
Supporting Application Requirements in Cloud-based IoT Information
Processing

Sabrina De Capitani di Vimercati, Giovanni Livraga, Vincenzo Piuri, Pierangela Samarati
and Gerson A. Soares

Computer Science Department, Università degli Studi di Milano, Crema, Italy

Keywords: IoT Information Processing, Cloud Computing, Application Requirements, Requirement Dependencies,
Service Level Agreement.

Abstract: IoT infrastructures can be seen as an interconnected network of sources of data, whose analysis and processing
can be beneficial for our society. Since IoT devices are limited in storage and computation capabilities, relying
on external cloud providers has recently been identified as a promising solution for storing and managing IoT
data. Due to the heterogeneity of IoT data and applicative scenarios, the cloud service delivery should be driven
by the requirements of the specific IoT applications. In this paper, we propose a novel approach for supporting
application requirements (typically related to security, due to the inevitable concerns arising whenever data are
stored and managed at external third parties) in cloud-based IoT data processing. Our solution allows a subject
with an authority over an IoT infrastructure to formulate conditions that the provider must satisfy in service
provisioning, and computes a SLA based on these conditions while accounting for possible dependencies
among them. We also illustrate a CSP-based formulation of the problem of computing a SLA, which can be
solved adopting off-the-shelves CSP solvers.

1 INTRODUCTION

Thanks to the achievements recently obtained by the
advancements of the ICTs, the Internet of Things
(IoT) undoubtedly represents a promising opportu-
nity to build powerful and ubiquitous computing plat-
forms. Leveraging the wide availability of new tech-
nologies, such as the RFID and wireless sensor de-
vices, the IoT provides a myriad of common ob-
jects with sensing and connectivity capabilities (Jiang
et al., 2014). In this regard, devices in the IoT can be
seen as a large network of interconnected sources of
data, whose processing and analysis can be beneficial
for individuals as well as for public and private com-
panies and governmental agencies. For instance, by
analyzing the concentration of pollutants sensed by
a sensor network, a municipality can constantly keep
the quality of air under control in its area (De Cap-
itani di Vimercati et al., 2013), and enforce correc-
tive measures when some pollutants reaches a thresh-
old level. As another example, pervasive healthcare
applications use network of body sensors to gener-
ate health information about patients that can be re-
motely monitored to the benefits of the patients them-
selves (Doukas and Maglogiannis, 2012).

While IoT devices are designed and built to be in-
terconnected, and are able to communicate with the
external world, still their storage capacity and compu-
tational power are limited. Since the amount of data
they generate can be huge (Ma et al., 2012), impor-
tant challenges related to where and how these data
can be stored and processed need to be solved. By
making fast and scalable storage and processing in-
frastructures available at affordable costs (Jhawar and
Piuri, 2012), cloud computing has recently been iden-
tified as a promising solution for storing and man-
aging IoT information (e.g., (Jiang et al., 2014; Ma
et al., 2012; Botta et al., 2014)). The interaction be-
tween a Cloud Provider (CP) offering a service and
the subjects to which the service is delivered is usu-
ally based on Service Level Agreements (SLAs). A
SLA represents a contract between the CP and the
subjects on different functional/non-functional prop-
erties of the provided service. However, relying on
pre-defined SLAs might represent a limitation in the
context of the IoT, due to the richness and diversity
of collected IoT data, and the heterogeneity of the
applicative scenarios. For instance, differently from
traditional outsourcing scenarios in which oftentimes
a bulk data collection is entirely transmitted to the

Vimercati, S., Livraga, G., Piuri, V., Samarati, P. and Soares, G.
Supporting Application Requirements in Cloud-based IoT Information Processing.
DOI: 10.5220/0005877000650072
In Proceedings of the International Conference on Internet of Things and Big Data (IoTBD 2016), pages 65-72
ISBN: 978-989-758-183-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

65

provider at outsourcing time, an IoT application for
pollutant monitoring might require timely transmis-
sion to the CP of each measurement as soon as it is
captured by a sensor, 24/7.

Building on these observations, in this paper we
aim at bridging the gap between IoT and cloud com-
puting by proposing an approach for supporting spe-
cific application requirements in the definition of a
SLA. Our solution allows a subject with an authority
over an IoT infrastructure to specify her application
requirements to a CP. Typical requirements relate to
security, as common whenever data storage and man-
agement are delegated to an external (and possibly
not fully trusted) CP. The SLA between the subject
and the CP, rather than being based on a pre-defined
model produced by the CP, can therefore be estab-
lished by taking into consideration all specific re-
quirements characterizing the application. This prob-
lem is however complicated by the fact that the sat-
isfaction of some requirements might depend on the
satisfaction of other requirements, of which the re-
questing subject might be unaware. For instance, to
ensure a response time less than a given threshold,
due to its hardware and software configurations a CP
might not be able to provide other features (e.g., the
encryption of the communication channels). Our so-
lution overcomes this problem by taking into consid-
eration dependencies among requirements in the es-
tablishment of the SLA. We also propose a formu-
lation of the problem of determining a SLA that is
consistent with the given requirements as a Constraint
Satisfaction Problem (CSP), allowing for the adoption
of existing solvers to compute a solution.

The remainder of this paper is organized as fol-
lows. Section 2 presents our problem, a motivating
example, and a sketch of the approach. Section 3 il-
lustrates how requirements for the CP and dependen-
cies among requirement conditions can be specified,
and formally defines the problem of computing a valid
SLA. Section 4 discusses how a valid SLA can be
computed and describes a translation of the problem
into a CSP. Section 5 discusses related work. Finally,
Section 6 concludes the paper.

2 PROBLEM STATEMENT AND
SKETCH OF THE APPROACH

In the remainder of this paper, we will refer our ex-
amples to a municipality owning a sensor network to
measure air pollutants in its area. Each sensor mea-
sures specific pollutants at regular time intervals, and
the recorded measurements need to be collected and
analyzed to set appropriate countermeasures (e.g., re-

stricting vehicles circulation) when needed. Since
sensors have limited storage capacity, the municipal-
ity aims at relying on an external CP to store and
manage the collected data. Outsourced measurements
need to be retrieved by the municipality health of-
fice whenever needed and, since timely retrieval is a
critical factor for fast analysis of air quality, the mu-
nicipality wishes the CP to ensure a maximum re-
sponse time to requests. In addition, since the out-
sourced measurements are considered sensitive infor-
mation (the existence of correlations between high
levels of air pollutants in a certain area and respiratory
diseases of citizens living nearby is well known), the
municipality wishes that data be either:i) physically
stored in a chosen trusted country, orii) physically
stored at a CP audited for security every week; oriii)
encrypted by the CP (sensors have limited computa-
tional resources to do so1). These requirements set
the parameters of the service that the CP provides to
the municipality and are part of the SLA between the
CP and the municipality (hereinafter, theuserof the
service). Figure 1 illustrates our reference scenario.

The SLA establishment starts with the commu-
nication to the CP of the application requirements
imposing arbitrary conditions on functional/non-
funtional properties to be satisfied in the service pro-
vision. For instance, in our running example the ap-
plication requirements of the municipality will in-
clude a condition restricting theresponse timeto a
maximum value. Upon receiving the application re-
quirements, the CP can check whether it can satisfy
them and, if this is the case, the conditions in the re-
quirements are inserted into a SLA on which both the
CP and the requesting party can agree. If the CP can-
not satisfy the given conditions, a SLA cannot be es-
tablished.

The process of checking whether the application
requirements can be fulfilled can be complicated by
the possibility that the enforcement of a condition
might be possible only provided that other conditions
be also enforced. For instance, to ensure a response
time lower than a given threshold, a CP might be able
to accept only a limitednumber of requestsper time
unit. This is due to the fact that the response time of a
system is not an isolated property: on the contrary, it
is linked to other properties by adependency(such as
the rate of requests, which have a clear impact on the
responsiveness of a system).

We note that dependencies cannot be assumed to

1Since measurements cannot be encrypted before stor-
age, we assume for the sake of the example the municipality
to choose a CP among those considered trusted for access-
ing plaintext data, hence confidentiality is required against
intruders/unauthorized third parties.

IoTBD 2016 - International Conference on Internet of Things and Big Data

66

Figure 1: Reference scenario.

be known by IoT infrastructure authorities, and taken
into account before formulating their application re-
quirements. In fact, they can be provider-dependent,
meaning that some dependencies might hold for a
given CP while not holding for other ones. While
dependencies must therefore be transparent for the
users, each CP knows the specific dependencies that
hold for its services. To build a valid SLA start-
ing from application requirements, the CP must then
check such requirements against possible dependen-
cies.

It is easy to see that the consideration of both ap-
plication requirements and dependencies in the estab-
lishment of a SLA can result in different outcomes:
i) the requirement conditions can be satisfied as they
are (i.e., no dependency is involved) and can be put
into a SLA;ii) the conditions cannot be satisfied (e.g.,
the CP does not have resources to fulfil them), and a
valid SLA cannot be created; andiii) some conditions
involve dependencies that require the enforcement of
further conditions, which then also need to be inserted
into a valid SLA. In the following sections, we will
formally model application requirements and depen-
dencies, and then illustrate our approach to compute
a valid SLA.

3 PROBLEM MODEL

Application requirements are formulated as Boolean
formulas over conditions defined on attributes that
represent (functional or non-functional) properties
characterizing the cloud services and are taken
from a common/shared ontology (Galster and
Bucherer, 2008). With reference to our running
example,srv loc, resp time, encr, sec audit,
and access log are examples of attributes (mod-
eling respectively the physical location of a server,
the response time of the service, the encryption
algorithm adopted by the provider, the auditing

frequency, and whether accesses are logged) that
the municipality can use to define conditions on
the required service. LetA be the set of attributes.
Each attributea ∈ A takes values from its domain
dom(a). For instance,dom(srv loc)={USA, EU},
dom(resp time)={10, 20, 50}, dom(encr)={AES,
DES, no}, dom(security audit)={weekly,
monthly, no}, dom(access log)={yes, no}. A
condition defined over an attribute restricts the values
that the property represented by the attribute can
assume in the provision of the service. A condition is
formally defined as follows.

Definition 3.1 (Condition). Given a set A of at-
tributes, an attribute a∈A with domain dom(a), and
a value val∈dom(a), a conditionc over a is a term of
the form c: 〈a op val〉, with op∈ {=, 6=,<,≤,>,≥}
a comparison operator.

Figure 2(a) illustrates a set of conditions for our
running example. For instance,c5:〈resp time<10〉
and c10:〈srv loc=USA〉 model two conditions de-
manding that the service exhibits a response time
lower than 10 milliseconds (c5) and uses a storage
server being located in USA (c10).

Application requirements can be composed of dif-
ferent conditions over different attributes. More pre-
cisely, by interpreting each conditionc as a Boolean
variable, an application requirement can be naturally
expressed as a Boolean formula over such variables.
For simplicity but without loss of generality, we as-
sume requirements to be in disjunctive normal form
(DNF). An application requirement is formally de-
fined as follows.

Definition 3.2 (Application Requirement). Given a
set C= {c1, . . . ,cn} of conditions over a set A of at-
tributes, anapplication requirementR over C is a for-

mula of the form
∨m

i=1(
∧k(i)

j=1ci j), with k(i) the number

of conditions of the ith clause, and ci j ∈C.

For instance, considering the conditions in Fig-
ure 2(a), the application requirement of our running
example can be formulated asR: (c5 ∧ c10)∨ (c5 ∧
c2)∨ (c5∧c6). Intuitively, R states that to satisfy the
requirements of the municipality, the cloud service
should exhibit a response time lower than 10 millisec-
onds (c5) and use a storage server located in USA
(c10), or exhibit a response time lower than 10 mil-
liseconds (c5) anduse AES for encryption (c2), or ex-
hibit a response time lower than 10 milliseconds (c5)
andweekly execute security auditing (c6).

As already mentioned in Section 2, a SLA should
also consider possible dependencies related to the
conditions included inR. Dependencies capture

Supporting Application Requirements in Cloud-based IoT Information Processing

67

(a)

c1: 〈proc num≥2〉 c5: 〈resp time<10〉 c9: 〈backup=daily〉
c2: 〈encr=AES〉 c6: 〈sec audit=weekly〉 c10:〈srv loc=USA〉
c3: 〈encr=no〉 c7: 〈access log=yes〉 c11:〈storage<100TB〉
c4: 〈req rate<1/min〉 c8: 〈backup=no〉 c12:〈storage≥100TB〉

(b)

d1: 〈srv loc=USA〉 〈storage<100TB〉
d2: 〈resp time<10〉 〈backup=no〉 ∧ 〈req rate<1/min〉 ∧ 〈encr=no〉
d3: 〈encr=AES〉 〈proc num≥2〉
d4: 〈backup=daily〉 〈storage≥100TB〉
d5: 〈security audit=weekly〉 〈access log=yes〉

Figure 2: Conditions for our running example (a) and dependencies over them (b).

generic relationships among attributes, implying that
the enforcement of a condition over an attributede-
pends onthe enforcement of another condition over
another attribute. For instance, with reference to our
running example, attributesresp time andreq rate
(modeling, respectively, the response time of the sys-
tem and the rate of requests) are linked by a depen-
dency. If R includes a condition overresp time,
then a valid SLA should also include a condition over
req rate.

While attribute dependencies can be considered to
always hold (e.g., the responsiveness of a service is
always impacted by rate of requests it receives), the
specific conditions holding for the attributes involved
in a dependency can vary depending on the CP (e.g.,
a CP with a set of servers running in parallel might
accept more requests per time unit than another CP
with a single server). Upon receiving an application
requirementR from the IoT infrastructure authority,
the CP must verify whether the conditions inR imply
other conditions due to the presence of dependencies.
Note that dependencies can model bothincompatibili-
tiesamong conditions (i.e., enforcing a condition over
ai does not allow to enforce another condition over
a j) and implicationsamong them (i.e., enforcing a
condition overai requires the enforcement of another
condition overa j). Building on our interpretation of
conditions as Boolean variables, acondition depen-
dency, meaning an attribute dependency instantiated
with conditions over its attributes, is formally defined
as follows.

Definition 3.3 (Condition Dependency). Given a set
C = {c1,cn} of conditions over a set A of at-
tributes, acondition dependencyd over C is defined

as d : ch (
∨m

i=1(
∧k(i)

j=1ci j)), with k(i) the number of

conditions of the ith clause, and ch,ci j ∈C.

A dependencych (
∨m

i=1(
∧k(i)

j=1ci j)) can be inter-
preted as a material implication: if conditionch is

satisfied, then also
∨m

i=1(
∧k(i)

j=1ci j) must be satisfied.
Figure 2(b) illustrates five condition dependencies for

our running example defined over the set of condi-
tions in Figure 2(a). Dependencyd1 states that pro-
viding a server located in USA implies a maximum
storage capacity of 100TB. Dependencyd2 states
that a response time lower than 10ms is incompati-
ble with the execution of backups and of encryption
operations (incompatibilities), and imposes a maxi-
mum rate of requests of 1 per minute. Dependency
d3 states that to provide AES encryption, the server
must have at least two processors. Dependencyd4
states that a daily backup requires a storage capac-
ity greater than or equal to 100TB. Dependencyd5
states that to ensure a weekly auditing process, ac-
cesses should be logged. Conditions in a dependency
can involve attributes under the control of either the
CP (e.g.,〈storage<100TB〉 in d1) or the IoT infras-
tructure authority/users (e.g.,〈req rate<1/min〉 in
d2, being the request rate dependent on the operations
of the authority/users). For the sake of readability,
in the remainder of this paper, we will denote DNF
formulas over a set{ci , . . . ,c j} of conditions with no-
tationP (ci , . . . ,c j).

In our scenario, given a setC = {c1, . . . ,cn} of
conditions, a SLA is naturally represented as a set
{c1, . . . ,ck} ⊆ C of conditions, whose enforcement
must be guaranteed in the service provision. Note that
a SLA should include at most one condition over each
attributea∈A (as otherwise they would be in conflict).
We refer to a set of conditions satisfying this property
aswell-formed, as follows.

Definition 3.4 (Well-formed Set of Conditions).
Given a set C of conditions over a set A of attributes,
C is said to bewell-formediff ∀c ∈C,∀a ∈ A, |Ca| ≤
1, with Ca ⊆C the conditions over attribute a.

For instance, with reference to the conditions in
Figure 2(a), the set{c2,c11,c12} is not well-formed
as c11 and c12 are defined over the same attribute
storage.

Given a setC = {c1, . . . ,cn} of conditions, an
application requirementR over C, and a setD =
{d1, . . . ,dl} of dependencies overC, our goal is to
find a subset of conditions inC that forms avalid

IoTBD 2016 - International Conference on Internet of Things and Big Data

68

SLA, meaning that the SLA is well-formed and sat-
isfies bothR andD. Following our logical modeling
where conditions are interpreted as Boolean variables,
application requirements as Boolean formulas, and
dependencies as material implications, we introduce
an assignment functionf : C → {0,1} assigning to
each conditionc∈C a value from the set{0,1}. With
a slight abuse of notation, we usef to denote also
the list of values assigned byf to the conditions inC.
Therefore, given a requirementR overC, f (R) will
denote the result of the evaluation ofR with respect
to the values inf . SinceR must be satisfied when
assigning values toC to compute a SLA,f is a cor-
rect assignment w.r.t. a requirementR iff f (R) = 1.
Similarly, a dependencych P (ci , . . . ,c j) is satisfied
provided that, iff (ch) = 1, thenf (P (ci , . . . ,c j)) = 1.
Therefore,f is acorrect assignment w.r.t. a set D of
dependenciesiff f (d) = 1,∀d ∈ D.

A SLA is then interpreted as a complete value as-
signment over the conditions inC, where the condi-
tions included in the SLA are those assigned value
1 by f . Our problem of determining a valid SLA
(vSLA) given an application requirementR and a set
D of dependencies over a setC of conditions can
therefore be interpreted as finding a value assignment
f being correct w.r.t.R andD, and such that the set
of conditions assigned value 1 byf be well-formed,
as formally defined as follows.

Problem 3.1(vSLA). Given a set C= {c1, . . . ,cn} of
conditions, an application requirementR over C, and
a set D= {d1, . . . ,dl} of dependencies over C, deter-
mine (if it exists) a value assignment f to the condi-
tions in C s.t.:

• f (R) = 1 (requirement satisfaction);
• f (d) = 1,∀d ∈ D (dependency satisfaction);
• {ci ∈ C : f (ci) = 1} is well-formed according to

Definition 3.4 (conflict satisfaction).

With reference to our running example and
the dependencies in Figure 2(b), an example of
an assignmentf solving the vSLA problem as-
signs value 1 to conditionsc3, c4, c5, c8,
c10, c11, and value 0 to conditionsc1, c2, c6,
c7, c9, and c12. Such an assignment corre-
sponds to a SLA including the following conditions
(see Figure 2(a)):〈encr=no〉, 〈req rate<1/min〉,
〈resp time<10〉, 〈backup=no〉, 〈srv loc=USA〉,
〈storage<100TB〉. It is easy to see that such a SLA
enforces the requirement of the municipality and the
conditions requested by the dependencies, and that it
is well-formed. In the next section, we illustrate our
approach to compute a valid SLA taking dependen-
cies into account.

4 COMPUTING A VALID SLA

To reason about the conditions of Problem 3.1, we
first give an intuitive graphical representation. We
then present a solution based on a translation of the
problem as a CSP.

4.1 Graph Modeling

Our problem can be naturally represented through a
mixed and colored hypergraph representing the input
of Problem 3.1. Such mixed hypergraphG(V,E,Eu),
with V the set of vertices andE (Eu, resp.) the set of
directed (undirected, resp.) hyperedges, is defined as
follows.

• Each condition appearing inR and in the setD =
{d1, . . . ,dl} of dependencies holding for the CP,
as well as the requirementR, correspond to a ver-
texv ∈V;

• each dependencyd : ch P (ci , . . . ,c j) where
P (ci , . . . ,c j) is composed ofm OR-ed terms is
translated intom directed hyperedges inE where
the ith hyperedge connectsch to all conditions of
the ith term,i = {1, . . . ,m};

• the requirementR, composed ofmOR-ed terms, is
translated intom directed hyperedges inE where
the ith hyperedge connects vertexR to all condi-
tions of theith term,i = {1, . . . ,m};

• for each attributea appearing in the conditions in
the graph, the setCa of conditions defined over
the same attributea is translated in an undirected
hyperedge inEu connecting all conditions inCa.

Figure 3(a) illustrates the hypergraph modeling
our running example, where hyperedges inE (Eu,
resp.) are represented as arrows (dotted boxes, resp.)
linking (surrounding, resp.) the involved conditions.
The computation of a solution to Problem 3.1 can be
interpreted as a coloring of the vertices of the hyper-
graph, starting from the vertex representingR and re-
cursively propagating the color through the directed
hyperedges inE. Note that, when more than one hy-
peredge originates from the same vertexv∈V, it is
sufficient to propagate the color through one hyper-
edge (recall thatm hyperedges correspond tom OR-
ed terms). Such color propagation through directed
hyperedges guarantees that the colored vertices rep-
resent a set of conditions satisfying the first two con-
ditions in Problem 3.1. In fact, directed hyperedges
link all conditions included in theOR-ed terms inR,
and also conditions in theOR-ed terms in the depen-
dencies enabled by the coloring of a term inR. Fig-
ure 3(b) illustrates the hypergraph of Figure 3(a) after

Supporting Application Requirements in Cloud-based IoT Information Processing

69

proc num≥2 encr=AES backup=no storage
<100TB

c1 c2 c4 c5 c6 c7 c8 c10 c11

c12c9

encr=no

req rate
<1/min

resp time
<10

sec audit
=weekly

access log
=yes

backup
=daily

srv loc
=USA

storage
≥100TB

R

c3

(a)

proc num≥2 encr=AES backup=no
<100TB

c1 c2 c4 c5 c6 c7 c8 c10 c11

c12c9

encr=no

req rate
<1/min

resp time
<10

sec audit
=weekly

access log
=yes

backup
=daily

srv loc
=USA

storage
≥100TB

R

c3

storage

(b)

Figure 3: Graphical representation of Problem 3.1 for our running example.

the color propagation fromR through the hyperedge
representing(c5∧c10).

Once the color has propagated through the di-
rected hyperedges inE, undirected hyperedges inEu

can be exploited to check the satisfaction of Con-
dition 3 in Problem 3.1 (conflict satisfaction). By
restricting G(V,E,Eu) to G′(V,Eu), Condition 3 is
satisfied iff the vertices colored in the previous step
through the edges inE represent anindependent set
for G′. In fact, since all conditions defined over the
same attribute are connected through an undirected
hyperedge, if for every hyperedge[vi , . . . ,v j] in Eu,
at mostone vertexvx ∈ {vi , . . . ,v j} is colored, then
the set of colored vertices inG′ includes at most one
condition for every attribute. Figure 3(b) shows that
the set of colored vertices form an independent set
for G′(V,Eu). In the remainder of this section, we
illustrate our approach to compute a solution to Prob-
lem 3.1.

4.2 CSP Formulation

To find a solution to our problem, we represent it as
a Constraint Satisfaction Problem (CSP), which can
then be conveniently solved with off-the-shelf CSP
solvers (De Capitani di Vimercati et al., 2014). The
CSP is formulated as follows: given a triple〈X,Z,K〉,
with X a set of variables,Z the domain of variables in
X, andK a set of constraints overX, find an assign-
mentw : X → Z that satisfies all the constraints inK.
Our translation interprets:

• all conditions appearing inR and in the setD of
dependencies as the setX of variables;

• the set of integers{1,0} as the domainZ of the
variables inX;

• the requirementR, the setD of dependencies, and
the conflicts among conditions as the setK of con-
straints.

A solution to the problem so defined corresponds
to a value assignmentw(c) to all conditions inC such
that w satisfies all the constraints inK. With refer-
ence to our hypergraph,X corresponds to the setV of
vertices excludingR, Z corresponds to the domain of
colors (1 translates to gray),K corresponds toR and
the dependencies and conflicts modeled through hy-
peredges, andw corresponds to the coloring function.

We now illustrate how application requirements,
dependencies, and conflicts can be translated into
equivalent CSP constraints.

Requirements. Given an application requirement

R:
∨m

i=1(
∧k(i)

j=1ci j) composed ofm OR-ed terms, then
all conditions inat least one of these terms must
be included in a valid SLA. In terms of the CSP
assignment functionw, at least one of them terms
must be assigned value 1. Formally, a requirementR

is interpreted as

m∨

i=1

(ci1 = . . .= cik(i) = 1)

Dependencies. Given a dependency
d:ch P (ci , . . . ,c j), with P (ci , . . . ,c j) =

IoTBD 2016 - International Conference on Internet of Things and Big Data

70

Input CSP formulation
Requirement (c5∧c10)∨ (c5∧c2)∨ (c5∧c6) (c5 = c10 = 1)∨ (c5 = c2 = 1)∨ (c5 = c6 = 1)

Dependencies

c5 c8∧c4∧c3 (c5 = 0)∨ (c8 = c4 = c3 = 1)
c10 c11 (c10 = 0)∨ (c11 = 1)
c2 c1 (c2 = 0)∨ (c1 = 1)
c9 c12 (c9 = 0)∨ (c12 = 1)
c6 c7 (c6 = 0)∨ (c7 = 1)
Cstorage= {c11,c12} (c11 = 0∧c12 = 1)∨c12 = 0

Conflicts Cbackup= {c9,c8} (c8 = 0∧c9 = 1)∨c9 = 0
Cencr= {c2,c3} (c3 = 0∧c2 = 1)∨c2 = 0

Figure 4: Requirement, dependencies, and conflicts together with their CSP formulation for our running example.

∨m
i=1(

∧k(i)
j=1ci j), then all conditions in at least

one of them OR-ed terms must be included in a
valid SLA if ch is also included. In terms of the
CSP assignment functionw, at least one of them
terms must be assigned value 1, if alsoch is assigned
value 1. Formally, a dependencych P (ci , . . . ,c j) is
interpreted as

(ch = 0)∨
(

m∨

i=1

(ci1 = . . .= cik(i) = 1)

)

Conflicts. Given the setCa of conditions over
attributea, then at most one conditionc∈Ca can be
included in a valid SLA. In terms of the CSP assign-
ment functionw, at most one conditionc∈Ca must be
assigned value 1. Formally, a setCa = {c1, . . . ,ck} is
interpreted as

(c1 = · · ·= ck = 0)∨
(

k∨

i=1

(ci = 1∧ (c j1 = · · ·= c jk−1 = 0))

)
,

c j l ∈ {c1, . . . ,ck} \ {ci}
Note that CSP constraints correspond to the con-

ditions of Problem 3.1, and a functionw satisfying
them corresponds to a correct value assignmentf of
Problem 3.1. Figure 4 illustrates the CSP constraints
for our running example. A valid SLA will include all
conditions assigned value 1 by functionw.

The CSP translation illustrated above can be
solved by adopting any CSP solver. We formulated
the constraints in Figure 4 adopting the well-known
SWI-Prolog interpreter, enriched with theCLP(fd)
Prolog library (Triska, 2012), and obtained a result as-
signing value 1 to the colored vertices in Figure 3(b),
corresponding to a valid SLA (i.e., a solution to Prob-
lem 3.1).

5 RELATED WORK

The combination of IoT and cloud computing raises
a number of issues, as recently investigated by the
research community (e.g., (Biswas and Giaffreda,
2014)), which has proposed several solutions for
bridging the gap between these two technologies.
These solutions focus on a variety of problems, in-
cluding cloud-based storage of IoT data (e.g., focus-
ing on storage efficiency and supporting structured
and unstructured data (Jiang et al., 2014)), efficient
querying of IoT data stored in the cloud (e.g., propos-
ing an index-based framework also supporting simul-
taneous multi-dimensional queries (Ma et al., 2012)),
IoT service delivery on the cloud (e.g., proposing a
PaaS framework focusing on efficient service deliv-
ery and multi-tenancy (Li et al., 2013)), efficient pro-
tocols linking IoT and cloud (e.g., proposing a CoAP-
based system architecture for scalable cloud services
in the IoT (Kovatsch et al., 2014)). While related, our
work addresses a different problem focused on sup-
porting application requirements in cloud processing
of IoT information. To this end, all these techniques
can be seen as complementary to ours, which can be
used to establish a SLA before adopting them.

Another line of research connected to our work is
related to the problem of establishing/assessing SLA
in cloud computing (e.g., (Foresti et al., 2015)). The
work in (Garg et al., 2013) aims at assessing cloud
services based on customer requirements. While con-
sidering relationships between (sub-)attributes, which
may resemble our dependencies, the problem ad-
dressed is different as it aims at prioritizing cloud
services. Dependencies have been considered also
in (Kotsokalis et al., 2010), where however they
model different relationships (e.g., failures at the in-
frastructure and software levels). The work in (Li
et al., 2010) illustrates a framework for comparing
different cloud providers over different performance
indicators, focusing specifically on the performance
and cost of the providers. The proposal in (Jhawar
et al., 2012), while sharing with our work the support

Supporting Application Requirements in Cloud-based IoT Information Processing

71

for user-based constraints in cloud computing (which
may recall our application requirements), focuses on
a different problem related to cloud resource manage-
ment where constraints model security requirements.

6 CONCLUSIONS

In this paper, we have proposed an approach for sup-
porting application requirements in cloud-based IoT
information processing. Our solution allows an IoT
infrastructure authority to specify arbitrary require-
ments that must be satisfied by the CP during the ser-
vice provision and computes a SLA based on them.
Our approach takes into account possible dependen-
cies among requirements that might require the satis-
faction of further conditions. We have also provided
a CSP-based approach for solving our problem.

ACKNOWLEDGEMENTS

This work was supported in part by: the EC
within 7FP (grant 312797 “ABC4EU”), and H2020
(grant 644597 “ESCUDO-CLOUD”), and by
the Italian MIUR within PRIN “GenData 2020”
(2010RTFWBH), and the Brazilian CAPES (grant
BX5949/13-0).

REFERENCES

Biswas, A. and Giaffreda, R. (2014). IoT and cloud conver-
gence: Opportunities and challenges. InProc. of the
2014 IEEE World Forum on Internet of Things (IEEE
WF-IoT 2014), Seoul, South Korea.

Botta, A., de Donato, W., Persico, V., and Pescapé, A.
(2014). On the integration of cloud computing and
Internet of Things. InProc. of the 2nd International
Conference on Future Internet of Things and Cloud
(FiCloud 2014), Barcelona, Spain.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S.,
Livraga, G., Paraboschi, S., and Samarati, P. (2014).
Fragmentation in presence of data dependencies.
IEEE Transactions on Dependable and Secure Com-
puting (IEEE TDSC), 11(6):510–523.

De Capitani di Vimercati, S., Genovese, A., Livraga, G., Pi-
uri, V., and Scotti, F. (2013). Privacy and security in
environmental monitoring systems: Issues and solu-
tions. In Vacca, J., editor,Computer and Information
Security Handbook, 2nd Edition. Morgan Kaufmann.

Doukas, C. and Maglogiannis, I. (2012). Bringing IoT
and cloud computing towards pervasive healthcare. In
Proc. of the 6th International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Com-
puting (IMIS 2012), Palermo, Italy.

Foresti, S., Piuri, V., and Soares, G. (2015). On the use of
fuzzy logic in dependable cloud management. InProc.
of the 2015 IEEE Conference on Communications and
Network Security (IEEE CNS 2015), Florence, Italy.
poster.

Galster, M. and Bucherer, E. (2008). A taxonomy for iden-
tifying and specifying non-functional requirements in
service-oriented development. InProc. of the 2008
IEEE Congress on Services (IEEE SERVICES 2008),
Hawaii, USA.

Garg, S. K., Versteeg, S., and Buyya, R. (2013). A frame-
work for ranking of cloud computing services.Future
Generation Computer Systems, 29(4):1012–1023.

Jhawar, R. and Piuri, V. (2012). Fault tolerance man-
agement in iaas clouds. InProc. of the 1st IEEE-
AESS Conference in Europe about Space and Satellite
Telecommunications (ESTEL 2012), Rome, Italy.

Jhawar, R., Piuri, V., and Samarati, P. (2012). Support-
ing security requirements for resource management in
cloud computing. InProc. of the 15th IEEE Interna-
tional Conference on Computational Science and En-
gineering (IEEE CSE 2012), Paphos, Cyprus.

Jiang, L., Xu, L. D., Cai, H., Jiang, Z., Bu, F., and Xu,
B. (2014). An IoT-oriented data storage framework
in cloud computing platform.IEEE Transactions on
Industrial Informatics (IEEE TII), 10(2):1443–1451.

Kotsokalis, C., Yahyapour, R., and Gonzalez, M. (2010).
SAMI: The SLA management instance. InProc. of
the 5th International Conference on Internet and Web
Applications and Services (ICIW 2010), Barcelona,
Spain.

Kovatsch, M., Lanter, M., and Shelby, Z. (2014). Cali-
fornium: Scalable cloud services for the Internet of
Things with CoAP. InProc. of the 2014 IEEE Inter-
national Conference on the Internet of Things (IEEE
IOT 2014), Cambridge, MA, USA.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
cmp: Comparing public cloud providers. InProc. of
ACM SIGCOMM 2010, Melbourne, Australia.

Li, F., Voegler, M., Claessens, M., and Dustdar, S. (2013).
Efficient and scalable IoT service delivery on cloud. In
Proc. of IEEE CLOUD 2013, Santa Clara, CA, USA.

Ma, Y., Rao, J., Hu, W., Meng, X., Han, X., Zhang, Y.,
Chai, Y., and Liu, C. (2012). An efficient index for
massive IoT data in cloud environment. InProc. of
the 21st ACM International Conference on Informa-
tion and Knowledge Management (ACM CIKM 2012),
Maui, Hawaii, USA.

Triska, M. (2012). The finite domain constraint solver of
SWI-Prolog. InPoc. of the 11th International Sympo-
sium on Functional and Logic Programming (FLOPS
2012), Kobe, Japan.

IoTBD 2016 - International Conference on Internet of Things and Big Data

72

