
Model-Driven Development Challenges and Solutions
Experiences with Domain-Specific Modelling in Industry

Juha-Pekka Tolvanen and Steven Kelly
MetaCase, Ylistönmäentie 31, FI–40500 Jyväskylä, Finland

Keywords: Model-Driven Development, Domain-Specific Modelling, Code Generators, Model Transformations,
Language Workbenches, Modelling Tools.

Abstract: Model-Driven Development is reported to succeed the best when modelling is based on domain-specific
languages. Despite significant benefits MDD has not been applied as widely as expected. Costly definition
of languages and related generators with tooling, their maintenance when the domain is not stable,
challenges in scalability, and collaboration are some reasons that several studies mention. We believe these
statements are justifiable but only when applying traditional programming tooling for modelling. Instead we
show with data from practice that many of the challenges reported can be solved when using tools built for
modelling in the first place.

1 INTRODUCTION

Model-Driven Development (MDD), using models
as the primary source when creating applications, is
at a watershed. While many create models for
communicating ideas and sketching solutions, the
use of models to generate code divides practitioners.
This is also visible in empirical research. For
example, Petre (2014) states that UML-based MDD
plays only a small role whereas Whittle et al. (2014)
indicate that use of model-driven engineering is
widespread. Clearly more empirical research on the
use of modelling is needed.

Part of the reason for the different data is looking
in different places. In our experience, MDD is less
applied in project-based development, such as
consulting, outsourced work, or IT as an internal
support function. In contrast, MDD is common in
product development, particularly in industries like
automotive, telecom or banking. Also in areas like
embedded architectures, testing, product lines or
safety related embedded products, models play a
major role. Some safety standards even expect a
model-driven approach.

We focus on modelling that is based on domain-
specific languages. Although we have acted as
providers of both General-Purpose Languages
(structured, object-oriented) and Domain-Specific
Modelling (DSM), experience has shown us that
DSM enables better MDD than general-purpose

modelling languages. This is in line with recent
studies like Whittle et al. (2014), who state: “The
companies who successfully applied model-driven
engineering largely did so by creating or using
languages specifically developed for their domain,
rather than using general-purpose languages such as
UML”.

The benefits of DSM do not come for free, as the
language abstractions and tools to automate
development need to be first developed and later
maintained. Research claims that it is costly and
hard to define modelling languages with tool
support; that domain-specific languages can be
created effectively only when the domain does not
change; and that MDD does not scale.

In this paper we present our experiences, partly
reported in cases over the last 25 years, first as
researchers and then in industry. Unsurprisingly,
most of our experience is with MetaEdit+. This
however proves interesting, as our experience with a
different tool indicates that some claims on MDD
challenges are not true for all tools. We feel that one
reason for our differing experience may be that the
tooling we have applied is not what is traditionally
expected — file-based tools built on top of
programming IDEs — but instead developed
specifically for DSML creation, and natively using a
repository rather than XML or text files.

We start by looking at the evidence for MDD
productivity gains and then discuss the cost factor:

Tolvanen, J-P. and Kelly, S.
Model-Driven Development Challenges and Solutions - Experiences with Domain-Specific Modelling in Industry.
DOI: 10.5220/0005833207110719
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 711-719
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

711

how much it takes to create industrial-strength DSM
languages, and if the cost varies with different tools.
This is then followed by analyzing the language
creation principles and supporting tooling: how
languages are defined collaboratively to gain
acceptance and better quality languages. We then
look at the scalability of the use of the language in
terms of large models and teams. Finally, we inspect
how tooling and practices support the ongoing
evolution of the DSM solutions, so that the gains in
productivity can be maintained.

2 PRODUCTIVITY INCREASES

Survey evidence has shown that not all MDD
approaches are alike. Here we will briefly consider
quantitative empirical evidence for three approaches:
UML, MDA, and DSM.

The evidence against a significant productivity
increase with UML is unequivocal. Estimates of the
effect on productivity of adding UML to coding vary
between –15% and +10%. Djidek et al. (2008) is one
of the more realistic studies, using professional
developers and reasonably large non-greenfield
tasks. Although some calculations in the study leave
something to be desired, the data was clear:
developing with UML and Java was 15% slower
than pure Java (Figure 1).

Figure 1: UML does not significantly improve developer
productivity.

Another candidate for an MDD approach is the
OMG’s MDA. Tool vendors’ own figures for
MDA’s productivity increase include +22% (Obeo,
2014) and +30% to +40% (OptimalJ, 2003). These
figures are based on code-generation approaches
with largely UML-based MDA tools. While better
than plain UML, these still do not represent the
paradigm shifting magnitude that the industry is
looking to obtain from MDD.

Domain-Specific Modelling predates UML, but
widespread use only began in the latter years of the
last century. Although any particular DSM language
will, by definition, have limited applicability, the

approach itself seems to suit a wide range of
domains. The literature provides numerous DSM
cases from various industries, such as industrial
automation, government acquisitions, automotive,
avionics, command and control systems, robotics,
secure networks, education, medical treatment, and
autonomous-vehicle development (Sprinkle et al.,
2009).

Although there are a number of DSM tools, to
our knowledge only MetaEdit+ has accumulated
quantitative evidence from a number of empirical
evaluations and experiments. Part of the explanation
may be its long history, wide use, and the research
background of the principals. Nokia (MetaCase,
2000), Panasonic (Safa, 2007), Polar (Kärnä et al.,
2009), Elektrobit (Puolitaival et al., 2011) and
Ouman (Puolitaival, 2011) all report significant
productivity improvements using DSM languages in
MetaEdit+ (Figure 2). The increased productivity on
tasks now handled by DSM ranged from 400% to
2000%, with most being in the range of 500–1000%.

Figure 2: Productivity gains reported with DSM.

This “5–10x productivity” result has taken on
something of a life of its own: while gratifyingly
consistent among MetaEdit+ users, it is also widely
quoted by others in support of their own DSM tools,
and sometimes even for completely different MDD
approaches. Given the absence of evidence for such
broader applicability, there is clearly a need for
further empirical research with other tools, and for
investigation of which elements in these MetaEdit+
cases contributed to the productivity increase. Cases
handled entirely by customers have been able to rule
out the possibility that the 5–10x is restricted to
languages made or guided by MetaCase consultants.

There remains the possibility that MetaEdit+
itself is a factor. If so, it seems plausible that the
effect would be more from the language definition
phase than the language use phase. One explanation

0 % 200 % 400 % 600 % 800 % 1000 %

Process control
(Sadrieh & Bahri, 2014)

Terminal network testing
(Puolitaival et al. 2011)

Heart rate monitor
(Kärnä et al. 2009)

Call Processing Services
(Kelly & Tolvanen, 2008)

Financial web application
(Kelly & Tolvanen, 2008)

Touch screen UI applications
(Safa 2007)

Mobile phone UI applications
(MetaCase, 2000)

Domain

IndTrackMODELSWARD 2016 - MODELSWARD - Industrial Track

712

could be that a tool that makes language
development easier allows developers to concentrate
on making a better language.

3 DSL CREATION EFFORT

Creating DSLs is stated to be hard (Mernik et al.
2005) and to require time and resources – in
particular when creation of tooling support is
included (Mohagheghi et al. 2013). Unfortunately
the vast majority of the reports on modelling
language creation do not disclose much about the
effort. In conference talks some figures are given,
like 25 man-years for creating a commercial UML
tool (Ströbele, 2005), 3.5 man-years for creating
tooling for insurance product modelling (Warmer &
Bast, 2011), or 35 persons working on creating
modelling tools within a single company (Bordeleau,
2014). Few provide more detailed figures, or break
development effort down into different parts like
language, generators, tools etc.

Reasons for this lack of quantitative evidence
may include that companies implementing their
tooling do not want to share such figures, or that
they are not systematically collecting data on
resource use. Languages created by academics are
often not defined completely as they were not
intended to be deployed in practice: the focus was on
studying particular language features, tools or ideas
rather than making a full DSM solution.

Figure 3 illustrates DSM development effort for
various domains in industrial cases in which the
authors have been able to have access to the
development process. The actual language and
generator development with MetaEdit+, however,
has been done by the customer themselves, as has
the measurement of time taken.

Figure 3: Days to define modelling languages and code
generators along with tooling support in MetaEdit+.

These cases show that the effort for companies to
create their own DSLs and tool support need not be
as costly and time-consuming as many studies claim.
Our experience in other cases confirms that times of
5–15 man-days are normal with MetaEdit+.

Comparison of development effort remains hard
because the domains the DSM solutions address
vary for example in size, complexity, or detail; the
expertise of the development team can vary widely;
and different languages and tools are used to create
DSM solutions. These factors are hard to compare in
real-world empirical research – it is hard to find
cases in which multiple DSM solutions are created
for the same domain with comparable development
teams and the same tools. Comparison across
domains seems fruitless; comparison of low and
high experience teams would presumably be
obvious; comparison between tools seems useful.

An empirical study by El Kouhen et al. (2012)
indicates that tools have a large effect on the amount
of effort required to develop a language (Figure 4).
Implementing the same modelling language took 50
times longer with the slowest tool (GMF) than with
the fastest (MetaEdit+), and even the second fastest
tool was 10 times slower than the fastest.
Interestingly, this was despite the participants being
most familiar with Eclipse EMF / Ecore, on which
these slower tools and RSA were based.

Figure 4: Effort to define the same BPMN language with
different tools.

The results were also in stark contrast to the
Eclipse researchers’ assessment of the five tools
before measurement. They graded each tool with a
subjectively assessed “efficiency” score, and the tool
with the worst “efficiency” turned out to be the
fastest, while the second best score turned out to be
the slowest. Similarly, in “task visibility” (a sub-
category of “usability”), the worst score was given

0 2 4 6 8 10 12 14 16

Blood separator
(Djukic et al. 2014)

Warehouse automation
(Preschern et al. 2014)

Heating remote control
(Puolitaival 2011)

Terminal network testing
(Puolitaival et al. 2011)

Heart rate monitors
(Kärnä et al. 2009)

Touch screen UI applications
(Safa 2007)

Days

Domain

12

6

0,5

5

25

0

5

10

15

20

25

30
Days to implement BPMN

Model-Driven Development Challenges and Solutions - Experiences with Domain-Specific Modelling in Industry

713

again to the tool that turned out fastest, and the best
score to the slowest. It seems that factors considered
by Eclipse researchers to contribute to efficiency and
usability may actually be anti-patterns. Compounded
with the lack of quantitative empirical research by
the Eclipse community on DSM solution creation
times, this belief in anti-patterns could become self-
sustaining. In that sense it is a shame that the article
in question has not been published outside of its
organizational repository.

A possible explanation for the difference in
speed with different tools could be found by
applying DSM to itself. Unlike UML and its subset
used in Ecore, MetaEdit+’s GOPPRR is a domain-
specific language, designed from the ground up for
describing modelling languages. Kern et al. (2011)
compared six metamodelling languages, concluding
that in terms of power and expressiveness GOPPRR
> GME > DSL Tools > Ecore: the same order as the
productivity of the respective metamodelling tools
(taking the average of the three Ecore-based tools).

Another explanatory factor could be a good
match of language to tool. BPMN has a relatively
large number of graphical symbols, and MetaEdit+
was the only tool with a WYSIWYG graphical
symbol editor.

In addition to comparing tools, one can compare
approaches for defining languages, e.g. UML
profiles vs. metamodelling. In a case of railway
DSL, the size of static semantic rules with UML
profile and OCL was two times larger than when
been defined in native metamodelling language
GOPPRR (Mewes, 2009). While the length of the
definition (LOC) does not describe the effort for
creation and maintenance, it gives one figure to
estimate the effort.

We look forward to other case studies and
language creation reports indicating some data on
the development effort, size of the team, time used
etc. Establishing good metrics for collecting and
analysing the effort is challenging, particularly for
industrial cases. Ideally research would collect data
for different elements or phases of language creation
(abstract syntax, concrete syntax, static semantics,
tooling, etc.). However, even obtaining a single
figure is hard enough. For instance, Polar initially
planned to continue gathering empirical data of the
productivity increases, but soon stopped, as the
evidence of return on investment was so clear that
time spent investigating further was no longer
commercially justified. One potential source of good
empirical data with low additional effort could be
‘language workbench challenges’ (Kelly, 2013).
Some encouraging preliminary results have already

been achieved in this manner (Erdweg et al., 2013).

4 COLLABORATIVE
LANGUAGE ENGINEERING

The more esoteric the skills required to create a
language, the further that creation will be from the
people who will actually use the language. By
making language creation easier, a tool can
democratize the process of developing a DSM
solution. In our experience with MetaEdit+,
language engineers and language users are often at
least partly the same persons – in particular if the
domain addressed is small or within a single
company.

Another characteristic of industrial-scale use is
that a single language is often not enough: there
must be multiple integrated languages, which
requires collaboration among language engineers
too.

4.1 End-user Participation

Only a few tools have been implemented to support
collaborative language engineering (Rossi et al.
2004). These have focused on capturing and
discussing design rational related to the metamodel
(Oinas-Kukkonen, 1996) and emphasizing the role
of the end users in the language design process
(Izquierdo et al., 2013). While these features are
promising little has been reported on their use.
Instead it is common that language definition part
and language use part are separated into different
tools. This separation makes then hard, if not
impossible, collaboration during language
engineering and maintenance. Even worst case is
tools where the language definition is isolated into a
single file that one person can edit at a time. This
language definition is often then presented in a
format that is not easy to follow by language users –
if they can even access it. It also prevents any
reflection from language use back to the language
definition. For example to trace which parts of the
language, its elements and constraints, are been
used, which have been hard to use, not used, or users
have most difficulties to apply.

Since active participation and feedback from
users is also crucial during language engineering a
good way is to add such capabilities to the language
itself. Language may include concepts dedicated
directly to extract experiences, collect feedback, or
get requirements for improvements. For example, to

IndTrackMODELSWARD 2016 - MODELSWARD - Industrial Track

714

collect feedback from language users, in one case at
Panasonic a special ‘Joker’ concept was added to the
language to collect feedback from language users
(Safa, 2007). In another case, while implementing
automotive architecture DSL several persons and
organizations have been involved (Tolvanen et al.,
2014) the collaboration and feedback is gathered by
adding constructs for commenting and gathering
feedback to the language itself to be used by both
language engineers and language users. One main
benefit this “language-based” approach provides is
that the feedback is tightly related to the language
use and to the language specification.

Third and based on our experiences the most
powerful way for collaboration is using the language
while it is defined at the same time - agile in its
extreme. For example, with MetaEdit+ tool the
language can be defined and used at the same time
even in the same tool. This is not restricted to single
person only as with MetaEdit+ multi-user version
we have been working in cases where language is
formulated in group sessions: ten persons have been
using the newly provided language and provided
feedback on its capabilities. In parallel changes are
then implemented to the language and then
immediately tried out. This has provided several
benefits: errors in language definition are quickly
identified, changes can be made instantly, and ideas
can be demonstrated with concrete examples on the
model level. For most of us it is easier to see how
the language works in practice than comment the
metamodel. This approach brings also similar
benefits typical to participatory approaches:
language will have better quality, it improves its
acceptance, and it organizational introduction is
easier.

4.2 Collaboration within the Language
Engineering Teams

In industrial use companies usually have several
language engineers. On the one hand the
responsibility is often wanted to be shared to share
dependencies on few persons. On the other hand,
when several languages are used it is not even
realistic to expect that a single person handles them
all. In our experience it is not unusual even with a
single language to divide the work into different
parts for different people: one defines the
metamodel, another the generators, and a third tests
them. It is therefore natural to expect that language
engineering processes and tools would support
collaboration within the team.

Most modelling tools, however, focus on a single

language at a time. On metamodelling level,
languages like MOF do not even have a concept of
language so integrating then several ones is
challenging. Tool platforms that are built on the
basis of multiple languages and their language
integration, like MetaEdit+, MPS and Spoofax, solve
the integration already as in-built characteristic of
the tool (Cheng et al., 2015). MetaEdit+ for instance
enables several language engineers working on the
same language definition at the same time. Access
rights can be given to user accounts and security
level can be given to restrict the number of language
engineers per repository, per project there or per
individual type.

For example in the case of automotive embedded
systems, a language called EAST-ADL includes
over 20 different sub-languages each covering
different subdomains (architecture, safety, error
modelling, requirements, variability, hardware etc.).
A single person can hardly master them all along.
Instead the definition of the metamodel part was
initially divided among three language engineers –
each focusing on different sub-languages.
Integration of these languages then becomes easy as
common types among the languages form the “glue”
to integrate them. Yet this team was accompanied by
other language engineers focusing on implementing
generators for various targets. This speeded the
implementation, allows checking and verifying the
language definition early and testing the whole in
collaboration.

5 SCALABILITY

For several years, the MDD tooling in focus in the
majority of academic research articles has been
Eclipse EMF. This is in stark contrast with the lack
of articles reporting industrial-scale use of graphical
DSLs in EMF, in particular quantitative empirical
comparisons of scalability or productivity for
language use or creation in industry.

Research articles often cite scalability (e.g.
Gómez et al., 2015, Pagán & Molina, 2014) as an
area of EMF that needs improving before
widespread industrial adoption could be possible.
There are many articles focusing on such
improvements: Kolovos et al. (2013) provides an
overview. The scalability improvements can be
divided into two main areas: handling large models
with reasonable performance, and supporting
multiple simultaneous modellers working on the
same models.

Rather than dwell on the challenges of other

Model-Driven Development Challenges and Solutions - Experiences with Domain-Specific Modelling in Industry

715

tools, we shall briefly present here the ways in
which the architecture, design and implementation
of MetaEdit+ address scalability for large models
and large teams. As MetaEdit+ does not use the
XML files and diff+merge common in EMF, seeing
its different approach and results may be useful to
other tools.

5.1 Large Models

MetaEdit+ has been used industrially since 1995,
scaling to cases lasting decades with hundreds of
users and gigabytes of models. An object repository
is used to store both metamodels and models,
including both conceptual and representational
(abstract and concrete syntax) data for both. A
repository can consist of an unlimited number of
projects, each of which can hold over 4 billion
persistent objects. Models and metamodels can be
divided across projects, and reference others across
projects, as the users desire. The repository can be
used on a user’s hard disk in single user mode, or
from a server in multi-user mode.

When logging in, MetaEdit+ pre-loads an initial
subset of the repository based on the metamodel
structure. As further links are followed by the user
opening models, the necessary objects are loaded. If
memory is short (based on configurable parameters),
a portion of the objects are automatically flushed
from memory to make room to load others, allowing
work to proceed through more objects than would fit
into memory at one time.

As loaded objects are directly the objects of the
model, with no intermediate proxies, XML
representations, or other overhead, working with
them is equally fast for both large and small models.
Loading and saving read and write objects in binary
format on disk or over the network, but only needed
objects are read, and only changed objects are
written.

During generation, only changed output files are
written, allowing build tools to compile only those
(compilation is far slower than MetaEdit+
generation). This is completely automatic: there is
no need for generator developers to isolate
generators to limit a single output file to a single
input graph. Instead, MetaEdit+ caches generator
results and compares with output files already
existing on disk, only writing those files that have
changes. A generator can thus freely access any
information in any graph, and produce any part of
any output file. This allows the language to be made
to present the most relevant information together in
a graph, regardless of the requirements for

information distribution across the output files.
Together, these factors allow MetaEdit+ to work

with larger files faster than any other graphical DSM
tool. At the Language Workbench Challenge in
2014, the aim was to open a model with 210 objects.
(These were main objects with some further details
inside: similar to a Class or State in a UML model.)
MetaEdit+ demonstrated a repository with 220
objects, taking up over 5 GB on disk. Opening a
project of 27 graphs, each with 27 objects, took under
a second. Generating a full application of 360kB of
source code from a graph of 210 objects took 2.1
seconds. At that size, well beyond the common size
of 30–40 objects for a DSM graph, generation has
become O(N2): although MetaEdit+ was the fastest
of the graphical tools, there is always room for
improvement.

5.2 Large Teams

A company can have a single MetaEdit+ repository
or split their work into multiple repositories as they
desire, e.g. one per team, one per user, or one per
module. Where repositories are to be used by more
than one person, concurrent access is handled by the
MetaEdit+ multi-user server. Each persistent object
may have many simultaneous readers but only one
writer; the granularity of such locking is fine, down
to the level of a single property of an object. This is
in clear contrast to the approach of EMF, where the
level of granularity of simultaneous editing is the
XML file – a model or set of models. (Add-ons such
as CDO do not yet substantially change that picture:
as Kolovos et al. (2013) point out, CDO offers “no
mature support for conflict management and
merging,” “does not scale up as well as advertised,”
and “failed to load all test sets greater than
271MB.”)

By using a multi-user object repository,
MetaEdit+ is able to avoid the need for users to
make their own copy of a model while they work on
it, and to have to merge those changes back together.
The user can still choose when to release his changes
to others: until that point, they will see the latest
released version.

These long-lived ACID transactions and fine-
granularity locking have been found to work well for
design work. It appears that database usage in design
work is unlike normal database applications in a
number of respects (Welke, 1988). For instance, a
common database solution to a collection that will
be modified by many users is a B-tree. However,
that is fundamentally unsuited to the collection of
graphs held in a project. That collection will have

IndTrackMODELSWARD 2016 - MODELSWARD - Industrial Track

716

the most simultaneous changes at the start of a
project, when it is smallest and thus a B-tree’s
support for multiple modifiers would be at its worst.
This called for the creation of a novel kind of multi-
user data structure (Kelly, 1998), which has proven
to work well without a need for manual tuning. For
those who are interested, further details of the
repository implementation are available in that
article and in the MetaEdit+ manuals (MetaCase,
2014).

6 MAINTENANCE AND
LANGUAGE EVOLUTION

If the domain stays stable the language can be
defined once and frozen. This does not happen in
practice as domains always evolve, language users
learn new and better ways to specify systems that the
modelling language should support, and the initially
created languages are recognized to have some
unwanted features (Kelly & Pohjonen, 2009).
Perhaps more so than with GPL, a DSL must evolve,
and thus the models already created with it need to
evolve correspondingly.

So far the majority of research and tools have
focused on the initial phase of language creation,
rather than on the maintenance of the language and
the models made with it. For example, even the most
broad-coverage studies focusing on tools (Erdweg et
al, 2013; El Kouhen et al., 2012) do not address
maintenance. This is somewhat surprising given the
accepted software development wisdom that
maintenance is a far larger effort than the creation of
the first release.

In on our experience, the changes for any well-
piloted language are typically not fundamental ones
that change the nature of the language. Instead,
maintenance tasks involve changing some particular
language elements, renaming parts, adding new ones
and removing or sunsetting others. In the worst case,
when the domain the company addresses with the
products changes completely, the update of the DSL
part is not the major issue: it is more likely they will
consider creating a totally new language (see Section
3).

Unfortunately, in many tools even small changes
are fatal for the tooling. The authors are aware of
two automotive cases in which Eclipse-based tools
were used to define modelling editors for
AUTOSAR (an automotive related metamodel). In
both cases these tools were abandoned as work done
in previous AUTOSAR modeling editors could not

be opened with a newer AUTOSAR version. While
both of these cases were in the Eclipse Modelling
Platform, similar experiences are also reported in the
DSL tool developed on top of Visual Studio. Adding
Language Workbench capabilities on top of a
programming IDE seems to be hard. Perhaps this is
because IDE users are not used to expecting better
from support for traditional textual languages, where
changes to the language often require manual
updates to source code, or character-based
find/replace tools (France et al. 2013).

Industrial usage reveals unwanted practices
quickly. In MetaEdit, the predecessor of MetaEdit+,
changes to the metamodel often prevented opening
models from earlier versions: a commercially
untenable situation. It was then decided to analyse
language evolution cases and build automated
support for updating models to follow metamodel
changes. While this functionality is described
(MetaCase 2014) and available to download, we
give a few examples of typical maintenance tasks
that we have seen to occur in practice:
 Renaming of a language element is

automatically reflected to existing models: they
follow the new name. Also renaming in the
abstract syntax is automatically updated to the
concrete syntax and static semantics.

 Changed constraints are followed automatically
and shown for the language user when opening
them in the editors.

These model migrations to the new metamodel
happen automatically without the language
developer needing to do any additional work. The
hardest parts are then the changes that require
human intervention based on the metamodel
changes. For this kind of language refinement
situations the language engineer can inspect the
existing models to see possible consequences of the
metamodel update. This is important as typically a
change to one element in the metamodel has an
influence on other concepts.

To support human migration of the models the
language engineer can make checking reports and
model annotations that show which elements require
update. This way after each language version
release, language users can easily see which parts of
the model need to be updated along with possible
guidelines based on the new metamodel for doing
so.

One indication of the viability of the approach
taken in MetaEdit+ is that we are aware of
customers today using DSM languages and
generators which have been updated in a rapidly
changing domain and were originally developed in

Model-Driven Development Challenges and Solutions - Experiences with Domain-Specific Modelling in Industry

717

the mid 90’s: 20 years of DSL evolution. A good
topic for future research would be inspecting
DSM/DSL evolution cases with various tools,
languages and domains to identify which
maintenance approaches work better than others.

7 CONCLUSIONS

Two main claims are made around MDD: firstly,
that it can increase productivity to 500–1000%, and
secondly that creating a DSM language is costly and
difficult. Our research indicates that these claims are
true, but for disjoint data sets:
 UML-based MDD or MDA offers productivity

improvements of only up to 40%; 500%–
1000% productivity has only consistently been
reported in cases applying DSM in MetaEdit+.

 Creating an industrial-scale DSM language,
generators and editor consistently takes 5–15
days in MetaEdit+; independent experimental
evidence indicates that implementing the same
language in any other current tool takes 10–50
times longer, fitting the commonly reported
time of several months with Eclipse tooling.

These are strong statements, but backed up by
strong empirical evidence. We believe that there is
no reason why similar 500–1000% productivity
increases could not be achieved in other modelling
tools, if they were to implement the same DSM
languages as in MetaEdit+. Rather, the reason for
poor productivity in the resulting languages is that
the languages differ, with those in the other tools
being dragged down by the difficulty of language
creation in those tools. Reducing that difficulty
appears hard, at least if building on top of Eclipse
EMF and GMF.

Creation of DSM solutions that are productive in
use and address user needs is easier if languages and
generators can be created in close collaboration with
language users, and without having to think about
low-level details of the tooling implementation.
MetaEdit+ keeps language definition on a high level
of abstraction, and lets language users use the
modeling language at the same time as it is being
refined. Its ability to allow changes in the language
and reflect them automatically in existing models is
useful during both language creation and evolution.
Similarly, the scalability challenges of large models
and multiple concurrent modelers are easier to
address when models are not handled as text or
XML files but with a native multi-user repository.

We believe that the way forward is for
researchers to widen their scope beyond Eclipse,

despite its obvious attractions. Empirical researchers
should look to take today’s most effective tools into
industrial settings, and tool developers should
identify the differences between tools and
approaches that explain the order of magnitude
differences in results.

REFERENCES

Bordeleau, F., 2104. Papyrus and Open Source Modeling -
- Status, Strategy, and Plan. Presentation at Ericsson
Modeling Days, 4 November 2014, Kista, Sweden.

Cheng, B., Combemale, B., France, R., Jézéquel, J.-M.,
Rumpe, B., (eds), 2015. Globalizing Domain-Specific
Languages, Springer, LNCS 9400.

Djukić, V., Popović, A., Tolvanen, J.-P. 2014. Using
domain-specific modeling languages for medical
device development, Embedded.com.

Dzidek, W.J., Arisholm, E., Briand, L.C., 2008. A
Realistic Empirical Evaluation of the Costs and
Benefits of UML in Software Maintenance, IEEE
Transactions on Software Engineering, Vol 34 No 3,
May/June 2008.

El Kouhen, A., Dumoulin, C., Gérard, S., and Boulet, P.,
2012. Evaluation of Modelling Tools Adaptation.
CNRS HAL. http://hal.archives-ouvertes.fr/docs/00/70
/68/41/PDF/Evaluation_of_Modelling_Tools_Adaptati
on.pdf.

Erdweg, S., van der Storm, T., Völter, M., Boersma, M.,
Bosman, R., Cook, W., Gerritsen, A., Hulshout, A.,
Kelly, S., Loh, A., Konat, G., Molina, P., Palatnik, M.,
Pohjonen, R., Schindler, E., Schindler, K., Solmi, R.,
Vergu, V., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J. 2013. The State of the Art in
Language Workbenches: Conclusions from the
Language Workbench Challenge. Software Language
Engineering, LNCS 8225, Springer, pp 197-217.

France, R., Rumpe, B., Schindler, M. 2013. Why it is so
hard to use models in software development:
observation. Software & Systems Modeling, Volume
12, Issue 4, pp. 665-668.

Gómez, A., Tisi, M., Sunyé, G., Cabot, J. (2015) Map-
Based Transparent Persistence for Very Large Models.
Fundamental Approaches to Software Engineering,
Springer, pp 19-34.

Izquierdo, J. L. C., Cabot, J., López-Fernández, J. J.,
Cuadrado, J. S., Guerra, E., & de Lara, J. 2013.
Engaging end-users in the collaborative development
of domain-specific modelling languages. Cooperative
Design, Visualization, and Engineering (pp. 101-110).
Springer Berlin Heidelberg.

Kelly, S. 1998. CASE Tool Support for Co-operative
Work in Information System Design. In Proceedings
of the IFIP TC8/WG8.1 Working Conference on
Information Systems in the WWW (pp. 49-69).

Kelly, S., 2013. Empirical Comparison of Language
Workbenches. In Proceedings of the 2013 ACM
Workshop on Domain-Specific Modeling (pp. 33–38).

IndTrackMODELSWARD 2016 - MODELSWARD - Industrial Track

718

Kelly, S., Tolvanen, J.-P., 2008. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley.

Kern, H., Kühne, S., Hummel, A., 2011. Towards a
comparative analysis of meta-metamodels. In
DSM’11, Proceedings of the compilation of the co-
located workshops on DSM'11, TMC'11, AGERE!'11,
AOOPES'11, NEAT'11, VMIL'11, SPLASH '11
workshops, ACM.

Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F.,
Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró,
D., Tisi., M., Cabot, J. 2013. A Research Roadmap
Towards Achieving Scalability in Model Driven
Engineering. In Proceedings of the Workshop on
Scalability in Model Driven Engineering, ACM.

Kärnä, J., Tolvanen, J.-P, Kelly, S. 2009. Evaluating the
use of domain-specific modeling in practice.
Proceedings of the 9th OOPSLA workshop on
Domain-Specific Modeling.

Mernik, M., Heering, J., Sloane, A., 2005. When and How
to Develop Domain-Specific Languages, ACM
Computing Surveys, Vol. 37, No. 4, pp. 316–344.

Mewes, K., 2009. Domain-specific Modelling of Railway
Control Systems with Integrated Verification and
Validation, dissertation, University of Bremen.

MetaCase, 2000. Case Study: MetaEdit+ Revolutionized
the Way Nokia Develops Mobile Phone Software.
www.metacase.com/papers/MetaEdit_in_Nokia.pdf.

MetaCase, 2014. MetaEdit+ 5.1 Manuals.
http://www.metacase.com/support/51/manuals/

Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez,
M., Nordmoen, B., Fritzsche, M. 2011. Where does
model-driven engineering help? Experiences from
three industrial cases. Software & Systems Modeling,
Volume 12, Issue 3, pp. 619-639.

Obeo, 2014. “18%: The average cost reduction of a project
with the MDA approach”. web.archive.org/web/2014
0209081524/http://www.obeo.fr/pages/presentation/en.

Oinas-Kukkonen, H. 1996. Method rationale in method
engineering and use. Method Engineering (pp. 87-93).
Chapman & Hall.

OptimalJ, 2003. www.theserverside.com/news/1377283/
TheServerSide-Symposium-June-2003-Coverage.

Pagán, J. E., Molina, J. G. 2014. Querying large models
efficiently. Information and Soft-ware Technology
56(6), pp. 586–622.

Petre, M. 2014. “No shit” or “Oh, shit!”: responses to
observations on the use of UML in professional
practice, Software & Systems Modeling, Volume 13,
Issue 4, pp. 1225-1235.

Preschern, C., Kajtazovic, N., Kreiner, C. (2014).
Evaluation of Domain Modeling Decisions for two
identical Domain Specific Languages. International
Conference on Software Technology and Engineering,
Lecture Notes on Software Engineering (LNSE), Vol.
2, No.1.

Puolitaival, O.-P., 2011. Home automation DSL case,
Presentation at Code Generation Conference
(http://codegeneration.net/cg2011/).

Puolitaival, O.-P., Kanstrén, T., Rytky, V.-M, Saarela, A.
(2011) Utilizing Domain-Specific Modelling for

Software Testing, The 3rd International Conference
on Advances in System Testing and Validation
Lifecycle, October 23-29, 2011, Barcelona, Spain.

Rossi, M., Ramesh, B., Lyytinen, K., & Tolvanen, J. P.
2004. Managing evolutionary method engineering by
method rationale. Journal of the Association for
Information Systems, 5(9), 12.

Sadrieh, A., Bahri, P. 2014. Novel Domain-Specific
Language Framework for Controllability Analysis,
Computer Aided Chemical Engineering, Volume 33,
pp. 559–564.

Sadrieh, A., Bahri, P., 2014. Novel Domain-Specific
Language Framework for Controllability Analysis.
Computer Aided Chemical Engineering, Elsevier,
Volume 33, pp. 559-564.

Keywords: Domain-Specific Language; Maintainability;
Controllability analysis; CAPE.

Safa, L. 2007. The making of user-interface designer a
proprietary DSM tool. In 7th OOPSLA workshop on
domain-specific modelling (DSM).

Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D.,
2009. What Kinds of Nails Need a Domain-Specific
Hammer? IEEE Software, July/Aug.

Ströbele, T., 2005. EclipseUML—UMLundEclipse,
presentation at OOP Conference, 24–28 January,
2005, Munich, Germany.

Tolvanen, J.-P., Luoma, J., Chen, D., -J. 2014. Reaping
the benefits of architectural modelling in embedded
design. Embedded, November.

Warmer, J., Bast, W. 2011. Developing an Insurance
Product Modeling Workbench. Presentation at Code
Generation Conference 2001, Cambridge, UK.

Welke, R.J., 1998. The CASE Repository: More than
another database application. In Proceedings of 1988
INTEC Symposium Systems Analysis and Design: A
Research Strategy, Atlanta, Georgia, Cotterman, W.W.
and J.A. Senn (eds.), Georgia State University.

Whittle, J.; Hutchinson, J.; Rouncefield, M., 2014. The
State of Practice in Model-Driven Engineering, IEEE
Software, vol.31, no.3, pp.79-85.

Model-Driven Development Challenges and Solutions - Experiences with Domain-Specific Modelling in Industry

719

