
Automatic Refactoring of Component-based Software by Detecting and
Eliminating Bad Smells
A Search-based Approach

Salim Kebir1,3, Isabelle Borne2 and Djamel Meslati3

1Ecole Nationale Superieure d’Informatique, BP 68 M Oued-Smar, Algiers, Algeria
2IRISA, Université de Bretagne-Sud, Vannes, France

3Laboratoire d’Ingénierie des Systèmes Complexes (LISCO), Université Badji Mokhtar, Annaba, Algeria

Keywords: Automatic Refactoring, Search-based Software Engineering, Component-based Software Engineering,
Genetic Algorithm, Bad Smells.

Abstract: Refactoring has been proposed asa de factobehavior-preserving mean to eliminate bad smells. However
manually determining and performing useful refactorings is a though challenge because seemingly useful
refactorings can improve some aspect of a software while making another aspect worse. Therefore it has been
proposed to view object-oriented automated refactoring as a search-based technique. Nevertheless the review
of the literature shows that automated refactoring of component-based software has not been investigated yet.
Recently a catalogue of component-relevant bad smells has been proposed in the literature but there is a lack of
component-relevant refactorings. In this paper we propose detection rules for component-relevant bad smells
as well as a catalogue of component-relevant refactorings. Then we rely on these two elements to propose
a search-based approach for automated refactoring of component-based software systems by detecting and
eliminating bad smells. Finally, we experiment our approach on a medium-sized component-based software
and we assess the efficieny and accuracy of our approach.

1 INTRODUCTION

Due to organizational and market pressures it is not
conceivable to develop a software by keeping per-
manently in mind the idea that it should be eas-
ily maintained or changed to fulfill new require-
ments, as it forces programmers to focus on an ex-
tra time-consuming task. This translates into the
emergence of bad smells (Fowler et al., 1999), also
called design defects or code anomalies. As a con-
sequence, software becomes hard and too costly to
maintain. In order to overcome this problem in object-
oriented software systems, refactoring has been pro-
posed to provide behavior-preserving means to elimi-
nate bad smells and improve the design of a software
(Fowler et al., 1999). However, manually determining
and performing useful refactorings is a tough chal-
lenge (Seng et al., 2006). In order to address it, it
has been proposed to view automated refactoring of
object-oriented software as a search-problem where
an automated system can discover useful refactorings
(O’Keeffe and Cinnéide, 2006). This can be achieved
by searching for a sequence of usefull refactorings

that improve the overall quality of the system.
The review of the literature shows that automated

refactoring of component-based software has not been
investigated yet. Recently a catalogue of component-
relevant bad smells has been proposed by Garcia et.
al. (Garcia et al., 2009) and extended by Macia et. al.
(Macia et al., 2013) but there is a lack of component-
relevant refactoring operations to overcome these bad
smells. Thus refactoring has to be rethought to take
into account the different structural aspects that com-
ponents and interfaces exhibit.

Our contribution in this paper is twofold : first, we
propose detection rules for component-relevant bad
smells as well as a catalogue of component-relevant
refactoring to get rid of them. Second, we rely on
these two elements to propose a search-based ap-
proach for automated refactoring of component-based
systems.

This paper is organized as follows : In Section 2,
we present a detailed description of the problem. Sec-
tion 3 describes our approach with focus on the bad
smells detection rules, the proposed refactorings and
the genetic algorithm we use. Section 4 contains a dis-

210
Kebir, S., Borne, I. and Meslati, D.
Automatic Refactoring of Component-based Software by Detecting and Eliminating Bad Smells - A Search-based Approach.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 210-215
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

cussion of the experimental study that we performed.
Finally, Section 5 concludes the paper and presents
future perspectives.

2 PROBLEM DESCRIPTION

We address the automated refactoring of component-
based software. In concrete, the solution to this prob-
lem consists in the detection and elimination of bad
smells by operating refactoring operations at the com-
ponent level.The entries of this problem are : the
source code, a set of component-relevant bad smells
and a set of component-relevant refactorings. In the
following, we give more details on these three ele-
ments.

2.1 The Source Code

The source code of a software is the most reliable and
accurate source of information describing this latter.
However in the context of automated refactoring, the
source code in its textual form can not be considered
as such because it requires highly expensive parsing
operations which degrades the overall process perfor-
mances. In order to avoid theses costs, source code
must be first reified in an intermediate structure called
the source code model. Such a structure must be de-
signed to allow to measure some properties that we
need later during the extraction of bad smells detec-
tion rules. It must also be suitable to simulate actual
refactoring and check if they do not lead to incoherent
situations.

2.2 Component-relevant Bad Smells

Recently, Garcia et. al. (Garcia et al., 2009)
identified four representative component-relevant bad
smells that they encountered in the context of reverse-
engineering and refactoring of large industrial sys-
tems. In order to detect such smells, they provide
architects with UML diagrams and concrete textual
definitions of each bad smell. More recently, in the
same perspective, Macia et. al. (Macia et al., 2013)
extended this catalogue.

2.3 Component-relevant Refactorings

In general, refactorings are often associated with a
set of bad smells (Fowler et al., 1999) by anal-
ogy to medical diagnostic-treatments. Nevertheless,
in the context of component-based software, object-
oriented refactoring seem not to be adequate to refac-
tor component-based software due to the additional

level of abstraction introduced by components and in-
terfaces.

3 SOLUTION APPROACH

In our approach, automated refactoring is imple-
mented using a search-based technique. We decom-
pose our approach in three steps: (i) extraction of rel-
evant information from source code to construct the
source code model, (ii) formulation of a detection
rule and a refactoring for each component-relevant
bad smell and finally (iii) exploration of the solutions
space using a genetic algorithm. Figure 1 depicts
these three steps. Next, we will see in detail each step.

Figure 1: Overall view of our approach.

3.1 Facts Extraction

During this step, we construct from source code and
additional artifacts (e.g. XML Configuration files) the
source code model in accordance with the metamodel
established in figure 2.

Figure 2: Source Code Metamodel.

We constructed this metamodel according to a
recent survey conducted by Vale et al. (Vale et al.,
2016). In this surveys, it is stated that components
are often considered as sets of classes and interfaces
are those classes which have a link with some classes

Automatic Refactoring of Component-based Software by Detecting and Eliminating Bad Smells - A Search-based Approach

211

from the outside of the component (e.g. a method
call or attribute use from the outside).

In order to perform the extraction of these infor-
mation, we have designed and implemented an extrac-
tion engine that rely on the API provided by Eclipse
JDT1. The extraction engine depends on the compo-
nent model, the underlying programming language
and additional component-model specific resources
like XML and Manifest configuration files. At this
moment, we have successfully defined and imple-
mented an extraction engine for OSGi component-
based applications.

3.2 Formulation of Detection Rules and
Associated Refactorings

In this section we will revisit component-relevant bad
smells. Moreover, we propose to detect each bad
smell by refining its description into aninformal rule,
and then extract from these rulesmeasurable prop-
ertieswhose range∈ [0,1] and pertain to internal at-
tributes and metrics of the constituents of source code
metamodel.

Furthermore, for each bad smell we propose a
refactoring to eliminate it. Similarly to Fowler’s ap-
proach (Fowler et al., 1999) we describe significant
properties of each refactoring using the following
template.

Table 1: Refactoring template.

The context summarizes the situation in
which the refactoring is needed. That is,
it explainwhenperforming the refactoring.
The summary of the refactoring must re-
flect in a concise mannerwhat action is
performed by the refactoring andwhereit
have to be performed. Themechanicsde-
scribeshowto perform the refactoring.

3.2.1 Ambiguous Interface

Definition. Components suffering from this bad
smell offer only asingle, general entry-point. Such
interface are referred to as ambiguous (Garcia et al.,
2009). Moreover itdispatchesrequests to internal
services not belonging to any interface (Garcia et al.,
2009).

Detection Rule. According to the previous defini-
tion, to judge whether a component suffers from am-
biguous interface, we need to know the number of its
interfaces and the number of their services. The lower

1Eclipse JDT. http://eclipse.org/jdt/

are these two numbers are low, the more the compo-
nent has ambiguous interfaces. Therefore these infor-
mation alone are not sufficient to assess how much
the interface is ambiguous. Indeed, we also need to
know about how much each interface dispatches re-
quests to other internal services not belonging to any
interface. Thus, we define the following rule to assess
how much a component suffers from this bad smell :

AI(C) =

1
|C.p| +

|C.p|
∑

i∈C.p
|SOS(i)| +

j∈C\C.p
∑

i∈C.p,k∈C

|SOC(i, j)|
|SOC(i,k)|

3
(1)

where :
• C.p denotes the set of provided interfaces of the

componentC.

• SOS(i) denotes the set of services belonging to the
interfacei.

• SOC(i,c) denotes the set of outgoing calls from
the services belonging to an interfacei to public
methods belonging to the classc.

Proposed Refactoring: Pull Interface. In a com-
ponent suffering fromambiguous interface, there may
be classes that offer services but are not defined as
provided interfaces. This reduces analyzability and
understandability since a user must look into the im-
plementation of the component to know about the ser-
vices it offers. The proposed refactoring namelyPull
Interfaceconsists in creating a new provided inter-
face for a component using the underlying component
model mechanisms to turn such classes into provided
interfaces.

3.2.2 Connector Envy

Definition. Components withConnector Envyen-
compass extensive interaction-related functionality
between two or more other components (Garcia et al.,
2009).

Detection Rule. According to the previous defini-
tion, a component suffering from this bad smell dele-
gates the majority of its requests to other components.
Thereby, the number of its incoming and outgoing
calls should be relatively high. Consequently we de-
fine the following rule to assess how much a compo-
nent suffers from connector envy :

CE(C) =

j /∈C
∑

i∈C
(|SOC(i, j)∪SOC(j, i)|)

∀k
∑

i∈C
(|SOC(i,k)∪SOC(k, i)|)

(2)

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

212

Proposed Refactoring: Push Component. A
component withconnector envyonly delegates calls
from a component to another and does not have a
proper responsibility. Thus it should be integrated to
one or the other. This bad smell reduces reusability
insofar the component can not be reused elsewhere.
The proposed refactoring namelyPush Component
consists in integrating a component into another by
moving all the classes belonging to a component into
another one and deleting the old component. By ap-
plying this refactoring, components withconnector
envyare eliminated. Thus, the lack of reusability is
not relevant anymore.

3.2.3 Scattered Parasitic Functionality

Definition. This bad smell occurs in a system where
multiple components are responsible for realizing the
same high-level concern and, additionally, some of
these components are individually responsible for an
additional unrelated concern (Garcia et al., 2009).

Detection Rule. Given a set of components, in or-
der to detect this bad smell, we need to measure the
overall cohesion of this set of components and the in-
dividual cohesion of each component. In one hand,
the higher is the overall cohesion, the more a function-
ality is scattered among this set of components. In the
other hand, the higher is the cohesion of each compo-
nent, the less this set of components suffer from scat-
tered parasitic functionality. So in order to detect this
bad smell, we propose the following rule to assess if
a set of componentsS= {C1,C2, ...,Cn} suffer from
scattered parasitic functionality :

SPF(S) =
1
2
· (LCC(S)+ ∑

Ci∈S

1−LCC(Ci)

|S|) (3)

where :

• LCC(c) denotes the cohesion of the classes be-
longing to the componentc according to theLoose
Class Cohesionmetric proposed in (Bieman and
Kang, 1995).

Proposed Refactoring: Merge Components. In a
system suffering fromScattered Parasitic Functional-
ity, several components may be individually responsi-
ble for implementing a wide scope concern. The latter
should be encompassed in a single component. This
violates the separation of concerns principle since a
concern is scattered among a set of elements. The
proposed refactoring namelyMerge Componentscon-
sists in merging two or more components into a new
one by creating a new component containing all the

classes belonging to several components and deleting
the old ones.

3.2.4 Component Concern Overload

Definition. Components withconcern overloadare
responsible for realizing two or more unrelated archi-
tectural concerns (Garcia et al., 2009).

Detection Rule. This bad smell can be easily de-
tected by measuring the cohesion of the component.
The lower this measure, the more the component is
suffering from concern overload. So, we propose this
rule to assess how much a component is overloaded
with many concerns :

CCO(C) = 1−LCC(C) (4)

Proposed Refactoring: Extract Component. In
a single component suffering fromComponent Con-
cern Overload, the separation of concerns principle
is violated since an element is responsible of two
or more concerns. The refactoring proposed here
namelyExtract Componentconsists in extracting a
new component from an existing one by creating a
new component containing a subset of classes from
the set of classes belonging to a given component.

3.2.5 Overused Interface

Definition. Also called Fat Interfaces (Romano
et al., 2014), these are interfaces whose clients invoke
different subsets of their services (Macia et al., 2013).

Detection Rule. This bad smell can be detected by
measuring for each client of a given interface, the
number of services invoked together. The higher is
this number, the less the interface is overused. Thus
we propose in a similar manner to (Romano et al.,
2014) to detect this bad smell by measuring the aver-
age of the ratio of services invoked from all the clients
of a given interface using the following rule :

OI(i) = 1
|CLIENT S(i)| · ∑

Ck∈CLIENT S(i)

|SOC(Ck,i)|
|SOS(i)| (5)

where :

• CLIENT S(i) denotes the set of clients using the
interfacei.

Proposed Refactoring: Extract Interface. An in-
terface suffering fromInterface Overloadmay be
caused by aGod Class(Fowler et al., 1999). The
refactoring proposed here namelyExtract Interface

Automatic Refactoring of Component-based Software by Detecting and Eliminating Bad Smells - A Search-based Approach

213

consists in extracting a new interface from an existing
one by creating a new interface containing a subset of
methods from the set of methods belonging to a given
interface.

3.3 Genetic Algorithm

Basically Search-Based approaches rely on three key
ingredients (Bavota et al., 2014) : (i)an individual
representationused to encode a solution to the prob-
lem; (ii) a fitness functionwhich is a mean to as-
sess the quality of a given individual; and (iii)change
operatorswhich are used to produce new neighbor-
hood solutions starting from existing ones. In or-
der to implement a genetic algorithm (GA) for auto-
mated refactoring of component-based software, we
describe in the following each of the three above-
mentioned elements and how they are articulated
within the genetic algorithm.

3.3.1 Individuals Representation

In our approach, individuals are composed of two el-
ements (Figure 3):

• The genotypewhich is an ordered variable-length
sequence of refactorings including necessary pa-
rameters. When the sequence of refactorings is
executed, it performs these changes and produces
a modified version of the source code model.

• The phenotypewhich is the obtained source code
model after performing the sequence of refactor-
ings to the initial source code model in the order
that is given in the genotype.

Figure 3: Individual Representation.

Our use of a source code model as a phenotype en-
ables efficient computation of bad smells detection
rules.

3.3.2 Fitness Function

In our approach, the fitness function is the sum of the
five above-defined rules used to detect bad smells in
all components and interfaces of the application. The
fitness function is evaluated on an individual by (i)
running the sequence of refactoring operations con-
tained in its genotype and (ii) evaluating the detection

rules on the resulting source code model contained in
its phenotype.

3.3.3 Change Operators

In each iteration, the GA starts by (i) selecting chro-
mosomes that will form a mating pool for crossover
and mutation using the roulette wheel selection. This
selection is based on the fitness value of individu-
als. Then (ii) the offspring is generated by apply-
ing one-point crossover on each pair to generate two
new chromosomes. After that, (iii) mutation is ap-
plied to each chromosome in the current population
with a user-defined probability. It either replaces a
randomly chosen refactoring operation by a new one
or randomly inserts/deletes a new refactoring opera-
tion to the genotype. The process continues until the
choosen number of generations is reached.

4 CASE STUDY

We have experimented our approach on Eclipse MAT
(Memory Analyzed Tool)2 which is an OSGi stan-
dalone application that supports programmers to de-
tect memory leaks. Eclipse MAT contains 12 com-
ponents (OSGi Bundles). Figure 4 depicts the depen-
dencies between Eclipse MAT components with fo-
cus on ones severly affected by bad smells (colored in
grey).

Figure 4: Dependency diagram of Eclipse MAT.

4.1 Approach Efficiency

In our genetic algorithm, we used 1000 generations
for a population size of 20. The results of our evalua-
tion are summarized in Figure 5.

We notice that our approach improves pretty
good the value of the fitness function. Indeed we
have found that the value of the fitness function of
the best proposed solution was 3.86. This indi-
cates that 4.41(8.27−3.86) of bad smells have been
fixed which gives an acceptable efficiency value of
53%(4.41/8.27).

2Eclipse Memory Analyzer Tool : www.eclipse.org/mat

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

214

Figure 5: Fitness value evolution (Lower values are better).

4.2 Approach Accuracy

We manually investigated the obtained design to
judge if the proposed refactorings are accurate and we
have found that the best solution produced by the GA
contains 9 components (Figure 6).

Figure 6: System design after applying refactorings.

We notice that in the original design 6 components
were severly suffering from bad smells (colored in
grey in Fig. 4). However, 8 components have been
refactored into 5 new ones (colored in blue in Fig. 6)
and the 4 remaining components stayed untouched.
Among these 8 components only 2 ones were not af-
fected by bad smells. This gives us afalse positives
value of 16.66%(2/12). This low value indicates that
our approach is very accurate on detecting and cor-
recting bad smells.

5 CONCLUSION

In this paper, we have addressed automated refactor-
ing of component-based software systems. To tackle
this problem, we have proposed detection rules for the
recently proposed component-relevant bad smells as
well as a catalogue of component-relevant refactor-
ings. Then, we relied on these two elements to pro-
pose a genetic algorithm to find the best sequence of
refactorings to perform. We have experimented our
approach on a medium-sized software and evaluated
it in terms of efficiency and accuracy.

To the best of our knowledge, our approach is the
first attempt to automated refactoring of component-

based applications. We believe that we can further im-
prove it in the future. In the short term, we plan to ex-
tend our extraction engine to support more component
models. In the long term, we plan to use component-
relevant quality metrics to improve the exploration of
the solution space.

REFERENCES

Bavota, G., Di Penta, M., and Oliveto, R. (2014). Search
based software maintenance: Methods and tools. In
Evolving Software Systems, pages 103–137. Springer.

Bieman, J. M. and Kang, B.-K. (1995). Cohesion and reuse
in an object-oriented system. InACM SIGSOFT Soft-
ware Engineering Notes, volume 20, pages 259–262.
ACM.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: Improving the design of ex-
isting programs.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic,
N. (2009). Toward a catalogue of architectural bad
smells. InArchitectures for adaptive software systems,
pages 146–162. Springer.

Macia, I., Garcia, A., Chavez, C., and von Staa, A.
(2013). Enhancing the detection of code anoma-
lies with architecture-sensitive strategies. InSoftware
Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pages 177–186. IEEE.

O’Keeffe, M. and Cinnéide, M. O. (2006). Search-based
software maintenance. InSoftware Maintenance and
Reengineering, 2006. CSMR 2006. Proceedings of the
10th European Conference on, pages 10–pp. IEEE.

Romano, D., Raemaekers, S., and Pinzger, M. (2014).
Refactoring fat interfaces using a genetic algorithm. In
Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, pages 351–360.
IEEE.

Seng, O., Stammel, J., and Burkhart, D. (2006). Search-
based determination of refactorings for improving the
class structure of object-oriented systems. InProceed-
ings of the 8th annual conference on Genetic and evo-
lutionary computation, pages 1909–1916. ACM.

Vale, T., Crnkovic, I., de Almeida, E. S., Neto, P. A. d.
M. S., Cavalcanti, Y. C., and de Lemos Meira, S. R.
(2016). Twenty-eight years of component-based soft-
ware engineering.Journal of Systems and Software,
111:128–148.

Automatic Refactoring of Component-based Software by Detecting and Eliminating Bad Smells - A Search-based Approach

215

