
Are Suggestions of Coupled File Changes Interesting?

Jasmin Ramadani and Stefan Wagner
University of Stuttgart, Stuttgart, Germany

Keywords: Data Mining, Repository Mining, Coupled Changes, Interestingness.

Abstract: Software repositories include information which can be made available for bug fixing or maintenance using
repository mining. The identification of coupled changes have been proposed several times. Yet, existing
studies focus on the found couplings and ignore feedback from developers. We investigate three development
projects and their repositories to find files that frequently change together to support the software developers.
We complement the coupled files information with details from the issue tracking system and the project
documentation. We contrast our findings with feedback from the developers about how interesting our findings
are for them. We found that the small size of the repositories made an insightful analysis difficult. The response
to coupled changes both from experienced and inexperienced developers was mostly neutral. They accepted
most of the additional attributes we presented. Furthermore, developers also suggested other additional issues
to be relevant, e.g. the context of the coupled changes and the way they are presented, which we did not
cover in this study. Therefore, coupled change analysis research will need to take the presentation and context
information into account.

1 INTRODUCTION

Software product development produces large
amounts of data which is stored in software repos-
itories. These repositories contain the artifacts
developed during software evolution. They include
different data sources like version control systems,
issue tracking systems and project documentation
archives. After some time, this data becomes a valu-
able information source for bug fixing or maintenance
tasks.

To learn from it, we need a technique to ex-
tract relevant details from the source code history and
search for valuable information. One of the most used
techniques is data mining which has become popular
for analyzing software repositories. The term min-
ing software repositories (MSR) has been coined to
describe investigations of software repositories using
data mining (Kagdi et al., 2007).

To help the developers to identify the files to be
changed during bug fixing or maintenance tasks, a
mining software repositories approach has been pro-
posed which finds files that have changed together fre-
quently (Ying et al., 2004). These files can be used to
recommend coupled file changes. Couplings are de-
fined as “the measure of the strength of association
established by a connection from one module to an-
other” (Stevens et al., 1974). Change couplings are

described as files having the same commit time, au-
thor and modification description (Gall et al., 2003).
Frequently changed files can support developers in
dealing with the large amount of information about
the software product, especially if the developer is
new on the project, the project started a long time ago
or if the developer does not have much experience in
software development.

1.1 Problem Statement

Several researchers have proposed approaches to
identify coupled files to give recommendations to de-
velopers during a change (Bavota et al., 2013). Exist-
ing studies, however, focus on the presentation of the
mining results and ignore the feedback of developers
on the findings.

1.2 Research Objectives

The overall aim of our research is to support the de-
velopers in common maintenance tasks. In this pa-
per, we concentrate on applying MSR to provide sug-
gestions for likely changes so that we can investigate
how interesting the suggestions are for the developers
and what further information besides version histories
might increase the interestingness.

Ramadani J. and Wagner S.
Are Suggestions of Coupled File Changes Interesting?.
DOI: 10.5220/0005854400150026
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 15-26
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

15

We define interestingness as the subjective mea-
sure of the developers’ opinion on how useful find-
ings (here: coupled change suggestions) are for bug
fixing or maintenance tasks.

1.3 Contribution

We present an industrial case study on the interesting-
ness of coupled change suggestions. We identify fre-
quent couplings between file changes based on the in-
formation gathered from three software project repos-
itories and investigate the interestingness of these
couplings. We use the version control system, the
issue tracking system and the project documentation
archives as data sources for additional information.
We join this additional information to the coupled
changes we discover. In particular, we investigate the
feedback of the developers about the interestingness
of our findings by conducting a survey. We evaluate
the answers by performing additional interviews and
analyze them using the Grounded Theory method.

2 DATA MINING BACKGROUND

To be able to discover coupled file changes by using
data mining, we introduce the data technique that we
employ in our study. One of the most popular data
mining techniques is the discovery of frequent item-
sets. To identify sets of items which occur together
frequently in a given database is one of the most basic
tasks in data mining (Han, 2005). Coupled changes
describe a situation where someone changes a partic-
ular file and also changes another file afterwards. Let
us say that the developer changes file f1 and then also
frequently changes file f3. By investigating the trans-
actions of changed files in the version control sys-
tem commits we identify a set of files that changed
together. Let us have the following three transac-
tions: T1 = { f1, f2, f3, f7}, T2 = { f1, f3, f5, f6}, T3 =
{ f1, f2, f3, f8}. From these three transactions, we iso-
late the rule that files f1 and f3 are found together:
f1 and f3 are coupled. This means that when the de-
velopers changed file f1, they also changed file f3. If
these files are found together frequently, it can help
other persons by suggesting that if they change f1,
they should also change f3. Let F = { f1, f2, ..., fd}
be the set of all items (files) f in a transaction and
T = {t1, t2, ..., tn} be the set of all transactions t. As
transactions, we define the commits consisting of dif-
ferent files. Each transaction contains a subset of cho-
sen items from F called itemset. An important prop-
erty of an itemset is the support count δ which is the
number of transactions containing an item. We call

the itemsets frequent if they have a support threshold
minsup greater than a minimum specified by the user
with

0≤minsup ≤ |F | (1)

3 RELATED WORK

There are many studies dedicated to investigat-
ing software repositories to find logically coupled
changes, e.g. (Bieman et al., 2003; Gall et al., 2003;
Fluri et al., 2005). We identify two granularity lev-
els, the first one investigates the couplings based on
the file level (Ying et al., 2004; Kagdi et al., 2006)
and the second one is a finer granularity level where
the coupled changes are identified between parts of
files like classes, methods or modules (Zimmermann
et al., 2004; Zimmermann et al., 2006; Fluri et al.,
2005; Kagdi et al., 2007).
Most studies dealing with identifying coupled
changes use some kind of data mining for this pur-
pose (Zimmermann et al., 2004; Ying et al., 2004;
Kagdi et al., 2006; German, 2004; Hattori et al., 2008;
Shirabad et al., 2003; van Rysselberghe and Demeyer,
2004). Especially the association rules technique is
often used to identify frequent changes (Zimmermann
et al., 2004; Ying et al., 2004; Kagdi et al., 2006).
This data mining technique uses various algorithms to
determine the frequency of these changes. Most of the
studies employ the Apriori algorithm (Zimmermann
et al., 2004; Kagdi et al., 2006), however other algo-
rithms like the FP-Tree algorithm are also in use (Ying
et al., 2004).
Most of the studies use a single data source where
a kind of version control system is investigated, typ-
ically CVS or Subversion. To our knowledge there
are few studies which investigate a Git version con-
trol system (Bird et al., 2009; Hassan and Holt, 2004;
Carlsson, 2013). Other studies combine more than
one data source to be investigated, like a version con-
trol system and an issue tracking system (Fischer
et al., 2003; Canfora and Cerulo, 2005; Wu et al.,
2011; D’Ambros et al., 2009) where the data ex-
tracted from these two sources is analyzed and the
link between the changed files and issues is deter-
mined.
To the best of our knowledge, there are only three
studies investigating how couplings align with devel-
opers’ opinions or feedbacks. Coupling metrics on
the structural and the semantic level are investigated
in (Revelle et al., 2011). The developers are asked if
they find these metrics to be useful. They show that
feature couplings on a higher level of abstraction than
classes are useful. The developers’ perceptions of

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

16

software couplings are investigated in (Bavota et al.,
2013). Here the authors examine how class couplings
captured by different coupling measures like seman-
tic, logical and others align with the developers per-
ception of couplings. The semantic couplings have
received the best rating of all types of couplings. The
interestingness of coupled changes is also studied in
(Ying et al., 2004). This study defines categorization
of coupled changes interestingness according to the
source code changes.
We focus on the interestingness of coupled file
changes and attributes involving the developers’ feed-
back on our findings using the following data sources:
Two of the projects use Git1 and the third one uses
Mercurial.2 The first industrial project uses JIRA as
issue tracking system,3 the open source project and
the second industrial project use Redmine.4 We use
the available product documentation of the projects
as additional source of information.

4 CASE STUDY DESIGN

The structure of our case study is based on existing
guidelines (Runeson and Höst, 2009).

4.1 Research Questions

Our case study addresses five research questions:
RQ1: How Many Coupled Changes Can We Ex-
tract from Software Repositories?

This research question provides the basis for our
research. It is relevant to investigate for the reason
that the number of coupled changes affects the out-
come of the repository data analysis.
RQ2: How Interesting Are Coupled Change Sug-
gestions for Developers?

This is the central question of this study which de-
cides if developers will use the suggested couplings.
RQ3: Does the Experience of Developers Influ-
ences the Interestingness of Coupled Changes?

We expected that inexperienced developers would
be more interested in coupled file suggestions consid-
ering their possible problems understanding the sys-
tem (Sayles et al., 2011). Therefore, we investigate
the developer’s programming and project experience.
RQ4: How Interesting Is Additional Information
from Other Related Project Artifacts?

After we determine the interestingness of the cou-
plings, we will investigate if adding additional data
1http://git-scm.com/
2http://mercurial.selenic.com/
3https://www.atlassian.com/software/jira
4http://www.redmine.org/

sources influences the interestingness. First, we ex-
amine the version control system that is related to the
changes, e.g. commit ids where the couplings were
found, commit messages, commit dates and authors
of the commits. Second, the information stored in the
issue tracking system is investigated, attributes like is-
sue description, issue date and issue status. Third, we
look into the project documentation archive for infor-
mation about the project structure and naming con-
ventions.
RQ5: Does the Experience of Developers Influ-
ences the Interestingness of Additional Informa-
tion from Other Related Project Artifacts?

We investigate if the choice of the attributes from
the version control system and the issue tracking sys-
tem depends on the developer’s programming experi-
ence.

4.2 Interestingness

In our study, we consider interestingness as a subjec-
tive measure which is derived from the user’s beliefs
or expectations (McGarry, 2005). Information is in-
teresting if it is novel, useful and nontrivial to com-
pute. Here, useful means that it can help to achieve a
goal of the system or the user (Frawley et al., 1992).
The interestingness of the information represents the
possibility that developers will use this information
during their maintenance or bug fixing tasks.

We measure interestingness of couplings using
three levels: interesting, neutral and not interest-
ing. We identify two categories of interestingness.
The first category is the interestingness of coupled
changes.
The second category is the interestingness of the ad-
ditional attributes we extract from the version control
system, the issue tracking system and the project doc-
umentation. We join this attributes to the coupled file
changes.

4.3 Case Selection

The case selection is based on their availability and
the suitability for our research. We select cases from
industry as a part of our cooperation with our indus-
trial partners as well as from the available open source
projects developed at the University of Stuttgart.
Hence, our subjects will be practitioners as well as
students.

4.4 Data Collection Procedure

The case study uses two main data sources to inves-
tigate the coupled file changes. As first data source,

Are Suggestions of Coupled File Changes Interesting?

17

we use the artifacts from the software product devel-
opment archived in software repositories. We did not
have any direct contact with the development process
of the product. Instead, we examine the reposito-
ries of the software product being developed or main-
tained. The second data source consists of surveys
and interviews with the project stakeholders provid-
ing direct information. We divide the data collection
procedure into five parts.

4.4.1 Version Control System

The first unit of data we use is the log data from the
version control system. Two software projects used
Git, while the third project uses Mercurial as a con-
trol management tool. Both are distributed version
control systems allowing the developers to maintain
their local versions of source code. The data collec-
tion from the version control system consists of four
steps which lead to the extraction of the information
we need.

• Log Extraction: We extract the information from
the log file containing the committed file changes
and the commit attributes. The log data is ex-
ported as text file.

• Data Preprocessing: After the text files with the
log data have been generated, we continue with
the preparation of the data for data mining. Var-
ious data mining frameworks use their own for-
mat, so the input for the data mining algorithm
and framework needs to be adjusted.

• Identifying Atomic Change Sets: We divide the
data into a collection of atomic change sets. Ver-
sion control systems deal with this issue differ-
ently. In our case, the version control systems
preserve the possibility to group changes into a
single change set or a so-called atomic commit. It
represents an atomic changeset regardless of the
number of directories, files or lines of code that
change. A commit snapshot represents the to-
tal set of modified files and directories (Loeliger,
2009). We organize the data in a transaction form
where every transaction represents the files which
changed together in a single commit.

• Data Filtering: We filter the file names and the
following commit attributes: commit id, commit
message, commit date and commit author. We
deal with empty entries and outliers and we pre-
pare the log entries for data mining.

• Change Grouping Heuristic: There are differ-
ent heuristics proposed for grouping file changes
(Kagdi et al., 2006). We use a heuristic consid-
ering the file changes done by a single commit-

ter are related. We group the transactions of files
committed only by a particular author. We do not
relate the changes done by other committers.

4.4.2 Issue Tracking System

In issue tracking systems, important information is
stored about the software changes or problems. In our
case, the companies chose to use JIRA and Redmine
as issue tracking systems. The students also track
their issues using Redmine. We investigate the foll-
wing issue attributes: issue titles, issue descriptions
and issue messages. The issue tracking systems sup-
port spreadsheet export containing the considered is-
sue attributes.

4.4.3 Project Documentation

The software documentation gathered during the de-
velopment process represents a rich source of data.
The documentation consists of file naming conven-
tions, directory paths and the project structure de-
scription. From these documents, we discover the
project structure. For example in the last project,
the subproject containing the files described by the
path astpa/controlstructure/figure/ contains
the Java classes responsible for the control diagram
figures of this software.

4.4.4 Joining Collected Data

After the mining process is finished and we have iden-
tified the coupled changes, we will join them with
the attributes from the version control system, the is-
sue tracker and the project documentation. In (Fis-
cher et al., 2003), the authors create a release history
database where they import the data from the version
control systems and the issue tracking systems. Simi-
larly, we create a database containing all file changes
and the corresponding attributes from the repositories.

Every commit has it own hash value which repre-
sents the commit id. It is a unique value which iden-
tifies all the commits in the database. The issues are
identified by their keys. We use the issue keys to fol-
low down the commit where the change took place us-
ing the merge points of issues with the commit mes-
sages. We use the path information of the changed
files to enlist the subproject. As a result we have a
list of the most frequently changed files accompanied
by the information about the commit attributes, issue
attributes and the project structure.

4.4.5 Survey and Interviews

We investigate the developers’ feedback on the inter-
estingness of coupled changes and the additional at-

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

18

tributes by conducting a survey and performing inter-
views5 with the developers.

Survey. The developers answer a list of multiple-
choice questions online. We investigate the back-
ground of the developers by asking their program-
ming and project experience. The developers give us
feedback on the concept of coupled changes, not on
particular couplings. We chose this setup as a first
means to get as many opinions as possible. Only few
developers were available for in-depth interviews on
specific findings. The developer can choose between:
interesting, neutral and not interesting.

• What is your programming/project experience?

• How interesting are suggestions for coupled
changes for you?

• What commit/issue/documentation information
for bug fixing or maintenance tasks is interesting
for you?

Interviews. We perform semi-structured interviews
to get more in-depth feedback from the developers.
This way, we ensure that the developers did not an-
swer the surveys by randomly choosing the options.
We ask the available developers who worked on the
projects and other uninvolved developers about the
interestingness of the file changes and the attributes.
We present them actual coupled file changes extracted
from the repositories.

4.5 Ethical Considerations

The data delivered by the companies is confidential.
Therefore, we preserve the anonymity of the stake-
holders and the companies during this study. The con-
fidentiality and the publication is regulated by a non-
disclosure agreement between the researchers and
the companies. All personal information extracted
from the repositories, the survey and the interviews
is anonymized and is not presented in the study.

4.6 Analysis Procedure

The data analysis is a combination of quantitative and
qualitative methods. We use quantitative methods to
find the number of couplings. We augment the results
with a qualitative and quantitative analysis of the sur-
vey and the interviews with the developers.

5All questions are available on http://dx.doi.org/10.5281
/zenodo.15065

4.6.1 Analysis of Repository Data

We analyze the repository data to answer RQ1. We
run the mining algorithm to discover frequently cou-
pled file changes. We investigate the additional at-
tributes we gather from the commit logs, the issue
tracking export and the project documentation.

Data Mining Algorithm. Various algorithms for
mining frequent itemsets and association rules have
been proposed in literature (Agrawal and Srikant,
1994; Han et al., 2004; Győrödi and Győrödi, 2004).
We use the FP-Tree-Growth algorithm to find the fre-
quent change patterns. As opposed to the Apriori al-
gorithm (Agrawal and Srikant, 1994) which uses a
bottom up generation of frequent itemset combina-
tions, the FP-Tree algorithm uses partition and divide-
and-conquer methods (Győrödi and Győrödi, 2004).
This algorithm is faster and more memory efficient
than the Apriori algorithm used in other studies. This
algorithm allows frequent itemset discovery without
candidate itemset generation.

We analyze the coupled changes by defining the
threshold value of the support for the frequent itemset
algorithm. We use the thresholds that give us a fre-
quent yet still manageable number of couplings. This
threshold is normally defined by the user. We use
the technique proposed by Fournier-Viger presented
in (Fournier-Viger, 2013) to identify the support level.
These values vary from developer to developer, so we
test the highest possible value that delivers frequent
itemsets. If for a particular developer, the support
value does not bring any useful results, we continue
dropping the value of the threshold. We did not con-
sider itemsets with a support below 0.2 for the first
two projects and 0.1 for the third project.

There is a variety of commercial and open-source
products offering data mining techniques and algo-
rithms. For the analysis, we use an open-source
framework specialized on mining frequent itemsets
and association rules called the SPMF-Framework.6

It consists of a large collection of algorithms sup-
ported by appropriate documentation.

4.6.2 Analysis of Questionnaires and Interviews

To answer RQ2–RQ5, we analyze the questionnaires
and the outcomes of the interviews.

Survey Analysis. We start by investigating the
background of the developers by checking their an-
swers about their programming and project experi-

6http://www.philippe-fournier-viger.com/spmf

Are Suggestions of Coupled File Changes Interesting?

19

ence. We analyze the answers from the question-
naire by calculating the distribution of the frequency
of their answers. We put the main focus on the an-
swers of the participants about the interestingness of
coupled changes and the answers about the additional
attributes.

Interview Analysis. We examine the interviews
with the developers to validate the outcomes of
the questionnaires and to understand the context of
their answers. We analyze the interviews by using
Grounded Theory (Strauss and Corbin, 1998). The
goal is to generate a theory that emerges from the data
being comparatively analyzed. To analyze the data
and build the theory, we use the following types of
coding activities in sequence: open, axial and selec-
tive coding (Strauss and Corbin, 1998). After these
codings, we perform the theoretical coding and create
the conceptual model. We use the analysis software
Atlas.ti7 to link the codes and create a network dia-
gram.

• Open Coding: In the open coding we have a line-
by-line examination of the interview transcripts to
identify the main concepts and categories together
with their dimensions and properties. We code the
data from interview answers with a set of open
codes derived from our research questions. Before
we continue, we write a memo consisting of the
hypotheses and ideas noted during the analysis.

• Axial Coding: After the open coding is performed,
we continue with the axial coding where we relate
the categories, concepts and codes by identify-
ing the relations among them. This is done using
the paradigm model (Strauss and Corbin, 1998)
and considering the relationships between con-
texts, interactions, conditions and consequences.

• Selective Coding: The selective coding formulates
a core category to which all other categories and
codes can be related and includes all of the data.

• Theoretical Coding: After finishing the open and
axial coding, this coding involves the relation-
ships between categories and subcategories and
gives meaning to the theory.

• Conceptual Mapping and Model: We express the
concepts of our theory and present their relations.
We draw a category map which emerges from the
analysis.

7http://www.atlasti.com/index.html

4.7 Validity Procedure

4.7.1 Internal Validity

We use widely known techniques and algorithms for
repository mining. We extract data from a repository
systems used among a large number of companies.
We analyze the data from the software repository, per-
form a survey among the developers and we validate
the answers given in the questionnaires by interview-
ing developers. We analyze the answers and com-
pare the results related to the research questions to see
if these reflect the investigated information (Runeson
and Höst, 2009). This way we avoid to rely on a pos-
sible lack of precision in the answers on the question-
naires by the developers concerning the interesting-
ness.

4.7.2 External Validity

We choose representative cases with high standards
considering software development and standardized
development techniques. We use an independent
party to record the memos for the interviews and code
the information to increase the objectivity of the anal-
ysis results.

5 CASE STUDY RESULTS

We report the results of the analysis of the software
repository data, the questionnaires and the interviews
in relation to the interestingness of coupled changes
and attributes.8 We discuss the analysis outcomes and
evaluate the validity of our results by taking into ac-
count the feedback from the developers.

5.1 Case Description

The cases we investigate in this study represent three
software projects. Two projects were provided by IT
companies from the area of Stuttgart, Germany. The
third one is an open-source project developed at the
University of Stuttgart. The first project under anal-
ysis is a web-based software written in Java and sup-
plied by an industrial partner. The project repository
contains 1,610 commits out of which we consider the
commits made by 26 developers during 2 years of de-
velopment. The commit messages are stored in Git
and the issues are tracked using JIRA. The second
project is a C# software supplied by another company.

8The analysis results are available at http://dx.doi.org
/10.5281/zenodo.15065

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

20

It has 159 commits created by 5 developers during
1 year. The project used Mercurial as version con-
trol tool and Redmine for issues management. The
third project is a Java open source software supplied
by student developers. It contains 752 commits, com-
mitted by 9 developers during 1 year. It uses Git for
the versioning and Redmine as issue tracking system.
Certain project documentation archives were avail-
able from where we extract the information about the
software structure and the naming conventions for the
projects.

5.2 Findings

5.2.1 Number of Couplings (RQ1)

We summarize the analyzed information form the our
repository data. Referring to the first project, we iden-
tify relevant data from 22 out of 26 developers. For
the second project, the data from 4 out of 5 develop-
ers is taken into account. For the third project, all 9
developers committed suitable data for analysis. The
rest of the developers reported a low number of com-
mits. We exclude their commits as unsuitable to suc-
cessfully perform the data mining analysis. Their data
did not reach the established minimum support we de-
fined previously. These results are presented in Table
1.

The number of commits shows the size of the
projects followed by the number of change couplings
found during the data mining process. The number
of coupled changes represents the basis of our anal-
ysis. The analysis of the data from the first reposi-
tory delivers 205 couplings. The second, a very small
repository, reports only 13 coupled changes. The third
repository delivered 200 coupled changes.

Table 1: Results based on repository analysis.

Project 1 Project 2 Project 3
No. of relevant
developers 22 4 9
No. of commits
total 1,610 138 752
No. of couplings
found 205 13 200
Freq. items
support 0.2 0.2 0.1

The results report that larger or older projects de-
liver more data to analyze, delivering larger number
of couplings.

5.2.2 Interestingness of Coupled Changes (RQ2)

We asked the participants how interesting they find
that coupled changes are for bug fixing or mainte-
nance tasks. The results report that 19 of 23 devel-
opers had a neutral opinion for the concept of cou-
pled changes while 4 of the participants noted cou-
pled changes as interesting. None of the developers
reject the idea as not interesting (Table 2).

Table 2: Interestingness of coupled changes.

involved not involved all
interesting 2 2 4
neutral 9 10 19
not interesting 0 0 0
sum 11 12 23

The fact that the developers do not reject coupled
changes allows us to continue our analysis. This re-
search question is the basis for further interesting-
ness analysis. We proceed our analysis and investi-
gate how coupled changes depend on the developers
characteristics like their programming and project ex-
perience. Taking into account our small sample size,
we refrain from formal hypothesis testing.

5.2.3 Influence of Developer Experience on
Interestingness (RQ3)

The results in Table 2 show that there is no differ-
ence based on the involvement of the developers in
the projects. Both involved and uninvolved develop-
ers did not reject coupled changes. We group the de-
velopers answers based on their programming experi-
ence. Table 3 shows the distribution of the developers
by their programming experience. In contrast to our
expectations, both experienced and inexperienced de-
velopers are interested in coupled changes. In table
4 we present the distribution of the interestingness of
coupled changes related to the programming experi-
ence of the developers. None of the developers reject
the coupled changes. The sample size of the results
is not suitable to formally test a hypothesis for this
research question.

Table 3: Developers experience.

progr. experience frequency frequency [%]
<1 year 2 9
1–3 years 4 17
3–5 years 9 39
>5 years 8 35

Are Suggestions of Coupled File Changes Interesting?

21

Table 4: Couplings and developer’s experience.

programming not
experience interesting neutral interesting
<1 year 0 2 0
1–3 years 2 2 0
3–5 years 1 8 0
>5 years 1 7 0

5.2.4 Interestingness of Additional Information
(RQ4)

We investigate the interestingness of additional at-
tributes from the repository we have joined to the cou-
pled files. To support the coupled changes, we report
common meta-data attributes (Steven and Zach, 2013)
which allow us to find more information about the
commits, the issues and the product itself. The reposi-
tories offer various attributes concerning the commits
performed, the issues found and the project structure.
We asked the participants to report which attributes
they find interesting. The results show that most of
the offered attributes are rated by the developers as
interesting. From our commit attributes, most of the
developers find the commit message to be the most in-
teresting attribute followed by the file name. The de-
velopers do not show much interest for the the commit
time, the commiter and the file type. The commit id
as attribute does not attract the developers’ attention.
From our issue attributes, most of the developers are
interested in the issue description. Some of the de-
velopers find the issue status and type to be interest-
ing. The issue time does not interest the developers.
From our documentation, the naming convention and
the project structure information is more interesting
than the naming convention as shown in Table 5.

Table 5: Interesting attributes.

frequency
type question frequency [%]
commits attributes

commit message 22 95
file name 18 78
file type 9 39
commit time 8 34
commiter 6 26
commit id 2 9

issues
issue title 21 91
issue status 15 65
issue type 14 60
issue time 6 26

docu
project struct. 20 86
naming conv. 15 65

0

10

20

30

40

50

60

70

80

90

100

commit message commiter commit Time commit ID file Names file types

D
ev

e
lo

p
e

rs
 %

Attributes

Distribution of commit attributes

>5 Years

<5 Years

Figure 1: Commit attributes distribution for high and low
experience.

0

10

20

30

40

50

60

70

80

90

100

issue author issue description issue type issue status issue time

D
ev

e
lo

p
e

rs
 %

Attributes

Distribution of issue attributes

>5 Years

<5 Years

Figure 2: Issue attributes distribution for high and low ex-
perience.

5.2.5 Influence of Developer Experience on
Interestingness of Additional Information
(RQ5)

We examined the distribution of interestingness of
various commit, issue and project attributes according
to developers’ experience. We created two groups of
developers in this context: experienced, having more
than 5 years experience and inexperienced, having
less than 5 years of experience. We continue using
these two categories of developers. The results show
that the experienced developers have a more clear pic-
ture about which attributes are interesting for them.
They have chosen a lower number of attributes. The
inexperienced developers have marked many commit
and issue attributes being interesting for them.

The more experienced developers’ choice is more
narrow than the one for the inexperienced ones. The
distribution of commit attributes is shown in Figure 1.
The distribution of issue attributes is presented in Fig-
ure 2.

5.2.6 Validation and Theory

After the data mining analysis, we performed the
interviews with developers who were active on the
projects. For the first project, we managed to enlist
2 of the developers for interviewing. For the second

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

22

Figure 3: Theoretical Framework.

project, we interviewed 2 developers and from the
third project, we interviewed 4 out of 9 developers.
They had been involved in the project from the begin-
ning and have the most knowledge about the software.
We also interviewed 4 developers not involved in any
of the projects.
Using Grounded Theory analysis on the interview
transcripts, we derived a corresponding theory. We
created the codes using an open coding procedure of
the memos we created. They represent the answers of
our participants to interview questions. We extracted
the codes by identifying common issues in their an-
swers.

We continued with the axial coding where we
identified several categories as presented in Figure 3.
The core category we identified after the selective
coding is Interestingness of couplings and software
repository information. The results from the theoret-
ical code show the core category, the subcategories
and the relationships presented as a diagram in Fig-
ure 3. We have categories covering the attributes we
found to be interesting: version control attributes, is-
sue attributes and project documentation. They are
respectively divided in these subcategories: commit
message, file names, issue titles, issue types, project
structure and naming conventions. They represent the
most interesting attributes which affect the interest-
ingness of coupled changes.

The next categories are the visualization of cou-
pled changes, consisting of the sub-category orga-
nized view, and the category context of coupled
changes. The last two categories represent an addi-
tional feedback given by the interviewed developers
where they would like to see an organized represen-
tation of changed files with a possibility to filter the
information about them. They would also like to have

information about the context of the changes.
We present the key concepts of the theory together

with their relations in Figure 4. We see that the in-
terestingness of the coupled changes also depends on
the chosen repository attributes. Furthermore, it is
also important to develop an organized presentation
of coupled changes to the developers and to describe
the context of these changes.

Figure 4: Conceptual Model from Grounded Theory.

5.3 Discussion

The results related to RQ1 show that large reposito-
ries deliver more couplings compared to the smaller
or younger repositories. Projects with a low number
of commits which lasted for a shorter time, do not pro-
vide enough data for a broader analysis. The number
of commits and their size limit the output of our anal-
ysis. Our results lead to the conclusion that we need
a relatively high number of couplings to be able to
present a more exhaustive support for the developers
in their tasks. Still, our analysis discovers that in our
projects we can identify frequent coupled file changes
using the proposed mining technique.

The results for RQ2 from the analysis of the ques-
tionnaires, weakly support that coupled changes are

Are Suggestions of Coupled File Changes Interesting?

23

interesting. The general concept of coupled changes
was received mostly as neutral. The fact that none of
the developers rejected the coupled changes, gives us
an impulse to investigate other attributes related to the
coupled changes. We proceeded with the analysis of
the interestingness based on the developers’ experi-
ence. During the interviews, the acceptance increased
when actual examples of coupled changes were pre-
sented to the developers.

For RQ3, we expected that the coupled changes
would be interesting for developers having a lack of
programming or experience on the project. Our re-
sults at contrary show that experienced developers are
also interested in coupled changes. Also the fact that
both involved and uninvolved developers gave simi-
lar results, makes the coupled changes attractive for a
broader audience. This encourage us that the coupled
changes should be part of an integrated tool support
for developers.

Answering RQ4, our results show that most of the
attributes we reported are considered interesting by
the developers. These results were also validated by
the interviews. From our commit attributes, the ques-
tionnaire and the interviews, we report that the com-
mit message and the file names are the most interest-
ing attributes. For the issue attributes, these are the
issue description and the issue type, and for the doc-
umentation the project structure and the naming con-
vention are most interesting for the developers. We re-
port a number of attributes used by the tools involved
in all three projects. The attributes we defined are
known and common in software development. Dur-
ing the analysis of the interviews, however, we found
that the developers want a clear presentation of the
couplings. They also reported that they would like to
see the context of the coupled changes. This brings
additional aspects to be considered in further research
about coupled changes.

The results for RQ5 show that experienced devel-
opers know well what kind of attributes they want
to see. Their choice is more precise. In contrary,
the inexperienced developers do not have a clear pic-
ture what attributes they want to add to the coupled
changes. The fact that the developers consider various
attributes to be interesting brings us to the conclusion
that we do should not make a fixed choice of attributes
for all developers. We can offer the possibility for the
developers to choose the attributes individually. This
way, we support the developers which are not sure
what attributes can be helpful to accomplish bug fix-
ing or maintenance tasks.

5.4 Evaluation of Validity

We validated the results of our study by checking all
the steps in the procedure of gathering and transform-
ing the data from the repository, the analysis methods
and the results.

In our study, we use a single data mining tech-
nique for the reason that the frequent itemsets tech-
nique is most appropriate for investigating frequent
couplings. We investigated products built with com-
mon technologies and the repositories are maintained
by well known and commonly used products.

We tested different threshold values for the sup-
port and the confidence of the algorithm to produce
a sufficient number of frequent itemsets. The rela-
tively low support threshold signalizes that there is
not much space for a greater reduction of the value.
However, it also reports a relatively low number of
frequent couplings which reduces the possibility that
these couplings happened by chance.

We validated the outcomes of the questionnaire
answers by asking the developers again in the inter-
views about the interestingness of the couplings and
attributes. The interview transcript was coded by two
persons after we compared the notes. This way we
checked whether we understood the developer’s an-
swers correctly. We interviewed both involved and
not involved developers on the projects. We also per-
formed double checks of the coding and the outcomes
of the Grounded Theory analysis.

6 CONCLUSION AND FUTURE
WORK

We summarize the conclusions from the case study,
set them into relation with existing evidence, discuss
possible implications and limitations and describe fu-
ture research directions.

6.1 Summary of Conclusions

According to our results, we need relatively large
repositories to be able to perform a successful analy-
sis and report useful numbers of coupled changes. We
conclude that coupled changes are to some degree in-
teresting for the developers. The software repository
attributes we joined to the couplings were accepted by
the developers as interesting. Although we provided
a number of attributes and aspects following the cou-
pled changes, the developers suggested additional ac-
companying information. They would like to see the
context of the changes and they also care about that
how the suggestions should be presented to them.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

24

Our results lead to the conclusion that the cou-
plings are also interesting for more experienced devel-
opers. Developers with various level of programming
experience find different coupled change attributes as
interesting. We conclude that the list of attributes
to be presented should be individually adjusted by
the developers. The Grounded Theory shows that
these attributes affect the interestingness of coupled
changes.

6.2 Relation to Existing Evidence

The authors in (Revelle et al., 2011) investigate source
code features coupling using structured and textual
features where the developers are surveyed to deter-
mine if the metrics align with the developers’ opin-
ion. Their results show that the developers support the
feature coupling metrics they propose indicating that
the measures capture couplings between features. Our
results show that the developers accept the concept
of coupled changes and the corresponding attributes
from the repository.

We investigate the interestingness of coupled
changes as explained in (Ying et al., 2004), whereby
the authors use open-source projects and categorize
the interestingness of couplings according to their cri-
teria. We studied the coupled file changes in relatively
small projects: two industrial projects and one open
source project which reduces the number of couplings
found. We used the developer’s feedback to determine
the interestingness of coupled changes instead of stat-
ically defining the interestingness of couplings.

6.3 Impact/Implications

This case study gives evidence that the analysis of
coupled changes is interesting to the developers dur-
ing bug fix or maintenance tasks. Yet, the interest is
rather weak overall. Therefore, other contextual in-
formation should be investigated in future research to
increase the interestingness. This kind of suggestions
could be incorporated in a tool to support the devel-
opers during maintenance or bug fixing tasks.

6.4 Limitations

As it is case study research, we cannot guarantee
the generalizability of the study. The data comes
from two software development companies and one
open-source project. However, the procedure should
be similar for other projects for the reason that we
use well defined data mining algorithms, techniques
and commonly used data sources. We can perform
our analysis on similar projects or data sources using

these techniques. The number of coupled changes we
found is limited by the support value of the frequent
itemsets algorithm. We do not report a large number
of couplings. Our results preserve the most frequent
couplings, however, which are the most valid ones.
We have a small sample which is not suitable for a
deeper statistical analysis. Yet, our findings constitute
a first insight about developers’ opinion on coupled
file changes.

6.5 Future Work

We plan to continue our research on coupled changes
by directly observing their use for a real bug fix or
maintenance tasks. The next step is to perform an
experiment to investigate the usefulness of coupled
changes to and create a tool to present this changes to
the developers. Furthermore, based on our findings,
we believe more research should look into comple-
menting the reporting of coupled changes with infor-
mation from additional, related data sources.

ACKNOWLEDGMENT

The authors would like to thank Asim Abdulkhaleq
for his help in the interview transcripts and coding for
the Grounded Theory analysis.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules in large databases. In Pro-
ceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 487–499, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk,
D., and De Lucia, A. (2013). An empirical study on
the developers; perception of software coupling. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 692–701, Pis-
cataway, NJ, USA. IEEE Press.

Bieman, J., Andrews, A., and Yang, H. (2003). Understand-
ing change-proneness in oo software through visual-
ization. In Program Comprehension, 2003. 11th IEEE
International Workshop on, pages 44–53.

Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J., Germán,
D. M., and Devanbu, P. T. (2009). The promises and
perils of mining git. In MSR, pages 1–10.

Canfora, G. and Cerulo, L. (2005). Impact analysis by min-
ing software and change request repositories. In Soft-
ware Metrics, 2005. 11th IEEE International Sympo-
sium, pages 9 pp.–29.

Are Suggestions of Coupled File Changes Interesting?

25

Carlsson, E. (2013). Mining git repositories : An introduc-
tion to repository mining.

D’Ambros, M., Lanza, M., and Robbes, R. (2009). On the
relationship between change coupling and software
defects. In WCRE, pages 135–144.

Fischer, M., Pinzger, M., and Gall, H. (2003). Populating
a release history database from version control and
bug tracking systems. In Proceedings of the Inter-
national Conference on Software Maintenance, ICSM
’03, pages 23–, Washington, DC, USA. IEEE Com-
puter Society.

Fluri, B., Gall, H., and Pinzger, M. (2005). Fine-grained
analysis of change couplings. In Source Code Analy-
sis and Manipulation, 2005. Fifth IEEE International
Workshop on, pages 66–74.

Fournier-Viger, P. (2013). How to auto-adjust the min-
imum support threshold according to the data size.
http://data-mining.philippe-fournier-viger.com/.

Frawley, W. J., Piatetsky-shapiro, G., and Matheus, C. J.
(1992). Knowledge discovery in databases: an
overview.

Gall, H., Jazayeri, M., and Krajewski, J. (2003). Cvs re-
lease history data for detecting logical couplings. In
Software Evolution, 2003. Proceedings. Sixth Interna-
tional Workshop on Principles of, pages 13–23.

German, D. M. (2004). Mining cvs repositories, the
softchange experience. In 1st International Workshop
on Mining Software Repositories, pages 17–21.

Győrödi, C. and Győrödi, R. (2004). A comparative study
of association rules mining algorithms.

Han, J. (2005). Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Han, J., Pei, J., Yin, Y., and Mao, R. (2004). Min-
ing frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Min. Knowl. Dis-
cov., 8(1):53–87.

Hassan, A. E. and Holt, R. C. (2004). Predicting change
propagation in software systems. In Proceedings of
the 20th IEEE International Conference on Software
Maintenance, ICSM ’04, pages 284–293, Washing-
ton, DC, USA. IEEE Computer Society.

Hattori, L., dos Santos Jr, G., Cardoso, F., and Sam-
paio, M. (2008). Mining software repositories for
software change impact analysis: A case study. In
Proceedings of the 23rd Brazilian Symposium on
Databases, SBBD ’08, pages 210–223, Porto Ale-
gre, Brazil, Brazil. Sociedade Brasileira de Com-
putação.

Kagdi, H., Collard, M. L., and Maletic, J. I. (2007). A sur-
vey and taxonomy of approaches for mining software
repositories in the context of software evolution. J.
Softw. Maint. Evol., 19(2):77–131.

Kagdi, H., Yusuf, S., and Maletic, J. I. (2006). Mining se-
quences of changed-files from version histories. In
Proceedings of the 2006 International Workshop on
Mining Software Repositories, MSR ’06, pages 47–
53, New York, NY, USA. ACM.

Loeliger, J. (2009). Version Control with Git - Power-

ful techniques for centralized and distributed project
management. O’Reilly.

McGarry, K. (2005). A survey of interestingness measures
for knowledge discovery. Knowl. Eng. Rev., 20(1):39–
61.

Revelle, M., Gethers, M., and Poshyvanyk, D. (2011). Us-
ing structural and textual information to capture fea-
ture coupling in object-oriented software. Empirical
Softw. Engg., 16(6):773–811.

Runeson, P. and Höst, M. (2009). Guidelines for conduct-
ing and reporting case study research in software en-
gineering. Empirical Softw. Engg., 14(2):131–164.

Sayles, J. et al. (2011). z/OS Traditional Application Main-
tenance and Support. IBM Redbooks.

Shirabad, J., Lethbridge, T., and Matwin, S. (2003). Mining
the maintenance history of a legacy software system.
In Software Maintenance, 2003. ICSM 2003. Proceed-
ings. International Conference on, pages 95–104.

Steven, J. and Zach, W. (2013). Bad commit smells.
http://pages.cs.wisc.edu/ sjj/docs/commits.pdf.

Stevens, W. P., Myers, G. J., and Constantine, L. L. (1974).
Structured design. IBM Syst. J., 13(2):115–139.

Strauss, A. and Corbin, J. M. (1998). Basics of Qualitative
Research : Techniques and Procedures for Developing
Grounded Theory. SAGE Publications.

van Rysselberghe, F. and Demeyer, S. (2004). Mining Ver-
sion Control Systems for FACs (frequently Applied
changes). In the International Workshop on Mining
Repositories, Edinburgh, Scotland, UK.

Wu, R., Zhang, H., Kim, S., and Cheung, S.-C. (2011). Re-
link: Recovering links between bugs and changes. In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 15–25,
New York, NY, USA. ACM.

Ying, A. T. T., Murphy, G. C., Ng, R. T., and Chu-Carroll,
M. (2004). Predicting source code changes by min-
ing change history. IEEE Transactions on Software
Engineering, 30(9):574–586.

Zimmermann, T., Kim, S., Zeller, A., and Whitehead, Jr.,
E. J. (2006). Mining version archives for co-changed
lines. In Proceedings of the 2006 International Work-
shop on Mining Software Repositories, MSR ’06,
pages 72–75, New York, NY, USA. ACM.

Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A.
(2004). Mining version histories to guide software
changes. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages
563–572, Washington, DC, USA. IEEE Computer So-
ciety.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

26

