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Abstract: Early mineral exploration activities motivates innovative research into cost-effective methods for 
automating the process of mineral deposits’ prospectivity analysis. At the heart that process is the 
development of a knowledge base that is not only capable of consuming geodata originating from multiple 
sources with different representation format and data veracity, but also provides for the reasoning 
capabilities required by the prospectivity analysis. In this paper, we present an integrative semantic-driven 
approach that reconciles the representation format of sourced geodata using a unifying metadata model, and 
encodes the prospectivity analysis of geological knowledge both at the schemata modelling level and 
through more explicit reasoning rules operating on the semantically tagged geodata. The paper provides 
valuable insights into the challenges of representation, inference, and query of geospatially-tagged 
geological data and analyses our initial results into the prospectivity analysis of mineral deposits. 

1 INTRODUCTION 

World-wide expenditure on non-ferrous mineral 
exploration (gold, copper, nickel and zinc) has 
varied from 14 – 20 billion USD annually for 2011 – 
2012 (SNL 2015). This significant level of 
expenditure is part of a mining related value chain 
that can have an important impact on national and 
regional jurisdictions for creating wealth and 
alleviating poverty. A vital component of early stage 
exploration activities is the availability of multi-
source geodata comprising geology, geophysics, 
geochemistry and remote sensing from which initial 
prospectivity maps are assembled. Prospectivity 
maps at this initial stage represent broad and 
generalised conceptualizations of the geological 
conditions that may indicate areas or commodities of 
interest for more detailed follow-up exploration. The 
availability of this geodata from public and private 
sources such as national Geological Surveys is a 
significant factor in attracting the mineral 
exploration sector (MINEX). However, the geodata 
is rarely seamless, is discontinuous and is in multiple 
representation formats involving traditional methods 
of collating and analysing these data in a lengthy and 
labour-intensive process by specialists. Recently, the 
dramatic increase in processing capacity of current 
computer systems and increasing availability of 

geodata in digitised format promoted investigating 
more cost-effective, computerised prospectivity 
analysis. Mineral prospectivity maps can then be 
produced by an automated, iterative process that is 
designed to reconcile the discrepancy in geodata 
representational formats, correlate the multi-source 
data, and reason upon it using geological rules in 
order to infer and visualise potentially prospective 
regions. This approach would radically shorten 
delivery time by reducing the time to perform the 
analysis using traditional methods and ultimately 
provide the MINEX sector with early stage 
indications of prospectivity. In collaboration with 
Nottingham Trent University, the International 
Geoscience Services Ltd (IGS) (IGS 2015) would 
like to contribute to that paradigm change by 
developing a system that is able to store, model and 
query different types of geological data and perform 
automatic and human-assisted automatic analysis of 
these data to produce various reports and maps of 
prospectivity (likelihood of a given mineral being 
deposited in a given area).  

In this paper, we argue that Semantic Web 
technologies are currently well placed to assist in 
addressing the challenges of mineral prospectivity 
analysis, and present an integrative approach that 
exploits the capabilities of semantic technologies to 
solve the data reconciliation problems by deploying 
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an ontology-based unifying metadata model, and 
support the automation of the geospatial analysis by 
encoding the relevant geological knowledge at the 
ontology modelling and the semantic reasoning 
levels. The paper also contributes to the 
methodology of semantic-driven analysis in this 
sector by highlighting various limitations hampering 
the full automation of the prospectivity analysis 
process such as free-form description of geological 
attributes and the subjectivity in assessing some 
structures. 

The rest of this paper is organised as follows. 
Section 2 reviews related work. The overall 
architecture of our system is discussed in Section 3. 
Section 4 provides insights into the workflow of the 
spatial geodata management. Section 5 describes 
how the domain knowledge was captured and its 
translation into semantic ontologies. In section 6, we 
detail how our proposed systems address the 
challenges in automating mineral prospectivity 
analysis. Section 7 evaluates the system 
implementation. Section 8 concludes the paper and 
presents our plans for further research. 

2 RELATED WORK 

Mineral exploration is one of the most important 
topics in geology and arguably one that historically 
motivated evolution of the science of geology. 
While it is out of scope to describe the plethora of 
prior art, there are some excellent efforts trying to 
find synergy between computing principles and 
methods and classical mineral exploration.  

Most of currently used geology software suites 
such as ArcGIS (Law and Collins 2013) or QGIS 
(QGIS 2015), either have elements or modules 
designed to simplify mineral prospectivity analysis 
such as ones offered by GeoTools (Geosoft 2015), or 
enable the processing of ancillary data for the same 
purpose. Generally, one can assume that most 
prospectivity analysis software packages are either 
generalised cartography/GIS suites enriched with 
geology-enabling modules, or large-scale/small-area 
geodata management for mine development similar 
to the system developed by MapTek Vulcan 
(Maptek 2015). While almost all of these packages 
can be used to help with mineral prospectivity 
assessment of a given terrain, few offer 
comprehensive, automated solutions and mostly rely 
on deploying the geologists’ expertise in driving the 
analysis the process using the software package as a 
tool, thus contributing significantly to the investment 
required at the early stages of mineral exploration.  

The effort reported by Noack et al. in (Noack, et 
al. 2012) is one of the few works attempting to use 
advanced automatic techniques to guide the 
prospectivity analysis process. Their approach uses 
neural networks and statistical analysis to predict 
presence of a terrain feature - existence of mineral 
deposits or otherwise, as implemented in Beak 
Advangeo software. This approach requires the user 
to provide a set of training data that describes 
describing terrain geology and measurements and 
existing known mineral deposits or occurrences. For 
most potential regions, such data is available, 
however, most sourced geodata is incomplete and 
therefore do not provide the necessary set of training 
ground-truth to yield accurate analytical results. 
Statistical analysis is also a black box, making it 
difficult to trace and verify how certain decisions 
were made.  

In the recent years, fuzzy logic has been used in 
geology context. Lusty in (Lusty, et al. 2009) 
presents a fuzzy logic approach to assess gold 
prospectivity of Irish geology and discusses controls 
used to emphasise influence of different geological 
features of the terrain. These controls present in their 
approach parameterise the fuzzy logic analysis, 
showing the need for proven targeting models that 
are both flexible and transparent. Their discussion of 
the results concludes the need to construct more 
controllable and reliable methodologies for analysis, 
where relation between the used criteria and analysis 
result is more explicit and accurate. 

Our investigation claims that Semantic Web 
technologies can help to address some of these 
limitations. The Semantic Web allows the modelling 
of the taxonomy of the geological features as nodes 
in a graph interconnected using object and data 
relations, which describe the geological processes 
that link those features as well as their interaction 
with other elements in the target system such as non-
geothematic data, user profiles etc. Moreover, 
semantically tagged data is inherently amenable to 
reasoning that can be utilised to inform the 
prospectivity analysis process based on pre-
compiled rules.  

There is a significant body of work that focuses 
on utilising semantic technologies to facilitate the 
interpretation and sharing of geospatial data and 
services. Zhang et al. in (Zhang, Zhao and Li 2010) 
propose a framework for geospatial Semantic Web-
based spatial decision support system that provides 
for heterogeneous ontology integration and web 
services composition. Tian and Huang in (Tian and 
Huang 2012) use purposely built semantic 
ontologies to combine the Open Geospatial 
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Consortium (OGC) specifications with the Universal 
Description, Discovery and Integration (UDDI) 
standards in order to enhance the discovery of web 
services compliant with OGS specifications and 
promote utilising them for geospatial information 
access. Janowicz et al. in (Janowicz, et al. 2010) 
propose a user-transparent semantic enablement 
layer for Spatial Data Infrastructure that promotes 
the semantic interoperability of the OGC services 
and facilitates reasoning to allow for their workflow-
based composition. These works offer a valuable 
contribution towards creating frameworks enabling 
the interoperation and composition of possibly 
heterogeneous geospatial services and promoting 
data exchange between them by means of ontology 
alignments. However, the current MINEX sector 
infrastructure provision, in terms of availability of 
relevant geospatial services and ontology-aligned 
geodata, suggests that the benefit from exploiting 
these frameworks in the context of securing a 
holistic cost-effective solution to mineral 
prospectivity currently insignificant. It is therefore 
necessary to build all the processes contributing to 
our system architecture from the ground up. 

3 SYSTEM ARCHITECTURE 

Figure 1 below presents the overall architecture of 
the system and illustrates the workflow between its 
essential components, which begins with geodata 
gathering. After identifying regions of interest, 
potential data sources in the region are identified. 
Data is sourced from third party public and private 
organisations. 

The majority of geodata are sourced from public 
sector bodies such as national geological surveys 
that historically have focussed on the production of 
physical, paper based products. The integration of 
these many maps, by different authors using 
differing taxonomies, varying quality of digitisation 
has therefore made the task of producing seamless 
geological maps an important goal but one that has 
not been achieved by many geological surveys. 
Notable exceptions are however, the relatively small 
scale map compilations of the Commission for the 
Geological Map of the World and One Geology. 
Consequently, an important stage prior to data 
upload into our system is the assessment of 
publically available in terms of scale, edition, 
coverage, detail and digitization quality and where 
necessary a data cleaning process is employed. This 
is particularly important across adjacent map sheets 
where line work and taxonomies used differ. 

Figure 1: IGS Geodata system workflow. 

To allow for further processing using Semantic 
Web technologies, data has to be converted into the 
appropriate format and uploaded to a spatially 
enabled linked geodata store. Data conversion and 
upload is a significant element of the process, in 
which GIS database items are tagged with unique 
identifiers and converted to data objects that are 
assigned to the appropriate ontology class 
(representing the geological taxonomy) in 
accordance to the annotations in the source 
geospatial database. The ontology model also 
incorporates a set of necessary & sufficient 
conditions that facilitate further classification of 
basic input geological data by reasoning, for 
instance, on the rock formations’ chemical and 
physical properties. Next, the resultant data and the 
associated polygon information are stored in a 
spatially-enabled triple store, with geometries 
represented by WKT (Well Known Text) strings. 

Further interpretation of the data is facilitated by 
a new approach to representing geological expertise. 
While core concepts of geology and immutable 
relations are encoded within ontologies, 
prospectivity analysis required a new framework of 
reference. To facilitate that, methods of geological 
analysis were encoded as generic rules that guide the 
prospectivity analysis process. These rules are 
compiled as geospatial queries that can be fired 
against the semantic triple store to evaluate the 
prospectivity for a given natural resource in a 
particular region. 

To store our geospatially tagged geodata in 
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semantic format, we adopted the geospatially-
enabled triple-store Strabon (Kyzirakos et al., 2013). 
It provides for storing linked geospatial data and 
supports spatial datatypes enabling the serialization 
of geometric objects in OGC standards WKT and 
GML. Strabon is built by extending the well-known 
RDF store Sesame and extends Sesame’s 
components to manage thematic, spatial and 
temporal data that is stored in the backend 
RDBMS. Strabon supports the state of the art 
semantic geospatial query languages stSPARQL and 
GeoSPARQL and is integrated with the Sextant 
(Bereta et al., 2013) tool that allows the seamless 
visualisation of the complex geospatial query results. 

The described workflow comprises the 
integration of semantically tagged data, advanced 
classification using model-embedded inference 
conditions, and prospectivity analysis using 
geospatial queries, thus enabling the departure from 
the classical, project-based prospecting to an 
iterative, repeatable, automated process. 

4 MANAGEMENT OF 
GEOSPATIAL DATA 

The workflow of geodata management within our 
system is illustrated in Figure 2. The data is sourced 
from a multitude of suppliers with varied data 
representational format and quality. Disorganised 
nomenclature and use of out-dated database formats 
is commonplace with missing data ranges, file 
compression artefacts and noise from print 
preparation techniques. 

Data cleaning usually comprises of checking data 
georeference and fixing geometrical errors common 
to manually drawn polygons. Most of the datasets 
procured suffer from some geometrical errors such 
as polygon intersections without vertices. In some 
severe cases, map georeference might be inaccurate, 
missing or done in an obscure, locally used 
projection. Sometimes even whole areas might not 
conform to international standards, which is the case 
with disputed borders of Venezuela, where two 
neighbouring countries routinely include certain 
areas within their territory.  

In an overwhelming majority of cases maps 
produced by different authors do not accurately 
follow delineations and might even disagree about 
entire border shape, as presented on Figure 3. While 
correcting the above is a crucial step ensuring 
adequate data representation, automation of the 
process is complicated, especially where 
delineations do not match at all. Correcting this 

accuracy has to be done manually by a data engineer 
or a geologist using a GIS editing tool.  

 

 

Figure 2: Geodata sourcing and clearing workflow. 

 

Figure 3: Discontinuities between neighbouring datasets in 
the Guyana Shield region before and after cleaning. 

The last step in data processing is the conversion 
to the appropriate Semantic Web format. The 
semantic technologies present an opportunity for 
data reconciliation, enrichment and provides for 
more sophisticated query mechanisms. The semantic 
technology also enables integration of classical 
geology data with non-geothematic data such as 
cadastre data, economy-related maps and locality 
descriptions through unifying metadata tagging. 

The bulk of data processing is being achieved 
automatically, but due to variability in data 
representation and presence of freeform comments 
and annotations in the original GIS representation, 
some manual intervention is required to complete 
the data conversion process. However, to enable the 
process, basic transformations of given SQL 
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columns and records to appropriate taxonomies has 
to be done manually by a person familiar with 
geodata being processed. This is caused by the fact 
that geospatial databases do not follow same or 
similar structure, language or taxonomy and the 
system requires an informed person to point out 
where relevant data is located and how to translate it 
into appropriate system-wide taxonomy.  

Unfortunately, the working case shows that 
among geodata classifications encountered in one of 
the test areas only less than 10% of rock name 
records were recurring among more than one 
dataset, with the rest being dataset-specific. While it 
was projected that it might be possible to automate 
taxonomy conversion, this required supervision and 
creation of dictionaries to translate between native 
taxonomy and those designed for the project at hand. 
This needed to be done on a case by case basis for 
each dataset. It is worth noting, however, that 
described data curation is limited to at most a few 
man-hours per dataset and can be performed by a 
fairly inexperienced geologist with little training. 

5 DOMAIN ANALYSIS AND 
ONTOLOGY ENGINEERING 

This section describes the process of knowledge 
modelling for our prospectivity analysis system, and 
elaborates on the specific challenges to the MINEX 
sector. 

5.1 Capturing the Domain Knowledge 

The domain knowledge relevant to prospectivity 
analysis was compiled into a concept map that 
follows intuitive conceptualisation (Osman et al., 
2013) of the proposed system integrating concepts 
from the fields of geology, data processing and 
visualisation. Figure 4 illustrates the segment of the 
concept detaining the process of geodata analysis. 
This process is split into two stages. The first is the 
geodata modelling stage that is realised by the use of 
ontologies and inference and uses knowledge that is 
universal and applicable to any geodataset. It is 
deployed using OWL ontologies to enable maximum 
extensibility allowing the update of the system with 
new geological concepts without invalidating 
existing ones. Prospectivity analysis is implemented 
at the second stage, where geospatial  queries that 
encode geological analytical knowledge are used to 
evaluate the likelihood of mineral deposits existence 
for a particular region. 

 

Figure 4: Geodata analysis concept map. 

5.2 Core Ontology Design 

Our semantic modelling approach for prospectivity 
analysis is implemented in two phases. The first 
phase described in this section discusses the 
modelling of the taxonomy structure of the MINEX 
domain, while the next section details the 
engineering of the necessary & sufficient conditions 
driving the geological classification of new geodata 
instances.  

British Geological Survey with support from 
Commission for the Management and Application of 
Geoscience Information, IUGS and OGC has made 
an excellent effort to provide a modern, complete 
vocabulary of geological terms and concepts based 
on XML language and called GeoSciML (Sen and 
Duffy, 2005) that were compiled by Smyth and 
Jondeau, members of the SEEGRID community, 
into a semantic OWL Ontology (CGI Geoscience 
Concept Definitions Task Group). Transparent 
international standards are crucial to the 
development of any innovative system and in this 
case this work has been used as a basis for IGS 
geodata modelling. We adopted the ontology as the 
basis for modelling the taxonomy of lithological 
concepts and properties in our ontology and 
extended it to represent various subdomains of 
geology present including various types of lithology, 
geological structures, tectonics, geophysics etc. 

Figure 5 below illustrates the geological 
classification in our ontology where base rock type 
classes are semantically annotated with semantic 
object properties such as particle types and sizes, 
chemical composition category or consolidation 
degrees. This provides excellent opportunity to 
create a unified classification of all rock properties 
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and facilitate seamless data interpretation. 

 

Figure 5: Excerpt from IGS ontology classes. 

5.3 Classification of Geological Feature 
by Composite Properties Inference 

The Semantic Web ontology language (OWL) 
allows the definition of a set of necessary and 
sufficient conditions that assert class membership. 
An individual fulfilling these conditions will be 
automatically ‘inferred’ as belonging to the class. 
We utilise this facility of OWL in our ontology to 
compile a set of necessary and sufficient conditions 
that define geological features by describing their 
composite properties, which in turn will 
automatically infer the appropriate geological 
feature for newly sourced geodata instances. 

 

Figure 6: Phyllonite rock definition encoded as object 
relations (explicit above & inferred). 

Figure 6 provides an example of encoding the 
geological definition (class membership) for 
phyllonite by a set of necessary and sufficient 
conditions that explicitly denote its exclusively 
pelitic constituent parts, mylonitic foliation fabric 
type, fine or sand-size grains, crystalline particle 
type etc. 

5.4 Challenges in Semantic Geological 
Modelling 

We encountered two problems with data accuracy in 
the sourced geodata sets. The first is the 
contradictory information input in the dataset as a 
result of a mistake or misconception, which usually 
stems from assessments done by authors using 
unclear criteria for differentiation, such as lack of 
clear distinction between similar structures or types 
of rock formations. A common example is the 
practice of assigning properties as freeform 
comments to features that should not have them, e.g. 
assigning 'majorly mud-sized grain' property to a 
block of muddy sandstone, which by definition is a 
sand size grained rock, with a minority of mud-sized 
grains. In the project we can't use such contradictory 
statement and have to decide whether to keep 
assigned grain size and change rock type or keep the 
rock type while assigning different grain size. This 
has been delegated to a person to make an informed 
decision while performing data upload step 
described in the previous section. 

The second source of inaccuracy is the 
discrepancy between basic geology definitions used 
by different map authors, especially if affiliated to 
different geology institutions. One of the major 
efforts in ontology design was to redesign 
classifications for the purpose of overriding 
otherwise subjective values found in source data 
with clear and universal definitions, while 
preserving the internationally accepted nomenclature 
as much as it was possible. Thus, properties such as 
granularity, basic chemical compositions, genetic 
categories and metamorphic grades have been 
defined. These properties were encoded in our 
ontology as class instances (individuals) to further 
categorise the classes by certain attributes. For 
instance, the grain size property aided in 
categorising rock types into igneous, sedimentary 
and clastic. This has been resolved by creating 
comprehensive grain size scales, with equivalent 
(aliased) subclasses to preserve traditional 
nomenclature. However, we could not use class 
instances (individuals) to denote the equivalent 
geological definitions as OWL classification can 
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only be based on class definitions. Therefore, we 
had to create several subcategories to allow for the 
mapping between the overlapping geological 
definitions, which somewhat bloated the ontology as 
the subcategories classes, such as grain size, hosted 
only one individual at any time. 

Finally, it's worth noting that geological 
knowledge is not exclusively contained within maps. 
Reputable data sources publish their surveys in the 
form of a map (often in GIS DB format) 
accompanied by head geologist memoirs, report or 
commentary, sometimes even embedded into the 
database itself (see Figure 7). Some of those 
comments carry invaluable information about 
surveyor's findings at a given locality that can enrich 
the geological database. Since automatic analysis of 
freeform comments that deploy natural language 
processing would be difficult and expensive to 
implement, such data entries are manually 
transformed into taxonomy items and properties by a 
geologist at the time of data input. 

 

Figure 7: Example of typical geology data (Venezuela) 
with important info encoded as a freeform comment. 

6 AUTOMATING MINERAL 
PROSPECTIVITY ANALYSIS 

Geology is often regarded by professionals to have 
an element of art to it, and the consensus is that the 
geologist should drive the prospectivity analysis 
process. Our objective is to shorten the delivery time 
and reduce the cost of the early stages of mineral 
exploration by automating the lion-share of the 
process of prospectivity analysis tasks, and only 
deploying geological expertise at the one-off 
semantic modelling phase and in minor supervisory 
role related to data curation.  

The last section discussed the semantic 
modelling in our system and how we hard-wired 
necessary & sufficient conditions into our ontology 
that automatically classifies newly sourced geodata 
instances into the appropriate geological categories. 
This section describes the final phase of our 
prospectivity analysis system, where we encode the 
relevant geological knowledge as generic rules that 
guide the prospectivity analysis process. These rules 

are compiled as geospatial queries that can be fired 
against the semantic triple store to evaluate the 
prospectivity for a given natural resource in a 
particular region. 

The queries combine searching for geologically 
interesting map features and spatial analysis of 
geometries representing these features. A set of 
queries retrieves polygons, which have parameters 
indicating likelihood of existence of mineral 
deposits at a given location, such as favourable rock 
type, appropriate age or evidence of geological 
processes necessary for mineralisation event. The 
results of those queries are subjected to spatial 
analysis, which transform retrieved geometries into 
more appropriate format using operations of unions 
and intersections as designed in the geological rules. 

The geological rules were encoded as natural 
language statements using intuitive geological 
terminology. An example of encoding such a 
statement can be seen on Figure 8. Mnemonic form 
(in bold) of a geological rule used in the process of 
gold prospectivity analysis is followed by its verbose 
phrasing (in italics), explaining in detail what 
geological features are being searched. An 
stSPARQL expression of the same meaning is 
presented below. 

 

 

Figure 8: Example of typical geology data (Venezuela) 
with important info encoded as a freeform comment. 

It is noteworthy to mention that due to rock 
formations following trends beneath the visible rock 
outcrops that may not be evident from the data, 
prospectivity of a certain buffer area around 
geological features is affected. Even when one can 
corroborate geophysical information to discover 
those trends, geological processes are not always 
limited to the volume of rock in question; contrarily, 
mineralisation may occur away from the source 
material. The range of this processes is very hard to 
estimate and in certain cases has be performed 
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empirically, but there are already methods of 
establishing optimal spatial parameters in other 
works. In a similar fashion, one has to recognise the 
need for additional parameters - weight values for 
establishing finer control of the influence of various 
queries over the analysis or logical ones, to compile 
a number of queries' results into one coherent result. 
Thus, a number of adjustable parameters are present 
in the system, increasing its flexibility, but also 
requiring careful consideration at the analysis design 
process. 

One of the challenges encountered when 
designing the system architecture was to decide 
which elements of the analytical process should be 
modelled into the ontology and which should be 
implemented by means of explicit reasoning. The 
decision is made on a case-by-case basis, with 
arguments both for and against each of the 
implementation methods. The main focus of the 
design was to reduce the effort required to extend 
and modify the system to incorporate additional 
features such as new deposit models or use of data 
of new types. Hence, wherever possible, we encoded 
directly into the ontology model all the ‘universal 
and immutable’ knowledge related to the 
classification of newly sourced geodata instances 
into geological categories, and only resorted to 
explicit reasoning for the final stage of encoding the 
rules evaluating the mineral prospectivity. Hence, 
surficial and below-surficial features were hard-
wired into the semantic ontology, while the rules 
encoded as geospatial queries focused on geological 
processes of local range and objective approach to 
geological analysis. This helped to decouple the 
geodata processing from the analysis process thus 
reducing the workload for designing and encoding 
new rules and promoting their usability.  

The identification and interpretation of 
geological features on a map by a geologist is a 
highly assimilative, cognitive and nuanced process. 
It requires the experience, often collective of 
integrating a sequence of features such as the spatial 
distribution of strata at the surface, which can be 
extrapolated to depth (3D visualization skills), age 
relationships (relative and absolute) of adjacent and 
intersecting features and many other components, 
which are set within the constraints of a larger or 
macro geological context. The above process is one 
that is not easily replicated by current computing 
methodologies. A good example is the definition of 
a basin, which is a large geological depression, a 
result of tectonic warping. Most of the common 
features of basins - such as hipsometric depression, 
normal younging of the strata and presence of 

sedimentary material is found not only in basins but 
also in other geological structures such as some 
craters or some glacier valleys. To further 
complicate the issue, detecting basins automatically 
using stSPARQL geospatial queries would require 
the queries to contain large amount of incidental 
geological knowledge, specific to a given location. 
For example, some basins can be detected by careful 
spatial analysis of 3D model of topology, and rock 
strata formation to distinguish them from impact 
craters. However, some are filled with sediment due 
to their age and don't show on the terrain model, 
while other might have underwent geothermal 
processes that disrupt original rock layers - both of 
which are quite easy to spot by a geologist while 
remaining hard to encode. Recognising that 
removing false negatives and positives would be 
laborious and require a geologist to perform a 
supervisory role despite automation, the task of 
recognising basins and other similar terrain features 
has been delegated to a geologist during the data 
input process (Figure 2), to manually add 
appropriate taxonomy items. 

7 SYSTEM EVALUATION 

Geology knowledge is encoded into an ontology 
data model and rule-driven prospectivity analysis 
process. This required significant amount of 
preparatory work by an experienced exploration 
geologist in cooperation with a semantic technology 
specialist to transform his knowledge into a 
machine-readable form. The main advantage of the 
system is capability to house an extraordinary 
amount of geology knowledge, which is 
automatically applied to a large set of geodata, from 
which value-added analytical products can be 
generated and delivered and updated as needed. 

The above is accomplished without sacrificing 
the transparency of the process, as explicitly 
represented queries and ontologies are human-
readable and their outcomes can be backtracked. The 
mutable parameters and separation between geology 
model and prospectivity analysis allows for their 
seamless modification and extension, which gives 
our approach an advantage over statistical and 
machine learning approaches, access to the 
intricacies of the analytical process is difficult. 

Data enrichment is evidenced by the increasing 
number of relations in the system. For the test 
dataset close to 8000 triples have been present at the 
beginning of the process, while after applying the 
geological model, that number increased to over 
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60000. From that data prospectivity maps for 30 
different types of deposits can be produced, each 
using a combination of 10-20 purpose-designed 
stSPARQL queries. The result of combinations of 
those queries is a set of polygons, delineating areas 
of similar prospectivity rating. These polygons then 
are stored within the geospatial database and 
accessed by Sextant data visualiser seamlessly and 
without the need of format conversion. Thus, one is 
able to quickly produce a custom map compilation, 
by compiling polygons straight from geospatial 
database in desired combination. 

Generating a prospectivity map in a visual form 
is the goal of the analysis process. As shown on 
Figure 9, delineation of different grades of 
prospectivity for minerals over Google Maps 
background enables approachable presentation, 
which can be inspected even in image format. By 
delivering it in an accessible form, effects of the 
analysis can be included in a decision making 
process, even without specialised knowledge or 
tools. 

While semantic technologies have been very 
useful in modelling geology, some of the data types 
proved to be difficult to describe, especially those 
that in classical prospectivity analysis need to be 
heavily modified and carefully examined by an 
expert geologist, such as raster-based geophysical 
measurements. Automation of geophysical analysis 
is often hampered by the fact that very similar 
patterns can be a result of a great number of 
different subsurface features. With the exception of 
dykes, recognising most subsurface rock bodies or 
structures relies on geophysicist’s experience and 
judgment and while automation of the delineation 
process is currently implemented, it is still a 
significant challenge to classify the delineated 
structures. Since the automation of geophysical 
analysis is a computationally intensive process using 
advanced algorithms, it was impractical to 
incorporate it fully and geophysics role has been 
relegated to data validation and extrapolation. There 
are plans to revisit this issue in the future.  

One of the projected benefits of the project was 
to be able to add more data without the need of re-
applying the analysis. This is only achieved for the 
modelling stage, but not the querying stage. Because 
of efficiency limitations of Sextant visualiser, very 
complicated queries have to be run and their results 
cached in advance. These caches need to be updated 
each time new data is being added to the system, 
which in practice happens infrequently, but poses an 
additional difficulty. This inefficiency issue is not 
present in Strabon triple store, so a different 

visualiser might be able to perform all queries on 
demand. The system is not required to provide real-
time response, and current processing times of under 
a minute to perform modelling and 3 minutes per 
deposit type are acceptable. 

 

 

Figure 9: Polygons denoting prospectivity for orogenic 
gold visualised over a map of northern French Guiana. 

8 CONCLUSIONS AND FUTURE 
WORK 

Motivated by the need for more cost-effective 
approach to prospectivity analysis, we presented 
new semantic-driven integrative approach to 
prospectivity analysis. Our approach initially 
deploys an ontology-based unifying metadata model 
to reconcile the discrepancy the representational 
format of geodata that is sourced from multiple 
private and public suppliers often with disorganised 
nomenclature and non-digitised freeform text 
describing geological features that are critical to the 
analysis process. Our approach then uniquely utilises 
semantic modelling to support the automation of the 
prospectivity analysis by encoding the relevant 
geological knowledge at the ontology modelling and 
the semantic reasoning levels.  At the semantic 
modelling level, we hard-wired necessary & 
sufficient conditions into our ontology to 
automatically classify newly sourced geodata 
instances into the appropriate geological categories, 
and at the explicit reasoning level we encode the 
relevant geological knowledge as generic rules that 
guide the prospectivity analysis process. These rules 
are compiled as geospatial queries that can be fired 
against the semantic triple store to evaluate the 
prospectivity for a given natural resource in a 
particular region. We endeavour to strike the balance 
between the elements of the analytical process 
encoded at each level in order to decouple the 
geodata processing activity from the prospectivity 
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analysis process, thus reducing the workload for 
designing and encoding new prospectivity rules and 
promoting their seamless extensibility. 

The reported work in this paper also contributes 
to the methodology of utilising semantic 
technologies for mineral prospectivity analysis by 
investigating the practical constraints hindering the 
complete automation of the prospectivity analysis 
process. Such limitations include the misleading 
assignment of properties as freeform comments to 
features in the sources geodata, the complexity in 
modelling geophysical measurements, and the 
limitation of the visualisation tool in caching the 
geospatial query results.  

Our plans for future research involve the curation 
and processing of sensory raster data that comprises 
geophysical measurements, various types of imaging 
and LIDAR data. We are optimistic this will further 
improve the accuracy of our prospectivity analysis 
model. We also intend to investigate the use of fuzzy 
logic to model the certainty in the perceived 
accuracy of the prospectivity analysis as a function 
of quality and completeness of the sourced geodata. 
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