
An Empirical Study of Two Software Product Line Tools

Kattiana Constantino, Juliana Alves Pereira, Juliana Padilha, Priscilla Vasconcelos
and Eduardo Figueiredo

Software Engineering Laboratory (LabSoft), Computer Science Department (DCC),
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil

Keywords: Software Product Lines, Variability Management, Feature Model, FeatureIDE, pure::variants.

Abstract: In the last decades, software product lines (SPL) have proven to be an efficient software development
technique in industries due its capability to increase quality and productivity and decrease cost and time-to-
market through extensive reuse of software artifacts. To achieve these benefits, tool support is fundamental
to guide industries during the SPL development life-cycle. However, many different SPL tools are available
nowadays and the adoption of the appropriate tool is a big challenge in industries. In order to support engineers
choosing a tool that best fits their needs, this paper presents the results of a controlled empirical study to assess
two Eclipse-based tools, namely FeatureIDE and pure::variants. This empirical study involved 84 students
who used and evaluated both tools. The main weakness we observe in both tools are the lack adequate
mechanisms for managing the variability, such as for product configuration. As a strength, we observe the
automated analysis and the feature model editor.

1 INTRODUCTION

Software Product Line (SPL) is a set of software systems
sharing a common, managed set of features that satisfies
the specific needs of a particular market segment (Pohl
et al., 2005). A feature represents an increment in
functionality relevant to some stakeholders. It may refer
to functional requirements (Jarzabek et al., 2003),
architecture decisions (Bernardo et al., 2002), or design
patterns (Prehofer, 2001). Feature models are used to
represent the common and variable features in SPL
(Czarneck and Eisenecker, 2000) (Kang et al., 1990). It
provides us with an abstract, concise, and explicit
representation of variability in software. Variability
aims to provide support to the product derivation in an
SPL (Metzger and Pohl, 2007). It refers to the ability of
an artifact to be configured, customized, extended, or
changed for use in a specific context.

The expected advantages in the adoption of SPL
are: large-scale productivity, decreased time to market
and product risk, and increased product quality
(Clements et al., 2002). However, the adoption of SPL
by industry depends of adequate tooling support.
Existing tools for SPL support the representation and
management of reusable artifacts. In fact, there are
many available options of SPL tools (Pereira et al.,
2015) (Simmonds et al., 2011) (Djebbi et al., 2007).
These tools are diverse with different strengths and

weaknesses. Therefore, choosing one tool that best
meets the SPL development goals is far from trivial.

After a literature review of SPL tools (Pereira et
al., 2015), this paper presents a comparative analysis
of two Eclipse-based SPL tools, namely FeatureIDE
(Thüm et al., 2014) and pure::variants (Beuche,
2003). We choose to focus our analysis on these tools
because they are integrated to the same development
environment, namely Eclipse, which makes the
comparison easier. FeatureIDE and pure::variants
also provide the key functionality of typical SPL tools,
such as to edit (create and update) a feature model, to
automatically analyze the feature model, to configure a
product, and to import/export the feature model.

The empirical study of this paper (Section 2)
involves 84 participants enrolled in Software
Engineering courses. Each participant used only one
tool: FeatureIDE or pure::variants. The experimental
tasks exercise different aspects of SPL development.
All participants also answered a questionnaire about
the functionalities they used. We focus on
quantitative and qualitative analyses of four typical
functionalities of SPL tools: Feature Model Edition,
Automated Feature Model Analysis, Product
Configuration, and Feature Model Import/Export.

Based on the analysis (Section 3), we observed
that the Feature Model Editor of FeatureIDE was
considered the easiest and most intuitive one. In

164
Constantino, K., Pereira, J., Padilha, J., Vasconcelos, P. and Figueiredo, E.
An Empirical Study of Two Software Product Line Tools.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 164-171
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

comparison, pure::variants achieved the best results
for the Import/Export functionalities. The overall
findings are that both SPL tools have issues related to
interfaces, lack of examples, tutorials, and limited
user guide. Section 1 presents some threats to the
study validity and Section 5 discusses related work.
Finally, Section 6 concludes this paper.

2 STUDY SETTINGS

The goal of this study is to investigate how two
Eclipse-based SPL tools, namely FeatureIDE and
pure::variants. support SPL development and
variability management.

2.1 Research Questions

We formulate three Research Questions (RQ)
focusing on aspects of the evaluation are as follows.

RQ1. What functionalities of SPL tools are hard and
easy to use? We investigated four functionalities: (i)
Feature Model Edition, (ii) Automated Feature Model
Analysis, (iii) Product Configuration, and (iv) Feature
Model Import/Export. We list a four-level ranking for
the degree of functionality difficulty.

RQ2. Does the background of developers impact on
the use of the SPL tools? With RQ2, we are willing to
investigate whether the background of developers can
impact on the results of this study.

RQ3. What are the strengths and weaknesses of
different SPL tools? In RQ3, we analyzed the tools
based on the study quantitative and qualitative data.

2.2 Software Product Line Tools

A previous systematic literature review (Pereira et al.,
2015) identified 41 tools for SPL development and
variability management. Based on this review, we used
the following exclusion criteria in order to choose the
two tools for this study. First, we excluded all tools
without enough examples available, tutorials, or user
guides to prepare the experimental material and
training session. After that, we excluded all prototype
tools from our study. In addition, we excluded all tools
unavailable for download and the commercial tool
without an evaluation version. Therefore, we have six
tools candidates for our empirical study: SPLOT,
FeatureIDE, pure::variants, FAMA, VariAmos, and
Odyssey. From the six candidate tools, we picked up
two tools which are seamlessly integrated with the
same development environment (Eclipse).

FeatureIDE (Thüm et al., 2014) and pure::variants
(Beuche, 2003) are mature, actively used (by industry
or academic researches) and accessible tools. These
tools are also well-known and cited in the SPL
literature (Bagheri and Ensan, 2014) (Simmonds et
al., 2011) (Djebbi et al., 2007). Furthermore, we
decided to focus only on 2 tools in order to make it
possible to conduct a deeper study even if we have
limitation of time and human resources. FeatureIDE
is an open-source tool integrated with several
programming languages and supports both aspect
oriented (Kiczales et al., 1997) and feature oriented
programming (Batory et al., 2004). On the other hand,
pure::variants is a commercial tool with an evaluation
version available. We used this evaluation version.

2.3 Background of the Participants

Participants involved in this study are 84 young
developers enrolled in courses related to Software
Engineering. They were organized in two replications
of this study, as follows: 42 participants worked with
FeatureIDE and 42 participants worked with
pure::variants. The participants were nicknamed as
follows: (i) F1 to F42 worked with FeatureIDE and
(iii) P1 to P42 worked with pure::variants. Each
participant used only one tool in the experiment,
either FeatureIDE or pure::variants. All participants
are graduated (M.Sc. and Ph.D students) or close to
graduate.

Before the experiment, we used a background
questionnaire. Figure 1 summarizes knowledge that
participants claimed to have in the background
questionnaire with respect to Object-Oriented
Programming (OOP), Unified Modeling Language
(UML), and Work Experience (WE). The bars show
the percentage of participants who claimed to have
knowledge high, medium, low, or none in OOP and
UML. For WE, the options were: more than 3 years,
1 to 3 years, up to 1 year, and never worked in
software development industry.

Answering the questionnaire is not compulsory,
but only 2 participants did not answer the
questionnaire about UML knowledge and 3
participants did not answer about WE. In summary,
we observe that about 71% of participants have
medium to high knowledge in OOP and 33% have
medium to high knowledge in UML. In addition,
about 40% have more than 1 year of work experience
in software development. Therefore, despite
heterogeneous backgrounds, participants have at least
the basic knowledge required to perform the
experimental tasks.

An Empirical Study of Two Software Product Line Tools

165

Figure 1: Background of participants in OOP, UML, and Work Experience (WE).

2.4 Target SPL Exemplar

In this empirical study, we used the same software
product line exemplar, called MobileMedia
(Figueiredo et al., 2008), in both replications.
MobileMedia is a SPL for applications with about 3
KLOC that manipulate photo, music, and video on
mobile devices, such as mobile phones. We also used
the same feature model to provide the same level of
difficulty in the carrying on tasks.

Figure 2: MobileMedia Feature Model.

Figure 2 presents a simplified view of the
MobileMedia feature model. This feature model
represents all possible product configurations in the
MobileMedia SPL. In Figure 2, there are mandatory
features, such as “Media Management”, and variable
features that allow the distinction between products in
the SPL, such as “Copy Media” (optional) and
“Screen Size” (alternative). In addition to features
and their relationships, feature models often contain
composition rules, known as cross-tree constraints,
such as “SMSTransfer -> CopyMedia” (it means that
the first feature requires the second one).

2.5 Training Session and Tasks

In order to balance knowledge of participants, we
conducted 1.5-hour training session to introduce
participants to the basic concepts of feature modeling,
SPL, and the analyzed tools. The same training
session by the same researcher to all participants. All
material about the course was available for all
participants. In addition, we have not restricted
participants of accessing (e.g., via Web browsers)
other information about the tools, such as tutorials
and user guide.

After the training session, we asked the
participants to perform some tasks using either
FeatureIDE or pure::variants. We performed a four-
functionality quantitative and qualitative analysis
with respect to common functionalities provided by
SPL tools as follows: Feature Model Edition,
Automated Feature Model Analysis, Product
Configuration, and Feature Model Import/Export.
Feature Model Edition includes creating, updating,
and adding constraints in the feature model
representation. Automated Feature Model Analysis
refers to counting the number of features, valid
configurations, etc. In the Product Configuration
task, a product should be specified by selecting or
deselecting features. Finally, the feature model
should be exported, as XML or CSV, and imported to
a new project (Feature Model Import/Export). After
performing the tasks, all participants answered a
questionnaire with open and closed questions. The
questionnaire is available in the project Web site
(http://homepages.dcc.ufmg.br/~kattiana/spl2tools/).

3 RESULTS AND ANALYSIS

This section reports and discusses data of this
empirical study.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

166

Figure 3: Percentage of problems reported by participants to complete their tasks.

3.1 Problems Faced by Developers

Our goal in this section is to analyze the level of
problems that developers may have to carry out tasks
in each analyzed tool. In other words, we aim to
answer the following research question.

RQ1. What Functionalities of SPL Tools are Hard
and Easy to Use?

For this evaluation, participants answered a
questionnaire with the following options for each
task: (i) I was unable to perform, (ii) I performed with
major problem, (iii) I performed with minor problem,
and (iv) I had no problem. Data presented in Figure 3
summarize the results grouped by functionality and
tool. We defined a Y-axis to quantify the cumulated
results, where the negative values mean “hard to use”
and positive values mean “easy to use” the respective
functionality. The general observation is that
participants had minor problems or no problem to
perform most tasks. Conclusions below were also
supported by qualitative feedback from the study
participants.

FeatureIDE. About 57% of the participants indicated
that they failed and had major problems to perform
the Automated Feature Model Analysis task. That is,
52% of participants had major problems and 5% were
unable to perform this task. Therefore, this
functionality was considered the hardest one to be
used by participants in FeatureIDE, as we see in
Figure 3. On the other hand, with respect to Feature
Model Edition, about 28% had minor problems and
70% had no problem to perform this task using
FeatureIDE. It seems a positive result for this tool
because only 2% (1 participant of 42) reported a

major problem to edit a feature model.

pure::variants. If in the one hand, the Product
Configuration functionality presented the worst result
for this tool. On the other side, the tool succeeds in
the other three functionalities (Feature Model Edition,
Automated Feature Model Analysis, and Feature
Model Import/Export). Both pure::variants and
FeatureIDE are plug-in of Eclipse and this fact could
be the reason why people had minor problems with
these tasks. Interestingly, however, participants found
it very hard to configure a product using
pure::variants. That is, Figure 3 shows the negative
ratio of Product Configuration in pure::variants is
bigger than in FeatureIDE, meaning that the
participants had more difficulties to perform this task
using pure::variants.

3.2 Background Influence

This section analyzes whether the background of
developers can impact on the use of the analyzed
tools. In other words, we aim to answer the following
research question.

RQ2. Does the Background of Developers Impact on
the Use of the SPL Tools?

In order to answer RQ2, we apply a 2k full
factorial design (Jain et al., 2010). For this
experiment, we have considered two factors (k=2),
namely the participants experience and the tool used.
To quantify the relative impact of each factor on the
participant effectiveness, we compute the percentage
of variation in the measured effectiveness to each
factor in isolation, as well as to the interaction of both
factors. The higher the percentage of variation

An Empirical Study of Two Software Product Line Tools

167

Figure 4: Background Influence by Factorial Design test.

explained by a factor, the more important it is to the
response variable (Jain et al., 2010).

We classified the participants by their level of
knowledge and work experience into two groups.
Group 1 (Strong Experience) includes 48% of the
participants that claimed to have high and medium
knowledge in OOP, UML, and more than 1 year of
work experience. Group 2 (Weak Experience)
includes 26% of the participants that answered few
and no knowledge in OOP, UML, and less than 1 year
of work experience. In this analysis, we excluded
participants that did not answer the experience
questionnaire and participants with mixed
experiences. For instance, a participant with good
knowledge in OPP, but less than one year of work
experience, was removed from this analysis.

In general, results show that the type of tool tends
to have a higher influence on the effectiveness. Figure
4 outlines that for three out of the four functionalities
namely, Feature Model Edition, Product
Configuration, and Feature Model Import/Export, the
type of tool used by the participants has the highest
influence on the effectiveness. For the Feature Model
Edition task, 96% of the total variation can be
attributed to the type of used tool, whereas only 5% is
due to participants experience and 2% can be
attributed to the interaction of these two factors. For
Product Configuration, 57% is attributed to the type
of tool, and 43% is due to participants experience.
Finally, for Feature Model Import/Export, 95% is
attributed to the type of tool, whereas only 1% is due
to participants experience and 4% is attributed to the
interaction of these two factors.

Therefore, for the Feature Model Edition and
Feature Model Import/Export tasks, both the
participants experience factor and the interaction
seem of little importance to the results. Indeed, the
results clearly show that the subjects who use the
FeatureIDE tool achieved the better results for these

tasks. One possible explanation is the complexity of
pure::variants. Additionally, even subjects who have
no experience tend to obtain a higher effectiveness
when they use FeatureIDE in these two tasks.

For Automated Feature Model Analysis, the
participants experience factor was more significant.
58% of the total variation is attributed to the
participants experience factor, and whereas only 21%
is due to the type of tool used and to the interaction of
these two factors. Therefore, the results for this task
clearly show that the subjects with strong experience
achieved the better results. One possible explanation
is the complexity of the terms used during the analysis
task, which require more knowledge from subjects.

3.3 Strengths and Weaknesses

Our goal in this section is to investigate some of the
strengths and weaknesses of FeatureIDE and
pure::variants. In other words, we aim to answer the
following research question.

RQ3. What are the Strengths and Weaknesses of
Different SPL Tools?

Figures 5 and 6 show diverging stacked bar chart
of the strengths and weaknesses of FeatureIDE and
pure::variants, respectively. In particular, we ask the
participants about the following items: (i) automatic
organization, (ii) automatic analysis, (iii) editor, (iv)
examples available, (v) hot keys, (vi) integration with
other tools, (vii) interface, (viii) persistence models,
(ix) product configuration, and (x) tutorials and users
guides. The percentages of participants who
considered the items as strengths are shown to the
right of the zero line. The percentages who considered
the items as weaknesses are shown to the left. These
items are sorted in alphabetical order in both figures.
Participants could also freely express about other

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

168

Figure 5: Strengths and weaknesses faced by participants during the tasks with FeatureIDE.

strengths or weaknesses they encountered during the
tasks.

FeatureIDE. Figure 5 shows that about 33% of
participants voted as weaknesses of FeatureIDE: the
examples available, interface, and tutorials and user
guides. Besides, 28% found the automatic analysis as
hard to use in FeatureIDE. However, the main
problem regards the navigation to find the related
menu for automatic analysis of the model. On the
other side, 50% of its participants found the interface
easy and intuitive, 45% found automatic analysis of
the models, and 38% editor of model as strengths of
FeatureIDE. Another strength pointed freely by
participants is the creating of constraints.

pure::variants. Figure 6 shows that for 49% of its
participants, the interface was voted as the biggest
weakness. Furthermore, about 46% and 38% of its
participants pointed examples available and, tutorial
and users guide as weaknesses, respectively. In
opposition, for 59% of its participants the automatic
analysis was considered as the biggest strength.
About 59% pointed editor as strength. Automatic
organization had 46% of the votes and, product
configuration was other positive points (35%).

Overall Results. Considering all participants, 40% of
them found the interface as the biggest weakness of
both tools. Further, 39% of participants indicated the
lack of examples available and 35% indicated the lack
of tutorial and user guide as weaknesses of both tools.
Note that, the interface may be impact on negative

results of relatively simple tasks, such as Product
Configuration, which the participant would select or
deselect the features of a feature model based on their
preferences. That is, about 14% of participants using
FeatureIDE and 51% of participants using
pure::variants failed to perform Product
Configuration task (see Figure 3). As a result, it is
recommended that SPL developers take into
consideration some aspects related to user experience
in order to improve the SPL tools. On the other hand,
52% of participants found the automatic analysis as
the biggest strengths and, 48% indicated the editor as
strengths of all two tools.

4 THREATS TO VALIDITY

A key issue when performing this kind of experiment
is the validity of the results. In this section, threats to
the validity are analyzed. We discuss the study
validity with respect to the four categories of validity
threats (Wohlin et al., 2012): construct validity,
internal validity, external validity, and conclusion
validity.

Construct validity can occur in formulating the
questionnaire in our experiment, although we have
discussed several times the experiment design. To
minimize social threats, we performed the experiment
in different institutions. With respect to internal
validity, a limitation of this study concerns the
absence of balancing the participants in groups

An Empirical Study of Two Software Product Line Tools

169

Figure 6: Strengths and weaknesses faced by participants during the tasks with pure::variants.

according to their knowledge. To minimize this
threat, we provide at least 1.5 hour training session to
introduce participants to the required knowledge.

A major external validity can be the selected tools
and participants. We choose two tools, among many
available ones, and we cannot guarantee that our
observations can be generalized to other tools.
Participants may not reflect the state of the practice
developers. In addition, the results could be another if
they were analyzed by other researchers (conclusion
validity). To minimize this threat, we discuss the
results data to make more reliable conclusions.

5 RELATED WORK

This section presents some previous empirical studies
about SPL tools. An evaluate study of some SPL
management tools (XFeature, pure::variants, and
RequiLine) was performed by Djebbi et al.,(2007) in
collaboration with a group of industries. In this
evaluation, pure::variant and RequiLine were the
tools that best satisfied the defined criteria.
Simmonds et al., (2011) also investigated several
tools, such as Clafer, EPF Composer, FaMa-OVM,
fmp, Hydra, SPLOT, VEdit, and XFeature. The tools
were evaluated based on the process they support.
However, their results focus more on the techniques
than on the tool support, while our empirical study is
based on experimental data. In addition, our empirical
study was conducted with two different tools

(FeatureIDE and pure::variants).
Pereira et al., (2013) performed a preliminary and

exploratory study that compares and analyzes two
feature modeling tools, namely FeatureIDE and
SPLOT, based on data from 56 participants that used
these two tools. Our empirical study involved other
84 new participants (no participant was the same of
the previous one). Therefore, this current study
expanded and deepened the previous one in several
ways. For instance, in addition to expand the data set
of participants, it includes one tool, pure::variants, in
the set of analyzed SPL tools. Moreover, the 84 new
participants performed different tasks to exercise
other aspects of SPL development.

6 FINAL REMARKS

SPL focuses on systematic reuse based on the
composition of artifacts and domain modeling.
FeatureIDE and pure::variants are tools to support
SPL variability management. This paper presents a
quantitatively and qualitatively analysis of these
tools. The results reported in this paper aim to support
software engineers to choose one of these tools for
variability management. Additionally, this study can
also be used by developers and maintainers of SPL
tools to improve them based on the issues reported.

Our conclusions indicate that the main issues
observed in the two SPL tools are related to their
interfaces, lack of examples available, tutorials, and

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

170

limited user guide. On the other hand, the most
mentioned strengths were automated analysis and
feature model editor. Our study does not aim to reveal
“the best tool” in all functionality. On the contrary,
the two analyzed tools have advantages and
drawbacks. As future work, this study can be
extended in further experiment replications. For
instance, other tools can be analyzed and compared
using the same (or similar) experiment design in order
to contribute to improve body of knowledge about
SPL tools.

ACKNOWLEDGEMENTS

This work was partially supported by CAPES, CNPq
(grant 485907/2013-5), and FAPEMIG (grant PPM-
00382-14).

REFERENCES

Bagheri, E., and Ensan, F. (2014). Dynamic decision
models for staged software product line configuration.
Requirements Engineering, 19(2), 187-212.

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004).
Scaling step-wise refinement. IEEE Transactions on
Software Engineering, 30(6), 355-371.

Bernardo, M., Ciancarini, P., and Donatiello, L. (2002).
Architecting families of software systems with process
algebras. ACM Transactions on Software Engineering
and Methodology (TOSEM), 11(4), 386-426.

Beuche, D. (2003). Variant management with
pure::variants. pure-systems GmbH.

Clements, P., and Northrop, L. (2002). Software product
lines: Practices and patterns. Addison-Wesley.

Czarnecki, K., and Eisenecker, U. (2000). Generative
programming: methods, tools, and applications.

Djebbi, O., Salinesi, C., and Fanmuy, G. (2007). Industry
survey of product lines management tools:
Requirements, qualities and open issues. In Int’l
Requirements Engineering Conference (RE), 301-306.

Figueiredo, E. et al. (2008). Evolving software product
lines with aspects. In International Conference on
Software Engineering (ICSE), 261-270.

Jain, R. et al. (2010). The Art of Computer Systems
Performance Analysis. John Wiley & Sons.

Jarzabek, S., Ong, W. C., and Zhang, H. (2003). Handling
variant requirements in domain modeling. Journal of
Systems and Software, 68(3), 171-182.

Kang, K. C. et al. (1990), Feature-Oriented Domain
Analysis (FODA) feasibility study. Carnegie-Mellon
University, Software Engineering Institute.

Kiczales, G. et al. (1997). Aspect-oriented programming,
220-242. European Conf. on OO Program. (ECOOP).

Machado, L., Pereira, J., Garcia, L., and Figueiredo, E.
(2014). SPLConfig: Product configuration in software

product line. In Brazilian Conference on Software
(CBSoft), Tools Session, 1-8.

Metzger, A., & Pohl, K. (2007). Variability management in
software product line engineering. In International
Conference on Software Engineering (ICSE), 186-187.

Pereira, J. et al. (2013). Software variability management:
An exploratory study with two feature modeling tools.
In Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS), 20-29.

Pereira, J. A., Constantino, K., and Figueiredo, E. (2015).
A systematic literature review of software product line
management tools. In International Conference on
Software Reuse (ICSR), 73-89.

Pohl, K., Böckle, G., and van der Linden, F. J. (2005).
Software product line engineering: foundations,
principles and techniques. Springer.

Prehofer, C. (2001). Feature-oriented programming: A new
way of object composition. Concurrency and
Computation Practice and Experience, 13(6), 465-501.

Simmonds, J., Bastarrica, M., Silvestre, L., and Quispe, A.
(2011). Analyzing methodologies and tools for
specifying variability in software processes.
Universidad de Chile, Santiago, Chile.

Thüm, T. et al. (2014). FeatureIDE: An extensible
framework for feature-oriented software development.
Science of Computer Programming, 79, 70-85.

Vale, G.; Albuquerque, D.; Figueiredo, E.; and Garcia, A.
(2015) Defining Metric Thresholds for Software
Product Lines: A Comparative Study. In International
Software Product Line Conference (SPLC), pp. 176-
185.

Wohlin, C. et al. (2012). Experimentation in software
engineering. Springer.

An Empirical Study of Two Software Product Line Tools

171

