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Cloud computing provides a great opportunity for scientists, as it enables large-scale experiments that cannot
are too long to run on local desktop machines. Cloud-based computations can be highly parallel, long run-
ning and data-intensive, which is desirable for many kinds of scientific experiments. However, to unlock this
power, we need a user-friendly interface and an easy-to-use methodology for conducting these experiments.
For this reason, we introduce here a formal model of a cloud-based platform and the corresponding open-
source implementation. The proposed solution allows to conduct experiments without having a deep technical
understanding of cloud-computing, HPC, fault tolerance, or data management in order to leverage the benefits
of cloud computing. In the current version, we have focused on biophysics and structural chemistry experi-
ments, based on the analysis of big data from synchrotrons and atomic force microscopy. The domain experts
noted the time savings for computing and data management, as well as user-friendly interface.

1 INTRODUCTION

Scientific experiments can be very challenging from
a domain point of view, even in the case the compu-
tation can be done on a local desktop machine. In-
struments such as synchrotrons and atomic force mi-
croscopy produce massive amounts of data. Methods
used by scientists are frequently implemented in soft-
ware. The combination of big data and complex com-
putational methods inevitably requires long running
computations and demand for high-performance com-
puting (HPC) using cluster or cloud computing (Arm-
brust et al., 2010; Buyya et al., 2009). HPC and
cloud computing marshal large storage resources flex-
ibly and divide tasks and data up to huge numbers
of compute cores. For most users, both present new
technologies, either computationally and in data man-
agement, and both require learning non-standard data
management, programming languages and libraries.
In the case of cloud computing, the users have to
learn how to work within a cloud-based environment,
e.g., how to create and set up virtual machines (VMs),
how to collect the results of their experiments, and
finally destroy the VMs, etc. Thus, to unlock all the
capabilities of cloud computing the science users have
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to obtain a new set of skills (e.g., knowledge of fault
tolerance), which might distract from focusing on the
domain specific problems of the experiment.

Cloud computing provides many benefits, e.g., ac-
cess to online storage and computing resources at a
moment’s notice. Nevertheless, failure while setting
up a cloud-based execution environment or during the
execution itself is arguably inevitable: some or all
of the requested VMs may not be successfully cre-
ated/instantiated, or the communication with an exist-
ing VM may fail due to long-distance network fail-
ure — given clouds data centres are typically remote
and communication crosses many network bound-
aries. Also, one has to realise that all tasks of such
parallel computations are required to complete, there-
fore the failure of any one of them may corrupt the re-
sult in some way. Statistically this means that the reli-
ability of the overall task completion is the product of
that of the individual tasks — and with very many thou-
sands or millions of compute tasks this may quickly
become a vanishable number.

For these reasons, we propose a user-friendly
open-source platform that would hide the above prob-
lems from the user by incapsulating them in the plat-
form’s functionality. The feasibility of our platform is
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shown using case studies across Theoretical Chemical
and Quantum Physics group at the RMIT university.
This paper presents a formal model of a cloud-based
platform for scalable and fault-tolerant cloud compu-
tations as well as its implementation. We focus on
scientific computations, i.e., we assume that the users
of the platform would be researchers working in the
fields of physics, chemistry, biology, etc.

Our solution enables researchers to focus on
domain-specific problems, and to delegate to the tool
to deal with the detail that comes with accessing high-
performance and cloud computing infrastructure, and
the data management challenges it poses. More-
over, the platform implements various fault tolerance
strategies to prevent the failed execution from causing
a system-wide failure, as well as to recover a failed
execution.

Outline: The rest of the paper is structured as
follows. Section 2 presents core features of the
proposed model and its implementation as an open-
source cloud-based platform, including the reliability
aspects. In Section 3, we discuss the usability features
of the platform and how they are reflected in the con-
ducted case studies. Section 4 overviews the related
work. Section 5 concludes the paper by highlighting
the main contributions, and introduces the future work
directions.

2 MODEL OF A CLOUD-BASED
PLATFORM

The proposed platform provides access to a dis-
tributed computing infrastructure. On the logical level
it is modelled as a dynamically built set of Smart Con-
nectors (SCs), which handle the provision of cloud-
based infrastructure. SCs vary from each other by the
type of computation to be supported and/or the spe-
cific computing infrastructure to be provisioned.

An SC interacts with a cloud service
(Infrastructure-as-a-Service) on behalf of the
user. Figure 1 presents the corresponding workflow.
With respect to the execution environment, the only
information that is expected from the user is to spec-
ify the number of computing resources she wishes to
use, credentials to access those resources, and the lo-
cation for transferring the output of the computation.
Thus, the user does not need to know about how the
execution environment is set up (i.e., how VMs are
created and configured for the upcoming simulation),
how a simulation is executed, how the final output is
transferred and how the environment is cleaned up
after the computation completion (i.e., how the VMs
are destroyed).
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Figure 1: Cloud service: Workflow.

Figure 2 shows the logical architecture of an SC. Each
SC consist of five logical components, which can
also be seen as processes within the framework work-
flow, presented on Figure 1. The model is based on
our previous research on process analysis and spec-
ification (Spichkova and Schmidt, 2015; Spichkova,
2011). While developing the model we focused on the
understandability and readability aspects (Spichkova,
2013a; Spichkova et al., 2013).

We specify for any process P its entry and exit
points by Entry(P) and Exit(P) respectively, and
represent a process P (elementary or composed) by
the corresponding component specification PComp.
All the control channels (representing entry and exit
points of a process) are drawn as orange dashed lines,
the corresponding auxiliary components over these
channels are also drawn in orange.

An execution of an SC is called a job. An SC ex-
ecutes a user requested process cP, which consists of
tasks Tasky,...,Taskyr, which could be executed in
iterative manner. In the simplest case, cP consists of
a single task that should be executed once only.

A concrete SC is build from a general template by
configuration its parameters:

e DataConstraints specifies constraints on the user
provided input datalnput;

o ExecParamVM specifies parameters of the job,
e.g., which compilers should be installed on the
generated VMs;

o ExecParamT is a list of the task execution param-
eters ExecParamT, ..., ExecParamTyy. These
parameters specify for each task which data are
required for its execution, what is a convergence
criterion and whether there is any for that task,
which scheduling constrains are required, etc.;

e TCode presents an actual executable code for the
corresponding tasks, in general case it consists of
NT elements.

e Sweep is a list of values to sweep over: With re-
spect to configuring and executing the simulation,
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Figure 2: Logical architecture of a Smart Connector.

the user may set the value and/or ranges of domain
specific parameters, and subsequently automati-
cally creating and executing multiple instances of
the given SC to sweep across ranges of values.

The first three parameters can be partially derived
from TCode on the development stage for a concrete
Smart Connector.

The DataAnalysis component is responsible for the
preliminary check whether the user datalnput satis-
fies the corresponding DataConstraints, both on syn-
tactical and on semantical level. The DataAnalysis
process is started by receiving an scStart signal from
the user. If the data check was successful, the VMEnv
component is activated by signal dataCheckOk and
the data are forwarded to the SCExecution compo-
nent, otherwise the process is stopped and the user
receives an error message dataCheckFail.

The EnvSetUpVM component is responsible for the
communication with the cloud to obtain a number of
VMs that is enough for the task according to the user
requests userReqVM. The user request userReqVM is
a pair of numbers (iN,mN), where iN is an ideal and
mN is a minimal (from the user’s point of view) num-
ber of VMs required for the experiment. The EnvSe-
tUpVM component requests from the cloud iN VMs.
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Fault-Tolerance Properties of EnvSetUpVM:
If some of the requested VMs are not cre-
ated/instantiated successfully (i.e. only j VMs are
successfully created, where 0 < j < mN. The SC
will employ various strategies to create the remain-
ing VMs: it will retry to make either a block request
to create mN — j VMs at once or a single request at
a time. For these purposes, one of the parameters
within ExecParamVM have to be RetryLimit, which
limits the number of retries.

The number of VMs generated by cloud (the list
generatedVM represents the list of the corresponding
identifiers, e.g., IP addresses) has to fulfil the follow-

ing property
mN < length(generatedVM) < iN N

If Equation 1 is not fulfilled (more precisely, if
length(generatedVM) < mN, because the cloud never
provides a number of VMs larger than requested), or
the bootstrapping failed (e.g. due lost connection to
the cloud) the process is stopped and the user receives
an error message vmFuail. The message vmFail is also
activates the EnvCleanUp component, which is re-
sponsible for final clean up of the system and the de-
struction of corresponding VMs. When the clean up
is completed, the EnvCleanUp component generated
the message scCompleted, which also indicates that
the whole process chain is completed.

If Equation 1 is fulfilled, our platform preforms
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Figure 3: SCExecution subcomponent of Smart Connector.

bootstrapping of generated VMs, and the required
compilers are installed according to ExecParamVM.
If the bootstrapping was successful, the SCExecution
component is activated by the signal execStart. Then
we could have two cases:

e The smart connector execution was successful.
Then, the SCExecution component

— forwards the results of the computations
dataOutput to the OutputTransfer component;

— generates the signal fransferStart that indicates
that the SCExecution process is completed, and
activates QutputTransfer.

The OutputTransfer component is responsible for
the transfer of the output data to the corresponding
server and to a data management system. When
the data transfer is completed, the message trans-
ferCompleted is generated to activate the Env-
CleanUp component.

e The smart connector execution failed on the stage
of scheduling or during execution of a task. Then,
the SCExecution component generates the signal
execFailed, to activate EnvCleanUp for the final
clean up of the system and the destruction of cor-
responding VMs.

EnvSetUpVM and EnvCleanUp can also be logically
composed into a meta-component VMEny, which is
responsible for any communication with the cloud
and the corresponding environment manipulations.

The SCExecution component (cf. Figure 3) is the
main part of a smart connector. It is responsible for
the actual execution of the task and provides a number
of the task execution options, defined by parameters
ExecParamT.

Fault-Tolerance Properties of SCExecution:

The computation might fail due to network or VM
failure, i.e., the VM that hosts some of the processes
cannot be reached. To avoid an endless waiting on the
output from the processes on the unreachable VM, the
smart connector will identify the processes that are
hosted there, and then execute the appropriate fault
tolerance strategy, e.g., (i) marking the processes that
are hosted on the unreachable VM as failed beyond
recovery and then collecting the output of processes
from the other VMs, or (ii) re-running the failed pro-
cesses on a different VM until maximum re-run limit
is reached. However, we do not implement any strate-
gies to recover a failed process if the failure was due
to an internal bug within the task code. In this case, a
smart connector will notify the user about the detected
failure, as this provides an opportunity to correct the
bug.

SCExecution has the following subcomponents:

o TaskScheduler: responsible for scheduling of the
tasks and their execution in the right order;

e Tasklterarion: responsible for execution of task it-
erations according to the corresponding task code;
in general case we have NT tasks, where NT > 1.
Thus, a connector has NT components Tasklterar-
ion, one for each task (which means that each task
should have at least one iteration of its execution);

e CheckConv is an optional component, to check
whether convergence criterion of a multi-
iterational execution is met.

Our model allows us not only to have a precise and
concise specification of the cloud-based platform on
a logical level but also provides a basis for a formal
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analysis of its properties, including security proper-
ties, as well as of the core computation properties.
For the formal analysis we suggest to use an inter-
active semi-automatic theorem prover Isabelle/HOL
(Nipkow et al., 2002; Blanchette et al., 2012) and
the corresponding methodologies (Spichkova, 2013b;
Spichkova, 2014a; Spichkova, 2014b), as the pro-
vided specification is compatible to these methodolo-
gies. Moreover, the purposed representation gives a
basis for the resource management and performance
prediction, cf. (Aversa et al., 2011), as it allows a
straightforward analysis of the worst case execution
time (WCET) of the composed processes.

The early results on the platform open-source im-
plementation were presented in (Yusuf et al., 2015;
Spichkova et al., 2015a). The current version of the
platform provides a set of APIs to create new and
customise existing SCs. We do not restrict our sys-
tem to be build using a single programming language.
Python was chosen as the development language due
to its rapid prototyping features, integration with our
data curation system, and due to its increasing uptake
by researchers as a scientific software development
language. However, the domain-specific calculations
could be written in any language. The choice of the
language depends on the domain and the concrete re-
search task which should be solved.

3 USABILITY ASPECTS

The proposed open-source platform has been ap-
plied across two research disciplines, physics (ma-
terial characterisation) and structural biology (under-
standing materials at the atomic scale), to assess its
usability and practicality. The domain experts noted
the following advantages of the platform:

e time savings for computing and data management,

o user-friendly interface for the computation set up,

e visualisation of the calculation results as 2D or 3D
graphs.

The menu has the following sections: Logout, Create
Job, Jobs, Admin, Settings. After logging in, the users
are in the Jobs section, where they can see the sta-
tus of current and previous jobs (executions of SCs).
Some of the jobs may be processing, have been com-
pleted or had errors (cf. Figure 4).

In the Settings section, we can set up general account
properties as well as change settings of computation

and storage platforms, cf. Figure 5.

When we select Create Job in the menu, we will see
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Figure 4: Jobs section of the platform.
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Figure 5: Settings section of the platform.

the job submission page, which has a set of available
SCs currently registered. Figure 6 shows how to cre-
ate a job on example of execution of Monte Carlo sim-
ulations, which was a part of one of our case studies
(we extended the print screens with the comments to
show the match of these parameters to the model from
Section 2). In that case study, the Monte Carlo based
simulations were applied for modelling of a material’s
porosity and the size distribution of its pores (indus-
trial applications of these research are in diverse ar-
eas such as filtration and gas adsorption). One such
modelling methodology is the Hybrid Reverse Monte
Carlo (HRMC), cf. (Opletal et al., 2008). HRMC
characterises a material’s microstructure by produc-
ing models consistent with experimental diffraction
data, while at the same time ensuring accurate local
bonding environments via energy minimisation.

The user interface, combined with the My-
Tardis (Androulakis et al., 2008) data curation mod-
ule, allows for flexible handling of data according to
its completion and significance. The results of the cal-
culation can be visualised as 2D or 3D graphs using
a plug-in developed to provide better readability of
the obtained data (cf. Figures 7 and 8 for examples).
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The curated datasets are fully accessible and share-
able online. The generated graphs can easily be used
for presentations or in written documents.

4 RELATED WORK

While developing the model, we focused on its under-
standability and readability aspects. There are sev-
eral approaches on model readability, cf. (Wimmer
and Kramler, 2006; Mendling et al., 2007; Zugal
et al., 2012; Spichkova et al., 2013; Spichkova et al.,
2015b).

The development of formal models and architec-
tures for system involved in cloud computing is a
more recent area of system engineering, cf. (Vaquero
et al., 2008), (Buyya and Sulistio, 2008), (Leavitt,
2009), (Zhang et al., 2010), (Ostermann et al., 2010),
(Cafaro and Aloisio, 2011).

Several approaches have proposed the data stream
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processing systems for clouds, e.g., (Martinaitis et al.,
2009) introduces an approach towards component-
based stream processing in clouds, (Kuntschke and
Kemper, 2006) presents a work on data stream shar-
ing. Yusuf and Schmidt have shown that the fault-
tolerance is best achieved by reflecting the computa-
tional flow in such complex scientific system archi-
tectures, cf. (Yusuf and Schmidt, 2013).

There are different types of scientific workflow
systems such as Kepler (Ludscher et al., 2006), Tav-
erna (Oinn et al., 2006) and Galaxy (Afgan et al.,
2011), which are designed to allow researchers to
build their own workflows. The contribution of the
work presented in this paper is that our platform pro-
vides drop-in components, Smart Connectors, for ex-
isting workflow engines: (i) researchers can utilise
and adapt existing Smart Connectors; (ii) new types
of Smart Connectors would be developed within the
framework if necessary. From our best knowledge,
there is no other framework having this advantage.
SCs are geared toward providing power and flexibility
over simplicity.

Nimrod (Buyya et al., 2000) is a set of software
infrastructure for executing large and complex com-
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putational, contains a simple language for describing
sweeps over parameter space and the input and out-
put of data for processing. Nimrod is compatible with
the Kepler system (Ludscher et al., 2006), such that
users can set up complex computational workflows
and have them executed without having to interface
directly with a high-performance computing system.

One of the directions of our future work is in-
corporation Nimrod into our open-source platform
for the execution of its Smart Connectors. However,
Nimrod’s web API is currently in development, mak-
ing interfacing with its capabilities non-trivial in a
web-based cloud environment.

S CONCLUSIONS

Cloud computing provides a great opportunity for sci-
entists, but to unlock all its benefits, we require a plat-
form with a user-friendly interface and an easy-to-use
methodology for conducting the experiments. Usabil-
ity and reliability features are crucial for such sys-
tems. This paper presents a model of a cloud-based
platform and the latest version of its open-source im-
plementation, focusing on usability and reliability as-
pects. The proposed platform allows to conduct the
experiments without having a deep technical under-
standing of cloud-computing, HPC, fault tolerance, or
data management in order to leverage the benefits of
cloud computing.

We believe that the proposed platform will have
a strong positive impact on the research community,
because it give an opportunity to focus on the main
research problems and takes upon itself solving of the
major part of the infrastructure problems.

Future Work: The main direction of our future work
is application of the platform for an efficient testing
based on analysis of system architecture.
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