
Software Project Management Fallacies

Ana M. Moreno1 and Lawrence Peters1, 2
1School of Computer Science, Technical University of Madrid, Boadilla del Monte, Spain

2Software Consultants International, Auburn, Washington, U.S.A.

Keywords: Software Project Management, Software Engineering.

Abstract: Software project management plays a critical role in software projects. Therefore, software project
management actions have an important impact on software projects and organizations. However, software
engineers often become software project managers with little or no training in project management. As a
result, sometimes they have to rely on hearsay or their own assumptions to formulate strategies and a plan of
action for managing software projects. This has led to several software project management misconceptions
or fallacies that can have important negative effects on software projects. This paper examines some relevant
fallacies based, on the authors’ experience and discusses published material which refutes them. This work
contributes to the practice of Software Project Management by identifying and correcting practices which can
reduce the success rate of software projects.

1 INTRODUCTION

For a long time, the software project manager has
been identified as an important factor in the success
of software projects (Boehm, 1981). For example, in
(Cone, 1998) the author showed that up to 60% of the
cost of software projects can be attributed to
personnel turnover and the number one reason why
people leave a software organization is their manager.
Complementing Boehm’s work, Weinberg combined
the various factors involved in software projects and
found that management was more responsible for
success than all other factors combined (Weinberg,
1994). Later, Cusumano made a similar observation
stating, “Management, not technology, determines
success” (Cusumano, 2004). Although the data that
supports these contentions is limited, more recent
data confirm that the software project manager is
more important to success than all other factors
combined (Gulla, 2012).

Today, the advent of the agile philosophy has cast
doubt on the value of software project managers.
Although it is only a single data point, the experience
of Google™ may prove useful (Garvin, 2013) in
clarifying the software project manager’s role even in
agile environments. At one time, the founders of
Google subscribed to the thesis that they did not need
managers and created a “flat” organization. Details of
how to address one issue or another all ended up being

sent to the founders of the company, overwhelming
their ability to maintain any form of control. Over
time, they came to highlight the relevant role that
software project managers performed in the company
including prioritizing work, helping software
engineers to develop their careers, motivating
individuals and teams and keeping everyone focused
on corporate goals.

So, we must conclude that software project
managers are vital to software projects and
organizations in many different ways. Therefore,
their knowledge, beliefs and actions can affect the
outcome of software projects. That is why identifying
and refuting mistaken beliefs about software project
management (referred to herein as SPM fallacies) is
relevant and can have a positive effect on the
profession.

There are many definitions for the term, “fallacy”.
The one used in this paper is misconception or flawed
reasoning. Fallacies are not supported by facts or data
and the number of beliefs of this type held by software
project managers vary from one individual to another
and from one organization to the next. The collective
set of these beliefs held by some software project
managers to be self-evident truths is probably huge.
Some of the most relevant according to the authors’
experience as software project managers, software
consultants and instructors will be examined here.
Our aim is to bring SPM fallacies to the attention of

Moreno, A. and Peters, L.
Software Project Management Fallacies.
DOI: 10.5220/0005927001090116
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 109-116
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

109

practitioners. This may help to avoid or at least reduce
the use of the related practices. It may encourage
software project managers to reflect upon other SPM
fallacies not discussed in this paper but used in their
conduct of software projects.

2 WHERE DID SPM FALLACIES
COME FROM?

Fallacies are beliefs that can be the result of
misinformation, wishful thinking, ignorance, or
hearsay, and as already mentioned, are not based on
facts and data. The wishful thinking aspect of
fallacies is due to the desire for some simple way to
address a complex problem.

Fallacies play a role in software project
management due to a lack of sufficient preparation of
software project managers for their role in software
development (Tomer, 2014). This situation is not
totally unexpected since moving from the ranks of
software engineer to software project manager
subjects the new software project manager to
situations they may not have experienced or been
trained for. As one moves to a position of authority,
one’s intuition influences decision making more and
more (Taylor, 2011). The higher in the organization
one progresses to, the greater the influence of
intuition until intuition is dominant.

The relevant role of intuition helps explain why
software project managers do not seem to learn from
project failures and therefore fallacies are not easy to
remove from their body of knowledge. Software
project managers’ intuition guides their actions and
accepting responsibility for a failure reflects on them
personally bringing into question their view of their
own competence. Instead, the blame is placed on just
about any other factor, changing requirements, lack
of customer involvement, and so on. Shirking one’s
responsibility for failure has been shown to inhibit
our ability to learn from failure (Myers et al., 2014)
and, therefore does not help software project
managers to reduce our set of fallacies.

3 SOME RELEVANT SPM
FALLACIES

Misguided management practices are not unique to
software project management but exist in various
forms in all areas of project management. Some are
unique to software development due to software
engineering’s parochial view that software projects

are different from all other projects and as such, not
subject to the same forces and principles present in
other projects (McConnell, 2000).

The situation is somewhat complicated by the fact
that not all software project managers hold the same
set of beliefs to be self-evident. Additionally, new
software project management beliefs may be created
with each passing day. Our aim is not to provide a
complete list of software project management myths
but to discuss and offer data and references to refute
some of the most relevant ones according to the
authors’ professional experience.

Although the different fallacies can be related, we
have categorized them into three groups: Team and
Productivity, Planning and Scheduling, and Process
and Lifecycle.

3.1 Teams and Productivity

In the team and productivity category we group some
fallacies that are related to team composition and that
can drive decisions that impact on the productivity of
such teams.

1. The Software Project Manager must be the Best
Software Engineer on the Team – This one has
been written about and refuted for nearly half a
century (Townsend, 1970; Townsend, 1984).
There are three major issues which discredit this
idea:
a. The productivity of the team – By putting the

most productive software engineer into
management, the overall productivity of the
team is reduced.

b. The mentoring capability of the project
manager – Unless this is a very special person,
they will not be patient with poor performing
software engineers and help improve their
abilities and mentor them to advance their
career.

c. Effectiveness as a project manager – This high
performing person was exceptional because
they really liked developing software. Taking
them away from what they loved doing results
in a disgruntled software project manager who
would rather be writing code than dealing with
the various aspects of software project
management.

2. The Best Team is Composed of the Best Software
Engineers Available – This concept has been tried
in other high technology endeavours and it has
consistently failed (Belbin, 1996). This
phenomenon even has a name, “The Apollo
Syndrome.” In part, what happens is that we have

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

110

a team of (for lack of a better term) “prima
donnas”, some of them believing they are smarter
and more accomplished than their colleagues.
Under these circumstances, they do not work
together as a mutually supportive team. Instead,
they break up into individual contributors and/or
separate factions often competing with each other
in order to demonstrate their superiority. The
result is detrimental to the project.

3. Spread Success by Distributing Members of
Successful Teams to other Teams – Empirical and
field studies (Staats et al., 2010) have shown that
breaking up a team to do this results in the loss of
an effective team and the intended spreading of
the successful concepts does not happen. If the
goal really is to spread successful practices, then
we should study what the manager of that project
did and emulate it elsewhere. More than this, a
study of 1,004 development projects involving
more than 11,000 people found that when team
familiarity (i.e. team members had worked
together before) increased by 50%, defects
decreased by 19% and budget deviations
decreased by 30% (Huckman and Staats, 2013).

4. All that I need is One or Two High Performing
Software Engineers on the Team to be Successful
–It is often referred to as “stove piping” or the
“islands of knowledge” approach. Like the other
myths, a software project manager can be
successful engaging in it until disaster strikes – the
key player leaves the project. While it may be
tempting to rely on one or two individuals to
“carry” the project it inevitably leads to problems.
Successful software development teams take the
opposite approach encouraging members to share
knowledge in a collaborative, collegial
environment (Staats et al., 2011). Often, key
players involved in stove piping see retaining vital
knowledge as a form of job security. However,
these individuals do not realize how much that
will restrict their career growth by preventing
transfer to a more interesting project. The solution
to this situation is to cross-train within the team so
that other team members can support the project
if a key player becomes unavailable.

5. We can Multiplex our Best People – With the
increase in work and complexity in so many
organizations, it has become common to share
highly skilled workers with more than one project.
More than 20 years of research on the effects of
multitasking on individual productivity have
found negative effects on productivity associated
with this practice (APA, 2006; Ophira et al, 2009).
They found that there is a reduction in productive

time of 40% and a greater tendency toward
distraction and errors. People are not “plug
compatible” and able to instantly switch from one
set of project issues to another without some form
of “spin up” taking place thereby losing
productivity. So, while this practice may continue,
the data supporting it are not encouraging.

6. People Work for Money – For many years, leading
experts on human behaviour have studied and
identified why people work (Herzberg, 1966;
Maslow, 1971; McClelland, 1961). Although
their models differ slightly, one of the things they
have in common is that people work for self-
esteem, self-realization, and other reasons – not
for money. This myth leads software project
managers to use money as a means of motivating
people to improve their performance. Money, as
an incentive for improving productivity has been
shown to work for short periods and only in
situations involving repetitive activity such as
factory work (Ryan and Deci, 2006). But the best
way to improve performance is to thank people for
their work (Grant and Gino, 2010). That seems
paradoxical in that the most costly reward is less
effective than one that is free. The thank you does
not have to be some sort of public ceremony; a
private, one-on-one meeting is all that is required.
Some software project managers do not see the
need for saying thank you because (in their
words), “I do not need to thank them for doing
their jobs.” Given what we now know, that
position will not motivate people to perform at a
high level

7. Offer a Big Reward to get Higher Productivity –
People do not work for money but if the reward is
big enough, they will cheat in order to get the
reward (Gino and Ariely, 2011). Big rewards (e.g.
a trip to some place special, paid for by the
company) can undermine ethical behaviour by
one or more team members resulting in friction
within the team and loss of productivity.

8. Start with a bigger team – Some software project
managers believe they should start with a larger
team than they really need. They believe this
strategy (though more costly) will prevent them
from getting behind schedule. Empirical and field
studies (Staats et al., 2014) have shown that larger
teams are less effective than “right sized” teams.
Overall, larger teams have been shown to be less
efficient and productive.

9. Putting Pressure on the Team will Improve the
Team’s Performance – This one seems
reasonable, implying there will be negative
consequences to the team if the team is not

Software Project Management Fallacies

111

successful. The theory is that this pressure should
get everyone to make an extra effort. We
frequently see this strategy in books and movies.
In fact, people work at lower productivity levels
when they are under stress (Gardner, 2012). Also,
if there is enough pressure placed on the team, the
collective knowledge and experience of the team
will suffer with team members working
independently and not relying on other team
members to help them with particularly
troublesome software problems or helping other
team members with theirs (Gardner, 2012). This
results in the collective knowledge of the team
being lost (Gardner, 2012). How much pressure is
too much pressure? That is one of the “soft” issues
successful software project managers have
mastered. By maintaining open communications
with the team, an effective software project
manager can tell when the team is not performing
at its highest level and work to reduce the pressure
in some way.

10. Set Challenging Goals, if People Have a Target,
They will work to achieve It – As with some of the
other myths listed here, this one is a question of
degree, not an absolute. Senior managers often
like to call the goals that are set for an
organization, “stretch goals.” This name implies
what the senior manager wants to achieve. That is,
to get the team to push themselves to increase or
“stretch” their performance. As well intended as
this concept may be, studies have shown that if the
team perceives the goal as being unachievable,
productivity suffers (Ordonez et al., 2009). So the
admonition here is to set goals that are achievable.
Finding out what the team thinks is achievable
must be part of the software project manager’s
communication skill.

3.2 Process and Lifecycle

These fallacies impact different aspects of the
software process, its use, how to improve it, a3s well
as the particular software lifecycle to be used in the
project.

1. Requirements Changes Cause Software Project
Failures – Requirements changes are almost
inevitable in nearly all software and other
technology related projects because requirements
definition is a “discovery” process. The project
begins with all the stakeholders possessing some
vision of what will be produced. Over time, it
becomes obvious to some that what they thought
was going to be delivered differs significantly
from what is likely to be delivered. This results in

requirements changes. In the construction
industry, requirements changes are a way of life
(Peters, 2015; Touran, 2003). The changes
themselves in any industry are usually not the
problem. Not planning for and accommodating
changes in a cost effective manner is. Assuming
there will be no changes in requirements and other
simplifying assumptions put the project at risk.
Changes can cause rework increasing cost and
lengthening schedule which can put the project at
risk if the process we use does not allow us to
accommodate them in a cost effective softy way.

2. If It isn’t Broken, don’t Fix It – This one is popular
in many industries but, even though it sounds
reasonable, it sets up a culture of maintaining the
status quo. A better approach is to proactively
establish a culture of continual improvement
(Weick, 1987). A slight revision of this
philosophy to a proactive one results in the revised
statement, “If it isn’t breaking, don’t fix it.” This
imparts a philosophy of continually monitoring
and improving processes, methods, techniques
and related matters to do better as a team going
forward. If the change does not improve matters,
undo it and try something else. The concept here
is to constantly monitor what is happening in our
project(s) looking for ways to fine tune our
methods to reduce cost, improve quality and
increase our proficiency. Based on studies of how
software engineers view their work and
relationship to management (Katz, 2013), such an
environment motivates software engineers to
higher levels of productivity.

3. Software Development Processes are Great but if
we are Behind Schedule, We won’t have Time to
use Them – There have been a lot of arguments
against employing any defined development
process including that such processes are
restrictive and inhibit creativity and innovation.
Regarding software development processes,
remember, they did not get created in a vacuum
but, in general, were the result of work by
previous and possibly current software
engineering teams focused on improving
productivity, improving product quality and so
forth. The real test of a software process’s value is
whether or not it can be used in an emergency
(Rombach, 2003).

4. Not using the Waterfall Lifecycle Improves a
Project’s Chances of Success – Anecdotally, this
lifecycle model has been taken to task for not
being viable in today’s software engineering
environment. Agile and other approaches have
been anecdotally described as being an

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

112

improvement without overwhelming evidence.
What is needed here are a set of facts and data.
Until a study is performed looking at hundreds or
thousands of software projects, categorizing their
lifecycle models and clearly demonstrating this
one is actually true, it must remain a myth.

5. Technology is the Key to Success in Software
Projects – A study by IBM found that technology
isn’t the key to success (Gulla, 2012). After
categorizing the documented causes of software
project failures, that study found that 54% of the
failures were attributable to poor project
management while only 3% of the failures could
be attributed to technical challenges. Dependence
on technology tends to spill over into the area of
project management with potentially disastrous
results. A four year study of 72 multinational
product development projects found that project
problems that appeared to be technology related
actually had, at their source, social, psychological
and organizational issues. In retrospect, this
seems reasonable since it is people who do the
work. To compound matters further for high
technology projects, project managers
overwhelmingly agree that personnel problems
are their most difficult problems to deal with
(Maylor et al., 2013; Katz, 2013) and are the ones
they are the least trained for.

3.3 Planning and Scheduling

Under the planning and scheduling category we group
fallacies that impact estimating and project planing.

1. Planning and Scheduling are the Same –
Although we can find some published opinions
supporting this believe (McConnell, 2000),
planning and scheduling are related to be sure but
not the same (Kerzner, 2013). A plan is simply a
list of tasks and subtasks that must be successfully
completed for the project to be deemed a success.
A schedule time orders the tasks indicating which
must be done first, second and so on as well as
which can be done in parallel. These two aspects
of the project (the plan and the schedule) are, in a
sense, linked by the assignment of specific
individuals to tasks. Changes to the plan often
result in changes to the schedule, and changes in
the schedule can also result in changes in the list
of tasks, resulting in an interplay between the two.

2. Coming Up with the Right Plan Helps Ensure
Success – This is another wishful thinking or
“magic bullet” concept. The problem this fallacy
creates is that it implies that once the plan (with
its corresponding schedule) has been created, the

software project manager is done. However,
planning and scheduling are continuous activities
(Peters and Moreno, 2014), the initial plan is only
the start. As General Dwight Eisenhower was
quoted as saying, “Plans are nothing, planning is
everything”. Unforeseen problems will occur that
require a change in the project plan and schedule.
As the Greek philosopher Heraclitus was quoted
as saying, “Change is the only constant.”

3. If Our Project Goes Over Budget or gets Behind
Schedule Early on, We can work Harder and
Eventually Finish on Budget and on Schedule –
There are, literally, no facts and data to support
this one. What facts and data that do exist, based
on a study of over 700 projects indicate is that if
the project is 15% complete and over budget, its
chances of recovering and finishing within its
budget are nil (Fleming and Koppelman, 2010).
This emphasizes the need for the software project
manager to closely monitor cost and schedule
right from the start of the project and being willing
to take remedial action if the project begins to
depart from the plan and schedule.

4. If We had Better Estimating Methods, We would
come Closer to meeting Budget Requirements – It
turns out that no matter how hard we try to
accurately estimate any project, we are
unknowingly placed at a disadvantage. The
problem lies, not in our methods but in ourselves.
Research into how people estimate found that we
are overly optimistic about our abilities. This
human trait is present no matter what formulated
method we use (Lovallo and Kahneman, 2003).
More recently, a method has become available
that helps us back out the effects of over optimism
and bound our estimate (Peters, 2015; Flyvberg,
2006). It works so well that the American
Planning Association has advised its members to
never use traditional estimating methods without
also using this method called, “Reference Class
Forecasting” (Flyvberg, 2006). What it provides
is an estimate plus a set aside or contingency
amount which is based on the desired confidence
level for the estimate.

5. Software Engineering is Unique in that Budgets
and Schedules are Rarely Met –Although with
some exceptions, this is particularly true when
attempting to build something that has never been
attempted before. For example, even though man
has been building roads and bridges that are
seemingly unchallenging tasks for more than two
thousand years, overruns in budget and schedule
occur today with a great deal of regularity
(Flyvberg, 2006). Given all that we should have

Software Project Management Fallacies

113

learned over the centuries, this seems puzzling
until we become cognizant of the 2002 Nobel
Prize in Economics winning work of Kahneman
who explained this phenomenon of inaccurately
estimating as a common trait shared by all human
beings (Kahneman, 1994).

4 REMOVING FALLACIES
FROM THE MANAGERS’
LEXICON

There is no an easy solution for dispatching these and
other myths about software project management.
Information and education can be the keywords for
this challenge, and they should be considered at
different levels.

On one hand, at the software project managers
level, this paper contains several references which
can serve as resources to aid software project
managers. But there are other resources. For example,
although they do not always abound, software project
management books and journal papers and
conferences with empirical data about software
project management practices, are especially
interesting in order to support or refute a particular
software project management belief.

Specific knowledge related to software project
management has also been recently incorporated into
the Software Extension to the Project Management
Body of Knowledge (PMBOK, 2013). This Software
Extension supplements the PMBOK Guide with
specific knowledge related to software projects. The
application of this knowledge in real situations can
also contribute to reflect about some of our software
project management beliefs.

In addition to the referential resources, the
experience of instructors is crucial to provide
different kinds of empirical knowledge to the
audience, as well as a very practical education, in line
with what it suggests in general software engineering
education. In this sense assistance from accomplished
software project managers from industry could help
fill this need.

In this educational process about software project
management we have to keep in mind that managing
a software project involves dealing with issues that
frequently do not have a clear or verifiable “right”
answer. Examples of these include organizational
behaviour, risk management, complexity
management, accounting basics, planning,
scheduling, estimating and others which have been
described as being “wicked” problems (Peters, 2015;

Peters, 2008). The term “wicked” is meant to indicate
they do not have right or wrong answers and, based
on the authors’ industrial experience, seem to change
continuously. This is clearly a drawback which we
face in our profession, however it should not limit our
efforts in improving our knowledge.

Finally, notice that, this educational process
should be accompanied by other personal lessons that
help us to learn to accept our failures and improve (as
a popular proverb states “sometimes we win and
sometimes we learn”).

On the other hand, although educating current and
future software project managers is important, their
effectiveness in managing projects can be
undermined if software engineers and other team
members are not also educated regarding the
important role the software project manager plays in
software projects. This complementary education can
help to avoid situations in which experiencing the
seemingly mindless actions of software project
managers, some software engineers may conclude
that software project managers are really not up to the
task. That knowledge about software project
managers skills can also serve to improve
communications between the software project
manager and the rest of the team with incumbent
improvement in project success. It may also help to
prevent some software engineers from becoming
software project managers for the wrong reasons (e.g.
more money, prestige, better perquisites). The ones
that do will at least know in advance just what they
are getting into.

The educational process discussed above needs to
be complemented from an organizational level.
Google’s experience in trying to remove software
project managers from the organization (Garvin,
2013) provides meaningful evidence about the
recognition of the role of software project managers
in an organization. The fact that most companies,
even major corporations, do not have a clearly
defined path to management highlights this lack of
understanding (Maylor et al., 2013). In this sense, it
is also crucial that the software community
recognizes the crucial role of software project
management and elevate the status and importance of
software project management to being a vital part of
the software engineering profession.

5 CLOSING COMMENTS

For half a century, software engineering has focused
on technology development to solve software
engineering problems. This has produced some

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

114

improvements in quality and a linear increase in
productivity of approximately one source line per
programmer month per year from 1960 to 1990
(Jensen, 2000). Presumably, that linear increase has
continued. But software projects continue to fail
(Standish Group, 2015).

It has been shown that the management of
software projects is where we can obtain the highest
return on investment if only we turn our attention to
it (Gulla, 2012). This is why we have focussed on
discussing misconceptions related to software project
management that according to the authors’
professional experience are relevant.

We have organized these fallacies into three
groups (Team and Productivity, Schedule and
Planning, and Process and Lifecycle), with the most
numerous ones being related to team management.
This is not surprising due to the key role of people in
the software development process.

Recognizing the value that competent software
project management provides to the project and
organization overall is a prerequisite for properly
setting the working conditions for software project
managers.

An open question arising from this work is: Does
removing the mentioned fallacies from the belief
systems of software project managers, make them
“good” managers?

What a good manager is has been known for at
least half a century since Peter Drucker (Drucker,
2006). An exemplary work was done at Google
cataloguing the most effective practices (Garvin,
2013). In sum, a “good” manager is someone who:
1. Is a good coach
2. Empowers the team and does not micromanage
3. Expresses interest in and concern for team

members’ success and personal well-being
4. Is productive and results oriented
5. Is a good communicator – listens and shares

information
6. Helps team members with career development
7. Has a clear vision and strategy for the team
8. Has key technical skills that help him or her to

advise the team

So, the answer to the previous question should be no.
Garvin’s list could help software project managers to
be especially cautious with the beliefs they have and
to confirm them with facts and data to determine
whether or not they are sound management practices.

REFERENCES

APA, 2006. American Psychological Association,
Multitasking: Switching costs. Research in Action, 0
March, 2006.

Belbin, R., 1996. Management Teams – Why They Succeed
or Fail, Butterworth Heineman, London.

Boehm, B., 1981. Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, N.J., pp. 486-487.

Cone, E., 1998. Managing that Churning Sensation,
Information Week, No. 680, (May, 1998), 50-67.

Cusumano, M., 2004. The Business of Software: What
Every Manager, Programmer, and Entrepreneur Must
Know to Thrive and Survive in Good Times and Bad,
Free Press, New York, New York.

Drucker, P., 2006. Managing for Results (reissue –
originally published 1954), Harper Business, New
York, NY.

Fleming, Q. Koppelman, J., 2010. Earned Value Project
Management – Fourth Edition, Project Management
Institute, Newtown Square, PA.

Flyvberg, B., 2006. From Nobel Prize to Project
Management: Getting Risks Right, Project
Management Journal, (August, 2006), pp. 5 – 15.

Gardner, H.K., 2012. Performance Pressure as a Double
Edged Sword: Enhancing Team Motivation While
Undermining the Use of Team Knowledge, Harvard
Business School, Working Paper 09-126.

Garvin, D., 2013. How Google Sold Its Engineers on
Management, Harvard Business Review.
https://hbr.org/2013/12/how-google-sold-its-
engineers-on-management.

Gino, F., Ariely, D., 2011. The Dark Side of Creativity:
Original Thinkers Can be More Dishonest, Journal of
Personality and Social Psychology, Vol. 102, No. 3,
445-459.

Grant, A.M., Gino F., 2010, A Little Thanks Goes a Long
Way: Explaining Why Gratitude Expressions Motivate
Prosocial Behavior, Journal of Personality and Social
Psychology, June, Vol. 98, No. 6, 946 – 955.

Gulla, J., 2012. Seven Reasons IT Projects Fail, IBM
Systems Magazine, February.

Herzberg, F., 1966. Work and the Nature of Man, The
World Publishing Company, Cleveland, Ohio.

Huckman, R., Staats, B., 2013. The Hidden Benefits of
Keeping Teams Intact, Harvard Business Review,
(December).

Jensen, R., 2000, Don’t Forget About Good Management,
CrossTalk Magazine, 30.

Kahneman, D., 1994. New Challenges to the Rationality
Assumption, Journal of Institutional and Theoretical
Economics, 150, 18-36.

Katz, R., 2013 Motivating Technical Professionals Today,
IEEE Engineering Management Review, Volume 41,
Number 1, 28-37.

Kerzner, H. R., 2013. Project Management: A Systems
Approach to Planning, Scheduling and Controlling,
Wiley Publishing.

Lovallo, D., Kahneman, D,. 2003. Delusions of Success:
How Optimism Undermines Executives' Decisions,

Software Project Management Fallacies

115

Harvard Business Review, 56-63.
Maslow, A.H., 1971, The Farther Reaches of Human

Nature, Viking Press, New York, NY.
Maylor, H., Turner, N. and Murray-Webster, R., 2013. How

Hard Can It Be? Research-Technology Management,
(July-August), 46-51.

McClelland, D.C., 1961. The Achieving Society, Van
Nostrand-Rheinhold, Princeton, NJ.

McConnell, S., 2000. The Software Manager’s Toolkit,
IEEE Software, (July/August, 2013).

Myers, C., Staats, B. and Gino, F., 2014. My Bad! How
Internal Attribution and Ambiguity of Responsibility
Affect Learning from Failure, Harvard Business
School, Working Paper 14-104.

Ophira, E., Nass, C., and Wagner, A. 2009. Cognitive
Control in Media Multitaskers, Proceedings of the
National Academy of Sciences, Vol. 106, No. 33.

Ordonez, L., Schweitzer, M., Galinsky, A. and Bazerman,
M., 2009. Goals Gone Wild: The Systematic Side
Effects of Overprescribing Goal Setting, The Academy
of Management Perspectives, February, Vol. 23, No. 1,
6-16.

Peters, L. 2008. Getting Results from Software
Development Teams, Microsoft Press Best Practices
Series, Redmond, WA.

Peters, L., Moreno, A, 2014. Educating Software Project
Managers – Revisited, Conference on Software
Engineering Education and Training, Florence, Italy.

Peters, L., 2015. Managing Software Projects on the Edge
of Chaos – From Antipatterns to Success, Software
Consultants International Ltd., Auburn, WA.

Rombach, D. 2003. Teaching How to Engineer Software,
keynote address at the Conference on Software
Engineering and Education, Madrid, Spain, March.

Ryan, R. M., Deci, E. L., 2000. Intrinsic and Extrinsic
Motivations: Classic Definitions and New Directions,
Contemporary Educational Psychology, Volume 25, 54
– 67.

Software Extension to the PMBOK Guide Fifth Edition.
2013. IEEE Computer Society.

Staats, B.R., Brunner, D.J., Upton, D.M., 2011. Lean
Principles, Learning, and Knowledge Work: Evidence
from a Software Services Provider, Journal of
Operations Management, July.

Staats, B.R., Milkman, K.L. and Fox, C. R., 2014. The
Team Sizing Fallacy: Underestimating The Declining
Efficiency of Larger Teams, Forthcoming article in
Organizational Behavior and Human Decision
Processes.

Staats, B.R., Gino, F., Pisano, G.P., 2010. Varied
Experience, Team Familiarity, and Learning: The
Mediating Role of Psychological Safety, Working
Paper 10-016, (2010), Harvard Business School.

Standish Group, 2015. The Standish Group. The CHAOS
Report, West Yarmouth, MA, 2015.Taylor, B., 2011,
Why Do Smart People Do Such Dumb Things?
Harvard Business Review, (January 11, 2011).

Tomer, A., 2014. Software Manageeringment Teaching
Project from Software Engineer Perspective, Global
Engineering Education Conference (EDUCON, 2014).

Touran, A., 2003. Calculation of Contingency in
Construction Projects, IEEE Transactions on
Engineering Management 50(2), (May, 2003), 135-
140.

Townsend, R., 1970. Up the Organization – How to Stop
The Corporation from Stifling People and Strangling
Profits, Alfred Knopf, New York, N.Y.

Townsend, R., 1984. Further Up the Organization – How to
Stop Management from Stifling People and Strangling
Profits, Alfred Knopf, New York, N.Y.

Weick, K., 1987. Organizational Culture as a Source of
High Reliability, California Management Review, 29/2,
112-127.

Weinberg, G., 1994. Quality Software Management, vol. 3:
Congruent Action, New York, N.Y.: Dorset House
Publishing, 15-16.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

116

