
Towards an Efficient API for Optimisation Problems Data

Rodrigo Lankaites Pinheiro1, Dario Landa-Silva1, Rong Qu1, Edson Yanaga2

and Ademir Aparecido Constantino3

1ASAP Research Group, School of Computer Science, University of Nottingham, Nottingham, U.K.
2Unicesumar - Centro Universitário Cesumar, Maringá, Brazil

3Departamento de Informática, Universidade Estadual de Maringá, Maringá, Brazil

Keywords: Application Programming Interface, Workforce Scheduling and Routing Problems, Decision Support Sys-
tems, Research And Development.

Abstract: The literature presents many application programming interfaces (APIs) and frameworks that provide state of
the art algorithms and techniques for solving optimisation problems. The same cannot be said about APIs
and frameworks focused on the problem data itself because with the peculiarities and details of each variant
of a problem, it is virtually impossible to provide general tools that are broad enough to be useful on a large
scale. However, there are benefits of employing problem-centred APIs in a R&D environment: improving the
understanding of the problem, providing fairness on the results comparison, providing efficient data structures
for different solving techniques, etc. Therefore, in this work we propose a novel design methodology for an
API focused on an optimisation problem. Our methodology relies on a data parser to handle the problem
specification files and on a set of efficient data structures to handle the information on memory, in an intuitive
fashion for researchers and efficient for the solving algorithms. Also, we present the concepts of a solution
dispenser that can manage solutions objects in memory better than built-in garbage collectors. Finally, we
describe the positive results of employing a tailored API to a project involving the development of optimisation
solutions for workforce scheduling and routing problems.

1 INTRODUCTION

The literature presents many application program in-
terfaces (API) and frameworks to help researchers and
practitioners to apply state of the art solving tech-
niques to optimisation problems. Examples of such
APIs and frameworks are ParadisEO (Cahon et al.,
2004), jMetal (Durillo and Nebro, 2011) and Opt4J
(Lukasiewycz et al., 2011). These tools and APIs
have in common the fact that they provide flexible im-
plementations of state of the art algorithms that can be
adapted to most optimisation problems, given that the
objective-function is known. However, on a research
and development (R&D) environment, understanding
the problem can be an important asset to solve it. With
a comprehensive understanding of the problem, one
can achieve improved tailored solutions. Thus, hav-
ing an API to handle the problem itself, including
data, features, constraints and objective-function can
be beneficial to the project.

Few APIs with a stronger focus on the problem
were recently proposed, including an API to solve
nonlinear optimisation problems (Matias et al., 2010;

Mestre et al., 2010) and a new API for evaluating
functions and specifying optimisation problems at
runtime (Huang, 2012). Nonetheless, there is a rea-
son why APIs and frameworks focused on problems
are not common: they highly depend on the problem
being tackled and a single optimisation problem pos-
sesses many variants, making it impracticable to de-
fine a unified model that covers all possible versions.
Therefore, in this work we present a set of guidelines
and recommendations to design a tailored API that
can be adapted to any optimisation problem emerging
from a R&D project.

Our design follows the framework proposed by
Pinheiro and Landa-Silva (2014), hence in the core
of the API is the data model represented by a set
of XML files. Our proposed design is composed of
three novel components. The first is a parser for the
files that is able to read from and write to the mod-
elled format. The second are the data structures con-
taining the relevant optimisation data kept in mem-
ory. These data structures are designed to maximise
performance to access the data during the optimi-
sation process. Lastly, we propose a feature called

Pinheiro, R., Landa-Silva, D., Qu, R., Yanaga, E. and Constantino, A.
Towards an Efficient API for Optimisation Problems Data.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 89-98
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

89



Solution Dispenser which centralises the objective-
function and provides a repository for solution ob-
jects that recycles solution objects and aims to min-
imise the interference of the built-in garbage collec-
tor and memory fragmentation, hence further increas-
ing computational performance. Although we use a
workforce scheduling and routing problem to illus-
trate the components, the concepts of the API can be
adapted to any optimisation problem because of the
data-driven approach employed.

Finally, we present the results of employing the
proposed API to an ongoing R&D project. By de-
signing a problem-centric API, the team can avoid re-
work, improve the quality of the software and pro-
mote fairness to compare different developed solving
techniques. We also present an empirical study of the
efficiency of applying the solution dispenser instead
of relying on the garbage collector of modern lan-
guages and we show that substantial computational
performance can be gained by employing them.

The main contributions of this work are twofold:

1. A development methodology for problem-driven
optimisation APIs that can be applied by both re-
searchers and practitioners to increase productiv-
ity, reliability and code efficiency.

2. An object-pool technique to store solution objects
to increase the performance of heuristic optimisa-
tion algorithms.

The remaining of this paper is structured as fol-
lows. Section 2 outlines the Workforce Scheduling
and Routing Problems Project, which is used to illus-
trate the application of the proposed API. Section 3
presents the guidelines and instructions on designing
the API. Section 4 presents the results obtained and
section 5 concludes this work.

2 THE WSRP PROJECT AND
RELATED WORK

In this work, we illustrate the design of the proposed
API using a Workforce Scheduling and Routing Prob-
lem (WSRP). In general terms, the WSRP is a class
of problems where a set of workers (nurses, doctors,
technicians, security personnel, etc.), each one pos-
sessing a set of skills, must perform a set of visits.
Each visit may be located in different geographical
locations, requires a set of skills and must be attended
at a specified time frame. Working regulations such as
maximum working hours and contractual limitations
must be attended. This definition is quite general and
many problems can be considered WSRPs.

This work considers a variant of this problem,
the home healthcare scheduling and routing problem.
Workers in this scenario are nurses, doctors and care
workers while the visits represent performing activi-
ties on patients who are in their houses. In this prob-
lem, the main objective of the optimisation is to min-
imise distances and costs while maximising worker
and client’s preference satisfaction and avoiding (if
possible) the violation of area and time availabilities.
For more information regarding the WSRP we rec-
ommend the works of Castillo-Salazar et al. (2012,
2014), Laesanklang et al. (2015a,b) and Pinheiro et al.
(2016).

We are engaged in a R&D project in collabora-
tion with an industrial partner in order to develop the
optimisation engine for tackling large WSRP scenar-
ios. The existing information system collects all the
problem-related data and provides an interface to as-
sist human decision makers in the process of assign-
ing workers to visits. We are responsible for de-
veloping the decision support module that couples
well with the information management system being
developed and maintained by the industrial partner.
Hence, the proposed API is being used by the research
team and later it integrates into the current system.

Many APIs and implementations available in the
literature focus on the solving techniques. We can
highlight the ParadisEO (Cahon et al., 2004), the
jMetal (Durillo and Nebro, 2011) and the Opt4J
(Lukasiewycz et al., 2011). They are all frameworks
that provide several solving algorithms for both sin-
gle and multiobjective problems. They all have in
common the fact that they are built around the solving
methods and they are flexible enough to be applied to
many optimisation problems.

In the literature, we can also find frameworks and
APIs with a stronger focus on the problems being
solved rather than on the solving techniques.

• Matias et al. (2010) and Mestre et al. (2010)
propose a web-based Java API to solve nonlin-
ear optimisation problems. The API incorpo-
rates a set of constrained and unconstrained prob-
lems and gives the user the possibility to de-
fine his own problems with custom-made objec-
tive functions. However, defining exclusively the
objective-function may be too restricting to the re-
search of the solver because solvers may require
access to individual features of the problem (con-
straints, objectives, etc.) or to partial evaluations.
Hence, our API could be integrated with this or
any framework focused on the solving algorithm
as we focus on how to efficiently access the data
and build solution objects.

• In his work, Huang (2012) proposes a new API

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

90



for evaluating functions and specifying optimisa-
tion problems at runtime. They propose a Fortran
interface FEFAR for the evaluation of objective
functions and a new definition language LEFAR
for the specification of optimisation problems at
runtime. Conceptually, we differ from them as we
are not proposing an implemented tool applicable
to specific scenarios, but instead, we provide the
concepts of a tailored API that can help on the re-
search and development of optimisation solutions.

• Pinheiro and Landa-Silva (2014) propose a frame-
work to aid in the development and integration of
optimisation-based enterprise solutions in a col-
laborative R&D environment. The framework
is divided into three components, namely a data
model that serves as a layer between practition-
ers and researchers, a data extractor that can fil-
ter and format the data contained in the informa-
tion management system to the modelled format
and a visualisation platform to help researchers
to fairly compare and visualise solutions coming
from different solving techniques. In their work,
they mention the importance of an API that ex-
tends the usefulness of the data model. In this
work, we extend that concept and describe how
to design and implement the key components of
a problem-oriented API. While that work focuses
on the research and development methodology,
here we focus on the design of an API that can
further facilitate the development of optimisation
solutions.

Although the aforementioned related works at-
tempt to provide problem-oriented tools, to the best
of our knowledge they are restrictive and possibly not
widely applicable due to their limitations. Therefore,
the design of a tailored API for an optimisation prob-
lem can be beneficial to an R&D project as long as the
time spent on its development is justifiable. Hence,
we now present a set of guidelines to facilitate the de-
velopment of such tools.

3 API FOR OPTIMISATION
PROBLEMS DATA

The proposed API is composed of three main compo-
nents that allow the user to decode the data files of a
problem scenario, to load the data into efficient and
easy-to-access data structures and to build and evalu-
ate solutions in a straightforward and efficient way.

Figure 1 presents an overview of the API compo-
nents. On top, we have the XML Data (the files con-
taining a problem instance definition) as input for the

Figure 1: Overview of the API.

API. The XML Parser decodes the files and builds the
Data Structures that can be accessed by the user of the
API. The user can also access the Solution Dispenser
to instantiate and dispose of solution objects of the op-
timisation problem. The Solution Dispenser commu-
nicates with the Data Structures to evaluate and up-
date current solutions.

These features facilitate the development of both
experimental solving techniques and final release ver-
sions. Additionally, they provide a reliable way for
the algorithms to query the data and to compare so-
lutions from different approaches. We describe next
how an algorithmic solver interacts with the API.

3.1 API Concept

Figure 2 present an overview of the API employed
in the WSRP project and how the developed solvers
interact with the API. Following, we describe each
feature numbered in the figure. Some features extend
to all problems and can potentially be employed by an
API tackling any problem.

1. Solver: the API facilitates the use of different
solving techniques (exact solvers, heuristic algo-
rithms, etc.) on the problem because it provides
a set of methods to easily access different fea-
tures of the problem, such as values, constraints
and basic operations on the data. Therefore, the
researchers can plug in existing solving APIs and
frameworks or new algorithms.

Towards an Efficient API for Optimisation Problems Data

91



Figure 2: Main features of the WSRP API, where (1) refers to the optimisation solver (mathematical solver, heuristic algo-
rithms, etc.), (2) and (10) to the data parser, (3) to the internal memory structures, (4) to (8) to the operations and methods
supported by the API and (9) to the Solution Dispenser.

2. Problem Data: we consider that each problem
instance can be represented in a set of datafiles
(in this case we use XML files). These files must
contain all information related to a single instance
of the optimisation problem.

3. Internal Data Structures: one of the main func-
tionalities of the API is to provide a set of effi-
cient data structures to hold the data in the mem-
ory. After the solver selects a problem instance
to load, the data parser reads the files and allocate
the problem data into memory. These structures
are designed to provide maximum access perfor-
mance to the solver.

Problem-specific features must be adapted to the
problem at hand. The API should provide easy ac-
cess to the internal data structures and methods for
easy and efficient access. Following, we present what
we considered to be essential to be provided by the
WSRP API:

4. Constraints: the API provides several methods to
assess and evaluate the basic problem constraints
related to assignments. For example, given an as-
signment (a visit and a worker), the API provides
methods to:

– Check if the worker is skilled for the visit.
– Check if the worker possesses a valid contract

to perform that visit.
– Check if the worker is available at the time of

the visit.
– Check if the worker can commute to the place

of the visit.

5. Operations: the API also provides several op-
erations to be used by the solver. These oper-
ations can be simple checks and validations or
complex functionalities. Among the operations in
the WSRP we highlight:

– Check if two given visits are time conflicting.
– Check if a worker is qualified to perform two

given visits.
– Calculate the best contract for an assignment.

6. Preferences: in addition to constraint methods,
the WSRP API also provides methods for evalu-
ating preferences (worker, staff and patient’s pref-
erences):

– Retrieve the worker preferred to perform a
given visit based on historical data.

– Calculate the visits that a given worker prefers
to perform.

– Locate the worker that best matches a given pa-
tient preferences.

7. Geographical Methods: because the WSRP
combines scheduling and routing, we designed a
set of methods related to the geographical data,
including:

– Check if a given visit is within a given area.
– Given a transportation mode, calculate the time

to commute from a visit to another.
– Check which transportation modes can be used

within an area.
– Retrieve all visits within an area.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

92



8. Overall Data Access: it is important to notice
that although the provided methods and opera-
tions are extensive, specific solvers or techniques
may require a different way to access the data,
hence, the WSRP API also provides basic ’get’
methods for all information (Figure 3).

Finally, the API also provides functionalities re-
lated to building and maintaining solutions for the op-
timisation problem:

9. Solution Handling: the solver may deal with a
single or with multiple solutions simultaneously.
The Solution Dispenser provides an interface for
the solver to create and store solutions in the
memory. This component provides the following
methods:

– Create a new solution.
– Add assignment – given a visit, a worker, a con-

tract, start time and transportation mode, the
method uses this information and creates an as-
signment in a currently specified solution.

– Dispose of the solution.

10. Save Solution: finally, the data parser is able to
save a solution object to an XML file that can later
be retrieved and loaded back into memory.

Next, we detail each component of the proposed
methodology to build an API for optimisation prob-
lems data.

3.2 XML Data Parser

Pinheiro and Landa-Silva (2014) proposed the use of
a data model to represent the optimisation problem
features and data. In a collaborative environment,
where practitioners work with the academia to de-
velop a decision support system, it is common that
an information system already exists and that the de-
cision support system is a feature to be incorporated.
In this context, a data model to represent the problem
was proposed to improve the development of the def-
inition of the optimisation problem being tackled, the
independence between the development team and the
research team and to promote an easy integration of
the solver to the actual information system.

Extending the data modelling concept proposed
by Pinheiro and Landa-Silva (2014), the first compo-
nent of the proposed API is a parser to read the in-
put files from the data model and build the data struc-
tures. Additionally, the parser is also responsible for
converting a solution of the optimisation problem into
the data file. Also, the parser must be implemented
in such a way to easily accommodate extensions or

updates in the data model. For that purpose, we em-
ployed a serialisation library to serialise the data to
and from an XML data format.

Since we are using Java, we employed the
XStream Java library (Walnes, 2016), however, most
high-level languages have XML serialisation mecha-
nisms available. The advantage of such approach is
that we can create a set of classes that corresponds
immediately to the modelled data, hence the seriali-
sation library can handle all the file parsing. This is
easy to develop and do not require much program-
ming time, however, it is likely that the objects in
memory are not best suited for performance or for
intuitive access because the serialisation mechanism
often requires intermediate classes and public access
to attributes. Hence, the parser is used exclusively to
translate the information from and to the files. For ef-
ficient and easy access to the data, we need another
set of data structures.

3.3 Internal Data Structures

The second component of the API is composed of the
data structures to hold the problem-related data. It is
important to emphasise that while the aforementioned
data model is intended to be a clear representation of
the optimisation problem, the internal data structures
must be efficient for access during the optimisation
process.

Therefore, we must ensure that the operations in-
voked during the optimisation are performed on con-
stant (O(1)) time when possible. Additionally, the
API should be flexible enough to easily accommo-
date different solving techniques, as we are not only
concerned about the final product but with the entire
process of developing the R&D project. Hence, in
our work, we divided the API into groups of objects,
following the data model orientation. Therefore, we
have in the WSRP API the following groups:
• Visits – containing information about the require-

ments of each visit, e.g. number of workers re-
quired, start time, duration, location, skills re-
quired, preferences, etc.

• Workers – containing information related to the
workers themselves, e.g. skills, availability, home
location, preferences.

• Areas and locations.
• Transportation modes.
• Contracts – containing information regarding

maximum and minimum working hours and costs.
To hold the objects, we first use arrays. The ad-

vantage of using arrays is that the random access us-
ing indexes is very efficient (O(1)). The disadvantage

Towards an Efficient API for Optimisation Problems Data

93



is that to load the data we must first assess its size
in order to allocate the right length for the arrays (or
use dynamic array structures which could also hinder
the performance if the pre-allocated size is not large
enough). To increase the loading performance, we
added a new XML file to the model, called ’meta-
data.xml’ that accommodates several information and
statistics of the problem instance, such as the number
of workers, tasks, the date format used in the files, etc.

Using arrays may be sufficient for most solving
algorithms as it allows fast random access and quick
interaction through the elements. However, it may be
a problem with specialised heuristics or external soft-
ware that might have access to the API. Such systems
are often linked with a database, hence, they han-
dle elements using their own identification number,
which is stored in the XML, but is not consistent with
the index of the arrays. To solve this matter, we em-
ploy a second data structure, a hash table, linking the
identification numbers of the database entries to its
respective objects. In order to provide better usabil-
ity with both data structures, we encapsulated both the
hash table and the arrays, for each type of objects, into
a single class representing the set of elements.

Finally, to improve the usability of the API, we
define a naming convention to make it clear regard-
ing the performance of the operations. All methods
starting with the words ’get’, ’is’ and ’has’ are guar-
anteed to perform in O(1) time. All methods starting
with the word ’calculate’ are guaranteed to perform in
O(nk) time in the worst case.

Figure 3 presents a class diagram of the data
structures. For simplicity, we included only the
main class that defines the optimisation problem
and the classes that define the tasks and the set of
tasks. The main class, WorkforceSchedulingAndRout-
ingProblem, is composed of sets of elements included
in a problem instance, namely areas, tasks, human re-
sources and contracts. This class provides an inter-
face such that the user can retrieve each set and its
elements. Also, this class allows the user to obtain
the Solution Dispenser, explained in the subsequent
section. Note that the calculateMinimumNumberO-
fAssignments method, as aforementioned, starts with
the ’calculate’ word, hence in the worst case it per-
forms in O(n), while all ’get’ methods performs with
O(1) time complexity.

The Tasks, Areas, HumanResources and Contracts
classes contain both the arrays of elements and the
hash table linked by each element’s identification
number. Hence, when using these classes it is pos-
sible to interact through all elements or retrieve a spe-
cific one given its identification number or index, as
we can find in the Tasks class. We see that from this

Figure 3: Class diagram for the main problem class and the
tasks-related classes.

class it is possible to identify an ordered list of tasks
ls representing the array and the hash table hashTable
containing the mapping of identification numbers. Fi-
nally, the class Task contains all the methods to access
the data from a single task plus some useful opera-
tions, such as isTimeConflictingWith which checks if
a second given task conflict in time with the current
task (hence they cannot be performed by the same
worker).

3.4 The Solution Dispenser

The last component of the API is the Solution Dis-
penser (SD). The SD provides an interface for the user
to build and assess a solution for a given problem in-
stance. Once the problem is loaded into an object, the
user can invoke the SD to create a new solution ob-
ject. A new empty solution is created and an identifi-
cation number is returned to the user. He/she then can
use this number to access the solution and add new as-
signments and evaluate the solution according to mul-
tiple criteria (preferences, objectives or constraints).

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

94



Figure 4: Flow diagram for the Solution Dispenser. Solid lines represent the flow for the ’New Solution’ action, dashed lines
for the ’Retrieve Solution’ action and dotted lines for the ’Dispose Solution’ action.

The user can also invoke the objective function to
evaluate the solution. Figure 4 presents a schematic
for the SD component.

Modern programming languages, such as Java and
C#, provide a convenient way to handle objects: a
garbage collector. When the user doesn’t need an
object anymore, all he has to do is to get rid of the
links and pointers to that object. At a given time, the
garbage collector starts processing, seeking objects
that are not linked by the user’s program and free-
ing the memory. That can lead to two problems: the
first is the fragmentation of the memory, which is a
problem because the defragmentation process can be
slow; the second is the extra processing time to seek,
to free the memory and later to allocate new objects
(Siebert, 2000; Bacon et al., 2003).

Leaving the disposal of objects to the garbage col-
lector can lead to a decrease in performance that,
aside from being marginal for most applications, can
have an unacceptable impact on optimisation algo-
rithms. Hence, the SD internally implements an Ob-
ject Pool design pattern (Nystrom, 2014) to recycle
the objects. To do that we employ a factory object
implemented using the factory design pattern (Yener
et al., 2014) for easy creation of the objects. This fac-
tory is responsible for creating new solution objects.

When a new solution request is invoked (Figure
4), the factory seeks its internal solution repository
(a list of disposed solutions). If there is a solution
available in the repository, it retrieves it, clears the
solution and returns it to the solver. The solver now
has an empty solution that it can use. When the solver
does not need the solution anymore, it can dispose of
the solution by invoking the specific method in the
SD. The factory then receives the disposed solution
and stores it in the list.

Potentially, the use of the solution dispenser can
provide significant performance gains. Take for in-

stance a population-based algorithm that processes
one generation per second with a population of 100
individuals. That means 100 solutions being disposed
of per second. After ten minutes running, the algo-
rithm will have disposed of 60000 solutions, which
potentially could fragment the memory and cause sev-
eral garbage collection calls. Now, when using the
dispenser, considering the worst case, when a new
population is created before disposing of the old one,
we need 100 active solutions per population, totalling
200 total solutions active that will be recycled dur-
ing the execution. Thus, in this hypothetical scenario,
we could have a decrease of 99.6% on the number
of objects used, which could represent a reduction of
97.5% on the processing time and memory consumed
by the garbage collector (see section 4.1).

4 EXPERIMENTS AND RESULTS

We now present the results of the use of the API in the
WSRP project. Having a centralised API containing
a parser and efficient internal data structures helped
both teams to avoid performing rework. Also, the
company’s development team were able to easily han-
dle the data files by using the integrated parser, saving
time. The internal data structures allowed everyone
to feel confident that they were using an efficient im-
plementation. Having the best-known data structures
available for everyone, helps to achieve improved effi-
ciency in all solvers developed. Additionally, after the
release of the API, the use of the integrated Solution
Dispenser helped our team to assess and compare the
developed solvers because it guaranteed that both sin-
gle point algorithms and population-based were han-
dled efficiently. Finally, having multiple people work-
ing using a single API helps to spot code errors and

Towards an Efficient API for Optimisation Problems Data

95



25 50 10
0

25
0

50
0

10
00

25
00

50
00

10
00

0
25

00
0

0
1

5

10

15

Solution Size

Ti
m

e(
s)

SD - Total

SD - new

SD - dispose

GC - Total

GC - new

GC - dispose

Figure 5: Time comparison between the Solution Dispenser (SD) and the Java Garbage Collector (GC) to instantiate and
dispose new solutions.

bugs faster than having each researcher to find errors
alone on his own code, ensuring higher quality on the
software developed.

4.1 Solution Dispenser

We now present an empirical analysis of the effi-
ciency of the Solution Dispenser. The SD is respon-
sible for holding solution objects of given problem,
hence small problems using larger encoding consume
more memory than larger problems using smaller en-
coding. This is particularly true when comparing an
integer array representation (an array the size of the
number of tasks) and a binary array representation (a
matrix which is of size number of workers × num-
ber of tasks). Therefore, to test the solution dispenser
we used integer arrays varying from very small (25
elements) to very large (25000 elements) represent-
ing respectively a small problem using integer rep-
resentation and a large problem using binary repre-
sentation. Note that although the decision variables
may be binary, for several reasons it not uncommon
to find these arrays implemented using complex ob-
jects (Durillo and Nebro, 2011), hence, it is reason-
able to use integer variables instead of binary ones in
our experiments.

We defined our experiments as follows: for each
problem size, we sequentially created and disposed
of one million solution objects. For the experi-
ments using the garbage collector, the disposing pro-
cess merely unlinked the objects to free them to the
Garbage Collector (GC) while for the SD it called
the internal dispose process and cleared the object

data. We run each set-up for five times and computed
the average results. Additionally, to measure time
and memory we used the integrated profiler avail-
able on Netbeans which can accurately measure the
time spent on each method and the memory allocated
during the execution of the application. The exper-
iments were performed on a quad-core Intel i7 ma-
chine with 32GB memory on the Java platform. The
main reason for choosing Java is that is a mature lan-
guage, multi-platform and widely employed for opti-
misation problems with a large number of optimisa-
tion algorithms implemented and available for pub-
lic use (Cahon et al., 2004; Durillo and Nebro, 2011;
Lukasiewycz et al., 2011).

Figure 5 presents the results of the time computa-
tion. The red lines represent the time spent in seconds
on experiments using the Java garbage collector and
the blue lines represent the time spent on experiments
employing the solution dispenser. The solid lines rep-
resent the total time, the dashed lines represent the
time used by the ’new’ method, which allocates new
solution objects and the dotted lines represent the ’dis-
pose’ method. We can see that the time spent by the
SD follows a constant trend throughout all problem
sizes. This happens because both the ’new’ and ’dis-
pose’ operations of the solution dispenser perform in
constant time and since there are no objects freed in
the memory (they are being kept alive by the SD), the
garbage collector (automatically activated by the Java
virtual machine) just quickly checks for dead objects,
finds nothing, and is deactivated without any extra
processing.

Regarding the tests using the garbage collector,

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

96



25 50 10
0

25
0

50
0

10
00

25
00

50
00

10
00

0
25

00
0

0

200

400

600

800

Problem Size

M
em

or
y

U
se

d
(M

B
)

SD Maximum

SD Average

GC Maximum

GC Average

Figure 6: Memory comparison between the Solution Dispenser (SD) and the Java Garbage Collector (GC).

we see that the ’dispose’ operation is performed in
constant time, but the ’new’ method requires higher
time proportional to the size of the solutions. We can
clearly see how relying on the garbage collector to
dispose and allocate new objects can hinder the per-
formance of the application. Also, it is important to
notice that in our experiments we did not specify any
parameters for the Java virtual machine, hence the ex-
periments had as much memory as it was required.
In a real-world environment, that might not be the
case. Many processes may be active in the machine
and the memory might be limited, which would make
the garbage collector to be active more often than it
was on the presented tests, hence further decreasing
the performance.

In Figure 6 we have the results of the memory
allocation measurement. The red lines represent the
experiments using the garbage collector and the blue
lines the solution dispenser. Also, the solid lines rep-
resent the maximum memory allocated in MB and the
dashed lines the average memory allocated. Analo-
gously to the previous chart, we can clearly see that
the memory required by the SD, not surprisingly, is
constant throughout all experiments. Although the
size of the array changes on each experiment, only
one object is allocated in memory during the runtime.
However, when relying on the garbage collector, we
see that it makes use of much more memory, which
reinforces our previous statement that in a scenario
where the memory is limited the garbage collector re-
quires more frequent activation.

Thus, we can clearly see that by employing the so-
lution dispenser we can achieve substantial improve-
ments both in time and memory consumption, espe-

cially on larger problems or problems where the so-
lution representation is larger. Also, the idea of the
solution dispenser of recycling objects could be im-
plemented in the solver algorithms themselves, espe-
cially on population-based algorithms (because of the
high number of created and disposed solutions), to
maintain their individuals pool.

5 CONCLUSION

Because it is not possible to provide a general API that
suits all problems, we instead provided in this work a
set of guidelines and instructions to aid on the tailor-
ing of an API to efficiently handle the optimisation
problem data and to help to increase the performance
of solving techniques. We first stipulated a file parser
that can read the modelled format and load all perti-
nent information into memory. Then we defined an
intuitive and efficient approach to storing this infor-
mation using efficient data structures that are clear
and computationally efficient, hence it can improve
the research process and be applied to a final solver
algorithm. Finally, we proposed a component called
Solution Dispenser which provides a solution repos-
itory that handles the memory allocation of solution
objects in an improved way.

We discussed that having the API available for
academics and practitioners greatly helped us on our
project. We were able to minimise the rework done
by multiple researchers from different backgrounds,
to reduce the time spent on implementations and the
assessment of solving techniques started earlier. We
were also able to increase the solvers efficiencies and

Towards an Efficient API for Optimisation Problems Data

97



to promote a consistent mean to compare solutions.
Also, we managed to improve the identification of
glitches and bugs in the code, raising the reliability
of the software being developed from early stages of
the project. Moreover, we analysed the advantages of
using the Solution Dispenser and presented the com-
putational gains that can be obtained by employing
such technique and the design patterns presented.

In conclusion, the guidelines of the API design
proposed in this work can help academics and practi-
tioners to achieve improved results, both for research
or production purposes. While the API provides a
fair mechanism for researchers to develop and as-
sess their algorithms, it also provides a reliable frame-
work for practitioners to ground their solutions. Ad-
ditionally, the computational performance that can be
gained from applying the aforementioned techniques
can help researchers to develop their algorithms and
the industry to improve their solutions or reduce costs.
Finally, our reported experience, arising from a col-
laboration with an industrial partner, may be useful
for other researchers and practitioners in a similar po-
sition.

Our future work will further investigate the data
structures aiming to improve their efficiency. Also,
we will test the proposed dispenser on a real-world
environment, assessing it with optimisation algo-
rithms solving real-world problems.

REFERENCES

Bacon, D. F., Cheng, P., and Rajan, V. T. (2003). Con-
trolling fragmentation and space consumption in the
metronome, a real-time garbage collector for java.
SIGPLAN Not., 38(7):81–92.

Cahon, S., Melab, N., and Talbi, E. (2004). Paradiseo: a
framework for the reusable design of parallel and dis-
tributed metaheuristics. Journal of heuristics, 10:357–
380.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2012).
A survey on workforce scheduling and routing prob-
lems. In Proceedings of the 9th International Con-
ference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 283–302, Son, Nor-
way.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014).
Workforce scheduling and routing problems: litera-
ture survey and computational study. Annals of Oper-
ations Research.

Durillo, J. J. and Nebro, A. J. (2011). jMetal: A Java frame-
work for multi-objective optimization. Advances in
Engineering Software, 42:760–771.

Huang, F. (2012). A New Application Programming Inter-
face and a Fortran-like Modeling Language for Eval-
uating Functions and Specifying Optimization Prob-

lems at Runtime. International Journal of Advanced
Computer Science and Applications(IJACSA), 3(4).

Laesanklang, W., Landa-Silva, D., and Castillo-Salazar,
J. A. (2015a). Mixed integer programming with de-
composition to solve a workforce scheduling and rout-
ing problem. In ICORES 2015 - Proceedings of the
4rd International Conference on Operations Research
and Enterprise Systems, pages 283–293.

Laesanklang, W., Pinheiro, R., Algethami, H., and Landa-
Silva, D. (2015b). Extended decomposition for mixed
integer programming to solve a workforce scheduling
and routing problem. In Operations Research and En-
terprise Systems, volume 577 of Communications in
Computer and Information Science, pages 191–211.
Springer International Publishing.

Lukasiewycz, M., Glaß, M., Reimann, F., and Teich, J.
(2011). Opt4J - A Modular Framework for Meta-
heuristic Optimization. In Proceedings of the Genetic
and Evolutionary Computing Conference (GECCO
2011), pages 1723–1730, Dublin, Ireland.

Matias, J., Correia, A., Mestre, P. Graga, C., and Serodio,
C. (2010). Web-based application programming inter-
face to solve nonlinear optimization problems. In Pro-
ceedings of the World Congress on Engineering 2010,
Vol III.

Mestre, P., Matias, J., Correia, A., and S., C. (2010). Direct
search optimization application programming inter-
face with remote access. IAENG International Jour-
nal of Applied Mathematics, pages 251–261.

Nystrom, R. (2014). Game Programming Patterns. Genever
— Benning.

Pinheiro, R., Landa-Silva, D., and Atkin, J. (2016). A vari-
able neighbourhood search for the workforce schedul-
ing and routing problem. In Advances in Nature and
Biologically Inspired Computing, volume 419 of Ad-
vances in Intelligent Systems and Computing, pages
247–259. Springer International Publishing.

Pinheiro, R. L. and Landa-Silva, D. (2014). A development
and integration framework for optimisation-based en-
terprise solutions. In ICORES 2014 - Proceedings of
the 3rd International Conference on Operations Re-
search and Enterprise Systems, Angers, Loire Valley,
France, March 6-8, 2014., pages 233–240.

Siebert, F. (2000). Eliminating external fragmentation in a
non-moving garbage collector for java. In Proceed-
ings of the 2000 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Sys-
tems, CASES ’00, pages 9–17, New York, NY, USA.
ACM.

Walnes, J. (2016). Xstream. http://x-stream.github.io/.
Yener, M., Theedom, A., and Rahman, R. (2014). Profes-

sional Java EE Design Patterns. Wiley.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

98


