules, despite introducing time-
based values, which can be arbitrary real numbers,
can be effectively and unambiguously interpreted by
a state transition system, and all relevant derivations
remain finite and decidable (see Theorem 1).

2.1 Semantics

We show that rtGDL may be seen as a straightforward
extension of GDL. As in GDL, any game descrip-
tion defines a finite set of domain-dependent function
symbols and constants, which determines a (usually
infinite) set of ground symbolic expressions Σ. These
ground terms can represent players, moves, parts of
the game state, etc. However, unlike in the standard
GDL, the game states are not simply subsets of Σ. Ev-
ery individual feature of the game state has assigned
a lifetime, which is a real number value or the infin-
ity symbol, and describes the period of time for which
the feature holds (after that, unless other events occur,
it ceases to be a part of the state). Moreover, initially
declared real numbers which occur in Σ are not the
only ones that may appear. Any real number, given
by the outside environment as updated lifetime, can
appear as a constant later during the game.

Therefore, we define an rtGDL game state to be
a finite subset of R∞

+ × Γ, where R∞
+ = (0,∞] (in-

cluding ∞), and Γ ⊆ Σ(R∞
+) where Σ(R∞

+) is a set of
ground terms of the game, with the set of constants
extended by R∞

+. To define the declarative semantics
as a state transition system we follow (Kowalski and
Kisielewicz, 2015). First, the elements of the game
model are endowed suitably with the component R∞

+.

• R⊆ Σ (the roles);

• s0 ⊆ R∞
+×Σ (the initial position);

• t ⊆ Pfin(R∞
+×Γ) (the terminal positions);

• l ⊆ R×Γ×Pfin(R∞
+×Γ) (the legality relation);

• u : R∞
+× (R 9 Γ)×Pfin(R∞

+×Γ) 7→ Pfin(R∞
+×Γ)

(the update function);

• g⊆ R×N×Pfin(R∞
+×Γ) (the goal relation);

Towards a Real-time Game Description Language

495

(where Pfin(A) denotes the finite subsets of A). The
legality relation l(r,m,S), states that in the position S,
a player r can perform move m. Given a time ∆t since
the last state update, and a partial function of the joint
moves performed by the players M : (R9Γ), the state
update function u(t,M,S) determines the updated po-
sition. Finally, the relation g(r,n,S) defines the payoff
of player r in the game state S.

Let G be a valid game description of an n-player
rtGDL game. The players’ roles are defined by
the derivable instances of role(R). Other game el-
ements have a real-time factor. A game state S =
{(t1, f1), . . . ,(tk, fk)} is encoded as a set of facts
(ground terms) with assigned lifetimes. At the be-
ginning of the game, the state is composed of the
derivable instances of init(T,F). We use the key-
word true to extend the game description G by the
facts resulting from S, which form the set

Strue def
= {true(t1, f1), . . . ,true(tk, fk)}.

If terminal is derivable from G ∪ Strue, then the
state S is a terminal position. Instances of goal(R,N)
derivable from G ∪ Strue assign to every player R
its reward N. Legal actions are derivable instances of
legal(R,M), for every role R and every move M.

The state of the game remains unchanged until an
event occurs. There are two types of events: action-
based, caused by players’ moves, and expired-based,
resulting from expiration of some facts in Strue. Let
∆t be the time since the last occurrence of an event.
When a subset of players ri1 , . . . ,ril , where ∀ j i j ∈
{1, . . . ,n}, perform moves mi1 , . . . ,mil , then

Mdoes def
= {does(ri1,mi1), . . . ,does(ril,mil)}.

Let us notice that Mdoes= /0 if no player sends a move.
Performing state update requires updating lifetime

of every holding fact, and information about facts that
expired. These two sets are defined in a following
way:

µ(S,∆t) = {true(ti−∆t, fi) :

true(ti, fi) ∈ Strue ∧ ti > ∆t}
Sexp∆t

def
= {expired(fi) :

true(ti, fi) ∈ Strue ∧ ti ≤ ∆t}
where µ(S,∆t) updates the facts lifetimes and Sexp∆t
contains expired facts. The updated position is com-
posed of instances of next(T,F) derivable from G ∪
Mdoes∪µ(S,∆t)∪Sexp∆t .

In order to summarize above in a formal defini-
tion, as in (Schiffel and Thielscher, 2014), we make
use of the fact that any stratified set of clauses G has
a unique stable model (Gelfond and Lifschitz, 1988).
We denote it SM[G]. Due to the syntax restriction in
rtGDL, it is finite ((Love et al., 2006)).

Definition 1. Let G be a valid rtGDL specification,
whose signature determines the set of ground terms
Σ, and Γ ⊆ Σ(R∞

+). The semantics of G is the state
transition system (R,s0, t, l,u,g) given by

• R = {r ∈ Σ : role(r) ∈ SM[G]};
• s0 = {(t, f) ∈ R∞

+×Σ : init(t, f) ∈ SM[G]};
• t = {S ∈ 2R

∞
+×Γ : terminal ∈ SM[G ∪Strue]};

• l = {(r,m,S) : legal(r,m) ∈ SM[G ∪Strue]},
for all r ∈ R, m ∈ Γ and S ∈ Pfin(R∞

+×Γ);
• u(∆t,M,S) = {(t, f) : next(t, f) ∈ SM[G ∪

Mdoes∪µ(S,∆t)∪Sexp∆t]}, for all M : (R9Γ), S∈
Pfin(R∞

+×Γ), and minimal ∆t such that Mdoes ∪
Sexp∆t 6= /0;
• g= {(r,n,S) :goal(r,n)∈ SM[G∪Strue]}, for

all r ∈ R, n ∈ N and S ∈ Pfin(R∞
+×Γ).

The model in the above definition is uncountably in-
finite, and cannot be used itself as an effective de-
scription of the game. Yet, it is locally finite in the
sense that all stable models involved are finite and ef-
fectively computable. This is in spite of that rtGDL
games involve a real-time factor and incomplete infor-
mation (on time when events occur). In other words,
our extension preserves the crucial property of “finite
derivability”, which for rtGDL setting can be speci-
fied in the following way. A state of the game is the
set of all facts (ground terms) holding in a given mo-
ment of the game. Each state that can be achieved
from the initial state by a finite sequence of moves of
the players performed in certain times from the start
of the game is called a reachable state. The last state
occurring before the present state S in this sequence
is called the preceding state for S (and the given se-
quence of moves). Note that the same state can be
reached by various sequences of moves.

Theorem 1. Let G be a valid rtGDL game descrip-
tion. Then, each reachable state is finite and can be
effectively computed from any preceding state, given
the joint move and the time passed.

Proof. (Sketch). The proof is similar as in case
of GDL and GDL-II, based on results on logic pro-
gramming. First, since G is stratified, by (Gelfond
and Lifschitz, 1988) it admits a unique stable model
SM[G] as the declarative semantics, which is the same
a the “iterated fixed point” model MP in (Apt et al.,
1988). Moreover, by the allowedness and the gen-
eral recursion restriction this model is finite (Love
et al., 2006; Schiffel and Thielscher, 2010). It can
be effectively computed using, e.g., the iterative pro-
cedure described in (Apt et al., 1988). This implies,
in particular that the initial state is finite and can be
effectively computed. Now the proof is by induc-
tion. Assuming that a reached state is finite, the joint

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

496

move of the players contains a finitely many new
real time constants, and therefore the stable model
SM[G ∪Mdoes ∪ µ(S,∆t)∪ Sexp∆t] is finite. It follows
that there are finitely many instances of next(T,F)
derivable from G ∪Mdoes∪µ(S,∆t)∪Sexp∆t , and as be-
fore they can be effectively computed.

The result above means, in particular, that any fi-
nite part of the game tree may be effectively computed
on the basis of the moves and times they occur.

3 EXECUTION MODEL

There are various possibilities to handle real-time
events in an execution model of rtGDL. The simplest
model, we presented in (Kowalski and Kisielewicz,
2015), requires very little deviation from the standard
execution model of GDL (Love et al., 2006).

In every state S reached at time t (starting from the
initial position s0), the game waits until the first event
occurs. Let t ′ be the time of that event. Then the
game state should be updated according to the func-
tion u(t ′− t,M,S) and all players should be notified
about the update and its time. The process repeats un-
til the game reaches a terminal position, with players’
rewards given by the goal relation g.

To decrease the number of messages, and keep
the communication protocol similar to standard GDL
one, the Game Manager can send to the players only
information about actions. Since the players must
maintain their own internal clocks anyway, they can
use them to keep the track of expiration of facts and
update states in connection with expired-based events.

The above simple execution model does not ad-
dress the problem of possible lags during communi-
cation. It may be treated as suitable in the scenario
when rtGDL programs compete on the same server,
and communication delay may be ignored. Yet, in
case of games played through the GGP website, lags
may cause practical problems with having up-to-date
knowledge about the current state of the game.

One direction to deal with the delay problem is
to divide the time axis into small intervals and admit
communication only at the end points of these inter-
vals. The intervals should be large enough to provide
time for indispensable computation. Another possible
approach is to allow for the Game Manager to stop the
time of the game in the situations when updating the
state requires more time. The choice between models
should depend on the possible applications.

Another problem concerns correcting information
about the current state of the game in the situation
when a message about an action-based event just ar-
rived can make some knowledge obsolete. The point

is that an action-based event may change lifetimes of
other events.

Consider a message m notifying about an action-
based event with timestamp t, received at time t ′ > t.
The player, having access to all previous messages,
and thus to the move history, has full knowledge about
the state s at time t (including lifetimes of all facts).
Thus, the player can backtrack to this state and, given
m, perform the suitable state update.

Assuming stable time difference between a player
and the Game Manager, it is possible for the player,
after performing at least one move, to synchronize
with the Game Manager and be able to send every
later move so that it arrives at the desired time.

Indeed, assume a player sent a move at time ts.
As an answer, he get a PLAY message at time tp, with
parameter tr describing the time when the Game Man-
ager received his move. Now, the player can put
∆t = tr− ts, and for every move which should be re-
ceived by the Game Manager at time t, the player can
send it at the time t−∆t on its own clock. The esti-
mation ∆t can be adjusted to be more reliable as the
game continues.

This problem recalls the known practical problem
in the GGP competitions of sending moves a little bit
earlier to make sure they arrive to the Game Manager
at time. Yet, in rtGDL setting, it is more essential to
adjust the time as exact as possible.

We may summarize all the above:

Theorem 2. For each Real-time GDL game taking
place through the website, there exists a time delay
∆t, such that, for any time t0, the players are able
to compute fully the state of the game at time t0 with
delay not larger than ∆t.

4 EXPRESSIVENESS OF RTGDL

To illustrate how the game rules are constructed,
we provide an rtGDL code of a complete Game of
Chicken. It is a well known game, where two players
pretend to be tough, and do not want to swerve from
the colliding path waiting for the opponent to do this.

1 role(white). role(black).
2 init(infinity,dir(white ,straight)).
3 init(infinity,dir(black ,straight)).
4 init(1.0,timer).
5
6 next(T,timer) ⇐ true(T,timer).
7 next(infinity,dir(R,swerve))
8 ⇐ does(R,swerve).
9 next(T,dir(R,D)) ⇐ true(T,dir(R,D))

10 ∧ ¬ does(R,swerve).
11 legal(R,swerve)
12 ⇐ true(T,dir(R,straight)).

Towards a Real-time Game Description Language

497

13 terminal ⇐ expired(timer).
14 goal(R,0) ⇐ true(T,dir(R,straight))
15 ∧ true(S,dir(P,straight))
16 ∧ distinct(R,P).
17 goal(R,80) ⇐ true(T,dir(R,swerve))
18 ∧ true(S,dir(P,straight)).
19 goal(R,90) ⇐ true(T,dir(R,swerve))
20 ∧ true(S,dir(P,swerve))
21 ∧ distinct(R,P).
22 goal(P,100) ⇐ true(T,dir(R,swerve))
23 ∧ true(S,dir(P,straight)).

The game lasts for the one unit of time. Each player
starts riding straight ahead, and until the timer holds,
he player can decide to swerve. After swerving, no
more legal moves are allowed.

The payoff matrix is defined as follows. In the
case of a crash, both players’ reward is 0. If only one
player decides to swerve his reward is 80, while his
opponent’s reward is 100. When both players decide
to swerve they gain 90 points each.

We now proceed to show that, in principle, all
GDL games can be expressed in rtGDL. To this end
we need the following definition.

Definition 2. We say that an rtGDL game G ′ has an
equivalent semantics to a GDL game G if there is a
procedure converting any program for G to a program
for G ′, so that the result of any rtGDL competition C′

between converted programs is the same as the result
of GDL competition C of the original GDL programs.

The definition could be stated more formally, but it is
sufficient for the sketch of the proof provided below.

Theorem 3. For every GDL game G there exist real-
time GDL game G ′ with equivalent semantic.

Proof. (Sketch). Considering G as a GDL spec-
ification, we convert it, step by step, in an rtGDL
specification. First, all occurrences of true, init,
and next are modified to fit the rtGDL syntax by en-
dowing each with the lifetime parameter infinity.
We introduce three new function constants made(R,M),
clock, and moved(R) with intention to postpone the
state update until playclock clock expires, and to
mark down that the player R has performed his move.
Accordingly, all occurrences of does(r,m) are re-
placed by true(infinity, made(r,m)), and every
rule of the form next(infinity, f)⇐ φ is replaced by
next(infinity, f)⇐ φ ∧ expired(clock). In addi-
tion we add a set of new rules:
next(infinity,moved(R)) ⇐ does(R,M).
next(infinity,made(R,M))
⇐ does(R,M) ∧ ¬ true(infinity,moved(R)).

next(infinity,F)
⇐ true(T,clock) ∧ true(infinity,F).

The intended meaning of the constant clock is en-
sured by the following:

init(1.0,clock).
next(1.0,clock) ⇐ expired(clock).
next(t,clock) ⇐ true(t,clock).

The presented code allows the players to perform pre-
cisely one move during the unit clock interval. The
optimal strategy of the players (based on the given
strategy for the corresponding GDL game) should be
to make use of all the timelimit to compute their sin-
gle move as in GDL and send it to the Game Manager.
Then, the result of the competition will be the same.

Here we need to make a theoretical assumption
that, as a result of such strategy, the players send their
moves at the same time, at the end of the timelimit,
and in consequence, at the same time are informed
about their joint move. Another theoretical assump-
tion is that players do not send illegal moves, because
the rtGDL Game Manager handles illegal moves in a
different way than the GDL one.

In practice, the games G and G ′ would not be fully
equivalent, especially when it is essential that players
have no knowledge about the moves done by other
players during the same turn. Also, the error handling
would require a special solution. (The simplest one
would be to treat illegal moves as the loss.)

It is natural to compare rtGDL games with Extensive
Form Continuous-time games (Simon and Stinch-
combe, 1989). Let us recall that in such games the
players act on the interval R = [0,1]. Let A be the
joint set of all possible actions of all players. The de-
cision node is a pair 〈0, /0〉 or 〈t,h〉, where t ∈ (0,1]
and h is a function from [0, t) to A, representing the
history of the game up to time t. Now, since every
rtGDL game has to be finite in terms of match dura-
tion, it is always possible to map rtGDL lifetime units
to (0,1] such that every match do not go beyond R.
The construction is straightforward, and we may see
that every rtGDL game can be represented in the form
of the Extensive Form Continuous-time game.

However, it should be noted, that rtGDL nodes al-
lows only finite number of legal actions. This restric-
tion adopted to preserve finite derivability property of
GDL games is, at the same time, a serious limitation.
In particular, it does not allow players to use real num-
bers in their move messages, which is a natural action
in many games.

5 CONCLUSION

With introduction of GDL-II, it was claimed that
the GDL language can be considered complete
(Thielscher, 2010; Schiffel and Thielscher, 2014), and
additional elements can only serve for simplifying
description or will be forcing setting extensions far

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

498

beyond the concept of General Game Playing (e.g.
open-world games or physical games like in General
Video Game Playing (Perez et al., 2015)).

Our position is contrary. We argue that our real-
time extension (Kowalski and Kisielewicz, 2015) pre-
serves the core idea of GDL – a concise purely log-
ical description of the game and a simple execution
model. At the same time it is a larger extension than
GDL-II, allowing a game to have an infinite number
of states and the players to have an infinite number
of actions. By introducing time based events and by
giving relevance to the move ordering it makes it pos-
sible to describe properly many real world situations.
It makes real-time general gaming a very hard, but in-
teresting area of further GGP research. In particular,
it allows to model many elements of the popular com-
puter games, which are currently used as a test-bed
for dedicated AI players, e.g. Super Mario Bros, Un-
real Tournament 2004 (Hingston, 2010), or Starcraft
(Ontanón et al., 2013).

Beyond the usage in GGP, the correlations be-
tween the GDL and game theory (Thielscher, 2011)
and Multiagent Systems (Schiffel and Thielscher,
2010) are often pointed out. A goal for GDL is to
become a universal description language which can
describe as large class of game-like problems as pos-
sible, at the same time remaining compact, high-level
and machine-processable. We presented the next step
into such a generalization of problems description,
which brings the class of games covered by the GDL
family closer to real-time game theory (e.g. Extensive
Games in Continuous Time, Continuous Time Re-
peated Games (Bergin and MacLeod, 1993)) and Real
Time Multiagent Systems (Julian and Botti, 2004).

Moreover, we think that GDL language family
can be further expanded. In particular, it is pos-
sible to merge presented Real-time extension with
Thielscher’s Incomplete Information extension to ob-
tain the broadest general description language so far.
The sketch of such construction has been presented in
(Kowalski and Kisielewicz, 2015).

ACKNOWLEDGEMENTS

This work was supported by Polish National Sci-
ence Centre grants No 2014/13/N/ST6/01817 and No
2012/07/B/ST1/03318.

REFERENCES

Apt, K. R., Blair, H. A., and Walker, A. (1988). Founda-
tions of deductive databases and logic programming.

chapter Towards a Theory of Declarative Knowledge,
pages 89–148.

Bergin, J. and MacLeod, W. B. (1993). Continuous time re-
peated games. International Economic Review, pages
21–37.

Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. In ICLP/SLP, vol-
ume 88, pages 1070–1080.

Genesereth, M., Love, N., and Pell, B. (2005). General
game playing: Overview of the AAAI competition.
AI Magazine, 26:62–72.

Genesereth, M. and Thielscher, M. (2014). General Game
Playing. Morgan & Claypool.

Hingston, P. (2010). A new design for a turing test for bots.
In CIG, pages 345–350. IEEE.

Julian, V. and Botti, V. (2004). Developing real-time multi-
agent systems. Integrated Computer-Aided Engineer-
ing, 11(2):135–149.

Kowalski, J. and Kisielewicz, A. (2015). Game Description
Language for Real-time Games. In GIGA, pages 23–
30.

Lloyd, J. W. and Topor, R. W. (1986). A basis for deductive
database systems II. The Journal of Logic Program-
ming, 3(1):55–67.

Love, N., Hinrichs, T., Haley, D., Schkufza, E., and Gene-
sereth, M. (2006). General Game Playing: Game De-
scription Language Specification. Technical Report
LG-2006-01, Stanford Logic Group.

Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F.,
Churchill, D., and Preuss, M. (2013). A survey of
real-time strategy game AI research and competition
in Starcraft. T-CIAIG, 5(4):293–311.

Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas,
S., Couëtoux, A., Lee, J., Lim, C., and Thompson,
T. (2015). The 2014 General Video Game Playing
Competition. T-CIAIG. To appear.

Pitrat, J. (1968). Realization of a general game-playing pro-
gram. In IFIP Congress, pages 1570–1574.

Schiffel, S. and Thielscher, M. (2010). A Multiagent
Semantics for the Game Description Language. In
Agents and Artificial Intelligence, volume 67 of CCIS,
pages 44–55.

Schiffel, S. and Thielscher, M. (2014). Representing and
Reasoning About the Rules of General Games With
Imperfect Information. JAIR, 49:171–206.

Simon, L. K. and Stinchcombe, M. B. (1989). Extensive
Form Games in Continuous Time: Pure Strategies.
Econometrica, 57(5):1171–1214.

Thielscher, M. (2010). A General Game Description Lan-
guage for Incomplete Information Games. In AAAI,
pages 994–999.

Thielscher, M. (2011). The General Game Playing Descrip-
tion Language is Universal. In IJCAI, pages 1107–
1112.

Thielscher, M. and Zhang, D. (2010). From general game
descriptions to a market specification language for
general trading agents. volume 59 of LNBIP, pages
259–274.

Towards a Real-time Game Description Language

499

