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Abstract: Although successfully employed as the foundation for a number of large-scale government and energy 
industry projects, foundational ontologies have not been widely adopted within mainstream Enterprise 
Systems (ES) data integration practice. However, as the closed-worlds of ES are opened to Internet scale 
data sources, there is an emerging need to better understand the semantics of such data and how they can be 
integrated. Foundational ontologies can help establish this understanding and therefore, there is a need to 
investigate how such ontologies can be applied to underpin practical ES integration solutions. This paper 
describes research undertaken to assess the effectiveness of such an approach through the development and 
application of the 4D-Semantic Extract Transform Load (4D-SETL) framework. 4D-SETL was employed to 
integrate a number of large scale datasets and to persist the resultant ontology within a prototype warehouse 
based on a graph database. The advantages of the approach included the ability to combine foundational, 
domain and instance level ontological objects within a single coherent system. Furthermore, the approach 
provided a clear means of establishing and maintaining the identity of domain objects as their constituent 
spatiotemporal parts unfolded over time, enabling process and static data to be combined within a single 
model. 

1 INTRODUCTION 

An enterprise may acquire data from many sources 
in many different forms (Zikopoulos and Eaton, 
2011). Key considerations in integrating such data 
include dealing with the diversity of representation 
and the interpretation of the inherent explicit and 
implicit semantics. The latter of these considerations 
is particularly important in the context of ES 
integration as, if left unrecognised, it can lead to the 
things of importance (e.g., domain objects and their 
relationships), their nuances and the state of affairs 
they represent being misinterpreted (Lycett, 2013). 
These considerations are well recognised within 
database integration projects (Arsanjani, 2002; 
Campbell and Shapiro, 1995; Sheth and Larson, 
1990).  

Ontology has emerged as a promising way of 
dealing with such diversity, however many popular 
domain ontologies have no grounding in a consistent 
foundational view of reality (Cregan, 2007) and 
therefore can add further diversity. A foundational 
ontology can be employed to provide this ‘grounded’ 

view of reality and thus provide an explicit theory and 
a common reference through which to interpret, 
model and thus integrate data. Foundational ontology 
“defines a range of top-level domain-independent 
ontological categories, which form a general 
foundation for more elaborated domain-specific 
ontologies” (Guizzardi et al. 2008). From a 
philosophical perspective, foundational ontologies 
provide the criteria for ontological commitments – 
statements on the things believed to exist within the 
context of a particular theory (Bricker, 2014). Several 
foundational ontologies currently exist (Gangemi et 
al., 2002; Grenon and Smith 2004; Partridge 2005; 
Guizzardi, et al., 2008; Herre 2010) which differ in 
the ontological commitments they make but, 
importantly, there is little existing work that examines 
their suitability as an ultimate ‘mediating layer’ 
within a practical data integration context. 

Here, we employ a 4D foundational ontology as 
a means of dealing with the diversity of 
representation and semantics within acquired data. 
We do this in the context of a semantic Extract-
Transform-Load framework (called 4D-SETL from 
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this point) that uses a 4D foundational ontology to 
harmonise data, then generates a graph database that 
accords with the semantic commitments made by the 
ontology. We examine the effectiveness of the 
framework by applying it to semantically interpret 
and integrate a number of large-scale datasets and to 
instantiate a data warehouse based on a graph 
database to persist the resultant ontology. In doing 
this, the paper is structured as follows. Section 1 
outlines the problem of variety in terms of the 
semantic heterogeneity that exists within systems 
modelling and foundational ontologies and also 
identifies a number of the weaknesses in current 
integration approaches. Section 2 describes the core 
categories and foundational patterns of the BORO 
foundational ontology. Section 3 introduces the 4D-
SETL framework. Section 4 provides details of the 
experimental dataset integrated. Section 5 details the 
outcomes and limitations. 

1.1 Semantic Data Integration 

Data integration is problematic on several counts. 
Firstly, people perceive and conceptualise reality in 
different ways. Even when a set of models is 
developed by the same individual, they can make 
different (and sometimes arbitrary) choices about the 
same reality at different times and in different 
contexts (Kent, 1978).  Secondly, in the course of 
modelling reality, a designer may confuse what is 
being represented with the representation itself 
(Partridge et al., 2013). Thirdly, different structures 
and restrictions are introduced by heterogeneous 
modelling methods and languages (e.g., Entity-
Relationship, OWL etc.). Fourthly, it is common 
practice to develop a number of models in systems 
development – conceptual, logical and physical data 
models for example (Codd, 1970).  This layering can 
have an adverse effect as the original semantic 
structures may be distorted or lost completely as the 
emphasis of the modelling activity moves from 
representing the real world to representing data 
structures.  Consequently, when integrating data that 
originates from different sources, the problem of 
semantic heterogeneity arises – resolution is 
required regarding differences in meaning, 
interpretation or the intended use of related data 
which forms a barrier to coherent semantic data 
integration (Doan, Noy and Halevy, 2004).   

1.2 Heterogeneous Foundational 
Ontologies 

Ontology provides a way of dealing with semantic 

data integration. From a computational standpoint, 
an ontology is generally taken as a ‘specification of 
a conceptualization’ (Gruber, 1995) – that is, a 
description of the concepts and relationships that are 
considered legitimate within a particular system of 
thought. In terms of the concrete implementation of 
software systems, foundational ontologies can be 
used to establish the fundamental ‘meta’ objects and 
relations used to construct more specific domain 
ontologies.  If a common foundational theory is 
extended and specialised to model a number of 
domain ontologies, then objects common to each of 
these domains will have the necessary (common) 
grounding to enable semantic integration.  
Consequently, foundational ontologies are important 
as they provide a standpoint that underpins all the 
domain models to be integrated – providing a 
semantic grounding.  

It is the case, however, that several such 
standpoints (related to foundational ontologies) 
exist, Each provides a criterion for the ontological 
commitments made (implicitly or explicitly), which 
are principally the things believed to exist within the 
context of a particular theory such as four-
dimensionalism (Quine, 1952; Sider, 2003). An 
understanding of ontological commitment, however, 
means that the computational view of ontology 
needs to defer to a philosophical one, which is more 
specifically concerned with the nature of being 
(metaphysics). As metaphysical theories differ on a 
number of dimensions (realism versus idealism, 
endurantism versus perdurantism to name but two) 
differences thus appear in foundational ontologies. 
Furthermore, and perhaps more importantly, the 
degree to which foundational ontologies are actually 
grounded in metaphysics varies. Clearly, a lack of 
consensus at the metaphysical level introduces 
obstacles to semantic integration (Campbell and 
Shapiro, 1995) that result in weaknesses in 
computational applications: 
a) Lack of Grounding. Many current models 

employed within information systems have no 
form of grounding in a more fundamental theory 
(Cregan, 2007). Thus the ontological 
commitments underlying the model are 
unknown. On examination of many Linked Open 
Data ontologies, they are often ungrounded. 

b) Integrating Elements from Models which are 
Founded on Different Theories. There are 
many automatic translation techniques for 
translating RDBMS schema and data to an 
OWL ‘ontology’. However, there is a lack of 
recognition that the expressivity of Description 
Logics (that underlie OWL) and RDBMS are 

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

128



different as are the unique naming and the 
open/closed world-view assumptions. 

c) Model Strata and Translations. As noted earlier, 
the requirement to translate the high-level models 
of reality created at the initial design to structures 
that are focused on the execution environment can 
result in semantic distortion. There is also the 
problem of translating between run-time 
representations; the often cited OO-RDBMS 
impedance mismatch (Ireland et al., 2009). 

d) Over Simplification to Fit a Model of Reality 
to a Tractable First Order Logic (FOL) 
Theory. The simplification of the abstraction of 
reality to fit neatly into a FOL theory, thus 
ignoring the fact that reality is not so simple and 
higher order objects exist (Bailey, 2011). 

e) Dividing Models into Static and Dynamic 
Types. The separation of static and dynamic 
aspects of reality into different structural and 
process models leads to the development of 
incompatible abstractions together with ‘exotic’ 
relations that are employed to bridge these static 
and dynamic worlds. 

f) Naming and Meaning Confusion. There is 
often confusion between an entity’s naming and 
meaning (Bailey and Partridge, 2009). An 
object’s place in reality (and within ontology) 
should define its meaning.  

g)  Establishing Identify. Many modelling and 
information systems use ephemeral means of 
establishing an entity’s identity which do not 
function well over time. 

h) Employing Techniques that do Not Scale. 
Software tools such as OWL tableau calculus-
based reasoners are constrained by memory and 
cannot be easily scaled to inference over 
ontologies containing large instance populations 
(Bock et al., 2008). The alternative is to use 
simplified semantics and rule based reasoning - 
that could in many cases employ standard 
RDBMS techniques. 

i) Semantic Integration Mismatches. For a more 
extensive discussion on the types of semantic 
integration mismatches see Visser et al., (1997) 
who provide an extensive list of e semantic 
mismatches that can occur when integrating 
disparate datasets. 

2 BORO FOUNDATIONAL 
ONTOLOGY 

Having examined several foundational ontologies 

from a philosophical perspective, the research 
described here adopts the Business Object Reference 
Ontology (BORO) (Partridge, 2005) to semantically 
interpret the original datasets and models. We adopt 
BORO on the grounds that the ontology can 
overcome the dichotomy that exists between 
dynamic and static modelling paradigms and its 
metaphysical thoroughness. Hence, the same model 
can represent processes and things that are not 
traditionally considered as processes (e.g., people, 
products, machines, etc.). BORO represents all 
individual elements (e.g. the activity, the person 
assuming a role and the resource consumed) in 
exactly the same way (i.e. as spatiotemporal 
extents). BORO is based on a philosophical (rather 
than computational) definition of ontology because 
it requires more clarity on “the set of things whose 
existence is acknowledged by a particular theory or 
system of thought” (Lowe, 1998, p.634.). Key to 
overcoming the dichotomy noted is the fact that 
BORO is perdurantist (and thus extensionalist) in its 
nature. In perdurantism (or 4D) an individual object 
is never wholly present at one point is time, but only 
partly present (a temporal part). For example, John 
is not fully present in any given phase of his life 
(e.g., childhood), he is fully present from his birth to 
his death only – therefore, John’s childhood is a 
temporal part of John. Identity is thus defined by an 
individual object’s spatiotemporal extension (or 
extent). Figure 1 represents the key part of the 
foundational ontology relevant for the purposes of 
this paper.  

 
Figure 1: BORO Foundational Ontology (top level). 

More in-depth discussions are provided in 
Partridge, 2002; 2005; Bailey and Partridge 2009; 
Bailey, 2011; Partridge et al., 2013). At the top level 
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the BORO foundational ontology represents: 
• Elements, which are individual objects or objects 
with a spatiotemporal extent. For example, the 
person John. 
• Types, which are sets or objects that can have 
instances. The identity of a type is also extensional 
but, in this case, it is defined as the set of its 
instances (i.e. members). For example, the extension 
of the type Persons is the set of all people.  
• Tuples, which are relationships between objects. 
The identity of a tuple is defined by the places in the 
tuple. An example is (Persons, John) in which the 
type Persons and the element John occupy places 1 
and 2 in the tuple respectively. This specific tuple is 
an instance of the tuple type typeInstances in BORO. 
In turn, Elements is subtyped by: 
• Events: An event is an element that does not 
persist through time (i.e. an event has zero 
‘thickness’ along the time dimension). Events 
represent temporal boundaries that either create 
(CreationEvents) or dissolve (DissolutionEvents) 
elements (e.g., a person or a person’s childhood 
state).  
• States: A state is an element that persists through 
time. States (and elements in general) are bounded 
by events. A state (like all elements) can have 
further temporal parts (i.e. states and events). 
Specific TupleTypes (or types whose instance are 
tuples) relevant here are:  
• temporalPartOf: This tuple type relates an 
individual with its temporal parts (states and/or 
events). 
• happensTo: This tuple type relates an event with 
one or more elements affected by the event. 
happensTo has two subtypes: 
- creates: Relates a creation event with the 
element(s) whose creation is triggered by the event. 
- dissolves: Relates a dissolution event with the 
element(s) whose dissolution is triggered by the 
event. 
• happensIn: This tuple type relates an event with a 
time instant or interval (TimeInstantsOrIntervals) 
and it indicates the time in which an event takes 
place. 

As a note of importance for the example shown 
later, names are types in BORO. The instances of the 
name of an individual (e.g. John Smith’s Name) are 
all utterances (written, spoken, etc.) that name that 
individual (e.g., John Smith). Therefore while a 
name, is a type its instances are spatiotemporal 
extents. To provide clarity within the ontology, 
‘names’ as much elements of the ontology as the 

things they name.  A name object will belong to a 
Name Space which holds all names related to a 
particular naming authority or domain. As the 
ontology adopts a theory of utterances – each 
utterance of a name is an individual element and so 
has an extent (Strawson, 1964). Therefore, a name is 
a Type that has as instances all utterances of the 
same name individuals. 

3 4D SEMANTIC EXTRACT 
TRANSFORM AND LOAD 
FRAMEWORK (4D-SETL) 

Given an outline understanding of the foundational 
ontology, we now describe a Semantic Extract-
Transform-Load framework. Given a variety of data 
input, 4D-SETL is designed to output a graph 
database in accordance with the BORO foundational 
ontology. The framework was designed around a 
number of industry standard tools and technologies 
(e.g., a UML design tool and a Graph Database), 
supplemented where necessary with custom software 
implemented in Java. The key technology choices 
made for the initial implementation were threefold. 
First spreadsheets were employed to document each 
dataset. Second, a UML design tool (Enterprise 
Architect) was selected as the graphical design tool 
for the ontological models and a BORO custom 
UML profile created: The advantage is that BORO 
UML enables easy manipulation and design of each 
of the required domain ontologies. Last, the Neo4J 
Graph database was chosen for persistence, for 
several reasons: (a) Primarily due to its flexibility in 
enabling BORO to be used as the foundational 
‘schema’ (both can be seen as graphs); (b) 
scalability in order to handle model and instance 
data volume appropriately; (c) Neo4J's web-based 
interface also provides access to the graph database 
for development testing; and (d) Neo4J Cypher 
provides an appropriate means of querying and 
updating the graph database resident data. 
The Semantic Extract Transform Load (ETL) 
process is shown in Figure 2, the key stages of the 
process are as follows: 
a) Semantic Extraction and Transformation. 

The input data to a semantic integration process 
may be structured in many forms –e.g., as fixed 
record or delimited tabular files, RDF, RDFS, 
OWL etc. – and may consist of both model 
(schema) level and/or instance level data.  Thus 
the first stage in the semantic integration 
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process begins with documenting the dataset 
which can be considered a semantic extraction 
and transformation process. The BORO 
foundation provides a view of reality and the 
patterns that can be employed perform this 
interpretation and transformation. The 
foundational ontology provides the equivalent 
of a canonical data model (Saltor et al., 1991) 
that can be employed to develop domain models 
providing the semantics that are common to all 
datasets that will be integrated.  Thus the 
translation process results in a new schema 
(domain ontology) that extends the ontic 
categories and patterns of the foundation.  
Through this process, schemas are developed to 
represent the entities and relationships that are 
represented by the data. Finally this schema is 
documented using a profile of UML that 
conforms to BORO semantics.  

b) Ontology Model ETL. Once a domain model 
has been created in an ontologically consistent 
form the semantic load and integration process 
can be undertaken.  Firstly the domain 
ontological model, which includes such patterns 
as type and classification taxonomies, is 
translated from the BORO UML model and 
loaded to the graph database. The 4D-SETL 
framework provides a Java application to 
translate the BORO UML and load it to the 
graph database.  

c) Ontology Data ETL. Next, the instance level 
dataset is loaded and integrated. It is through 
this process that the integration of individual 
elements takes place. Integration can be 
considered to take place within vertical and 
horizontal planes. Initially the ‘vertical’ 
relationships between an individual element and 
the domain ontology (and hence the foundation 
ontology) is asserted, which consists of 
establishing the individual relationships (such as 
type instance, etc.). Then the ‘horizontal’ 
relationships that are deemed to hold between 
individual domain level objects are established 
(such as a company being located at a particular 
geographic location). Foundational ontological 
patterns can then be applied to simplify this 
process. This can be a complex process that 
requires both one-to-many and many-to-one 
transformations. The 4D-SETL framework 
provides a Java application to perform this 
process.  

 
Figure 2: 4D-SETL Framework. 

4 EXPERIMENTAL DATA 

As the foundational ontology is an integral part of 
the framework, prior to processing any of the 
domain ontological elements (model and datasets) 
the foundational ontology is transformed to graph 
format and loaded to the database. This is achieved 
via the 4D-SETL framework which extracts the 
BORO UML as XML (XMI), then transforms it to a 
set of nodes and edges that are loaded to the 
database. The graph database ontology also includes 
the UML model identifiers as indexed node and 
edge parameter key-values, these are employed to 
enable the reproduction of the design time UML 
models within the graph database runtime 
environment and to establish the relationships 
between the foundation and other subsequent 
domain model elements that are loaded. The 4D-
SETL framework was applied to Extract, Transform 
and Load (ETL) five datasets of varying scale and 
complexity related to corporate data: 
• Calendar: temporal locations (1856 to present). 
• Location: spatial locations (~2.5M locations). 
• Standard Industrial Classification (taxonomy).  
• UK Companies (~3.5M) 
• UK corporate officers (~12M) 
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5 OUTCOMES AND 
LIMITATIONS 

Having applied the framework, our experience is 
that BORO provides a coherent lens through which 
to view and model the world together with the 
foundational ontological elements and patterns 
through which the domain ontologies can be 
developed to represent the datasets to be 
semantically integrated (Partridge, 2002). In terms 
of domain ontology development, this work concurs 
with the work of Keet (2011), who stated that 
employing foundational ontologies provides 
advantages in terms of the quality and 
interoperability of domain ontologies. Developing 
such domain ontologies provided the means of 
semantically integrating data conforming to different 
models and theories – a necessary evil in dealing 
with variety in big data.  

Employing a graph database provided the means 
of importing and restructuring data in a manner that 
directly reflects the ontological model patterns 
without the normal translation to tabular RDBMS or 
Object Oriented form and not introducing the  
‘impedance mismatch’ problem (Ireland et al., 
2009). Dispensing with RDBMS storage in favour of 
a property graph data model removed the 
partitioning of the storage structures between data 
and schema and allows both ‘schema’ ontological 
model objects and instance level objects to be 
updated at run time. This supports the work related 
to graph databases by Webber (2012). Related to this 
finding, it was also demonstrated in this study that 
patterns could be established within the warehouse 
that directly reflected the physical or socially 
constructed patterns of reality such as taxonomies 
and taxonomic ranks, the latter of which employed 
the powertype pattern (equivalent to the set theoretic 
powerset) to more accurately reflect the nature of 
such classification systems. These aspects of 4D 
ontologies (along with others) provide a greater level 
of flexibility and reusability when evolving the 
warehouse system and therefore concur and take 
forward the initial findings of Partridge (2002). 

In practical terms, we propose that the data 
structures resulting from the 4D-SETL process are 
more suitable for discovering relationships within 
data rather than for example processing aggregate 
data (Vicknair et al., 2010). It is relatively easy, for 
example, to discover all relationships that exist 
between two elements using a standard algorithm 
from the Neo4J library (designed to find all 
available paths or the shortest path between two 
nodes). Further, the Cypher graph database query 

facilities provide the means of discovering more 
complex patterns of relationships between the 
people, company officers, company activities, events 
and physical location. Finally, it was found through 
the evaluation and empirical experiment on the 
prototype warehouse (graph database) that data load 
and information retrieval response times that the 
prototype could be developed into a practical 
information system. This was confirmed by 
performing test data query (graph traversal) 
experiments that for example, performed graph 
traversals to retrieve all companies within a postcode 
location (61 milliseconds) and all officers for a 
specific business organisation (37 milliseconds) thus 
the prototype produced indicative response times 
within bounds that would support interactive 
applications (Bhatti et al., 2000). Testing also 
confirmed the graph database performance 
evaluation undertaken by Vicknair et al. (2010). 
Thus using a graph database and the parameter 
graph model to store the ontology, alongside query 
information via graph traversal, circumvents the 
issues that limit the ability of systems built using 
triple stores and tableau calculus-based reasoner 
technology to deal with ontologies that are both 
expressive and have with very large instance level 
elements (arguably exactly what one would want 
from big data). Neo4J is highly scalable and 
provides capacities for Nodes/Edges of ~34 billion 
and properties at least ∼ 68 billion respectively.  

With the issue of disparate data sources in mind, 
the work here has: (a) Examined the potential 
contribution of foundational ontology; and (b) 
described an implementation of a Semantic Extract-
Transform-Load framework (4D-SETL) based on 
BORO, a 4D foundational ontology. Foundational 
ontologies provide a ‘grounding’ for our view of 
reality and thus provide a common reference through 
which to model and integrate heterogeneous data. 
The 4D-SETL framework uses the BORO 
foundational ontology to harmonise data and then 
generates a graph database that accords with the 
semantic commitments made by that ontology. The 
effectiveness of the framework was examined 
applying it to large-scale open datasets related to 
company information to semantically interpret and 
integrate the datasets and to instantiate a prototype 
graph database warehouse to persist the resultant 
ontology. Our implementation is a prototype at this 
stage and the use of foundational ontologies is not 
without challenge (e.g., automation in the context of 
real-time data streams). Accepting such limitations, 
however, the potential utility of the 4D-SETL 
framework can be seen in its ability to model and 
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instantiate a number of complex ontological 
structures, such as higher order taxonomic ranks. 
The patterns specialised from the core foundational 
BORO ontology patterns offer a high degree of 
flexibility and reusability when evolving the graph-
based warehouse system. We have thus 
demonstrated how a 4D (perdurantist) foundational 
ontology can be employed to semantically interpret 
and structure data, showing that a single coherent 
ontology can be developed and loaded to a graph 
database without the problems associated with 
current approaches – e.g., model distortion, over 
simplification or scalability problems. 

Understandably, the work here is not without its 
limitations, which may be summarised as follows. 
First, and at the outset, the interpretation process is 
manual. BORO encourages the development of 
patterns (for ontological reuse), which allow for 
partial automisation but skills in ontological 
modelling are necessary throughout. In the context 
of dealing with variety in big data automatic 
translation of data is of particular importance. As a 
consequence, pattern development and the extraction 
of the rules associated with that are also of 
importance for ongoing research.  Second, as 
previously noted, BORO is one of several 
foundational ontologies and further work is required 
to understand their relative comparative advantages 
and disadvantages. 

The work here was supported by funding from 
the Engineering and Physical Sciences Research 
Council (Project EP/L021250/1). The experimental 
research data and metadata (Ontology) for this 
project was sourced from the following 
organisations: Companies House (2016), Company 
Information; UK Office of National Statistics (2016) 
Geographic Location (ONSPD Product); UK Office 
of National Statistics (2016), Standard Industrial 
Classification; Company Officers: (A commercial 
credit reference agency); BORO Engineering 
Limited (2016), Foundational Ontology.   

The Companies House and ONS Datasets are 
UK Open Government Data and can be freely 
downloaded. The Company Officers and BORO 
Ontology are commercial in-confidence.  
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