
Towards Quantifiable Eventual Consistency

Francisco Maia, Miguel Matos and Fábio Coelho
INESC TEC & U. Minho, Braga, Portugal

Keywords: Large Scale, Data Stores, Epidemic Protocols.

Abstract: In the pursuit of highly available systems, storage systems began offering eventually consistent data models.
These models are suitable for a number of applications but not applicable for all. In this paper we discuss a
system that can offer a eventually consistent data model but can also, when needed, offer a strong consistent
one.

1 INTRODUCTION

In recent years, extensive research work has been fo-
cusing on large scale data storage (ex. (Chang et al.,
2006; Lakshman and Malik, 2010)). Large scale sys-
tems, composed by several thousand of machines,
raise several interesting challenges predominantly re-
lated with their instability. In fact, an increase in
system scale is necessarily accompanied by the in-
crease in the number and type of failures. Strikingly,
failures can actually become the rule, not the excep-
tion (Schroeder and Gibson, 2007). The impact of
failures in the design of a data storage system can be
significant and designing fault tolerant data storages
is a non trivial task.

Traditional data storage systems were designed
to provide four well-defined properties: atomicity,
consistency, isolation and durability. There are well
known approaches to provide these properties in a
centralized system. In this scenario the failure of
the machine necessarily means unavailability, even if
the above properties are always guaranteed. More-
over, centralized systems can only grow their capacity
to answer increased demand by adding physical re-
sources to the existing machine. In other words, they
cannot scale out. In order to provide better availabil-
ity and scalability, the natural answer are distributed
systems where demand is balanced across several ma-
chines and where an increase in demand is handled
by the addition of more machines, i.e. scale out. The
failure of a number of machines can be tolerated by
assigning their tasks to the remaining ones. However,
distributed systems require intricate coordination pro-
tocols in order to guarantee the four properties de-
scribed and these protocols exhibit performance lim-

itations when deployed in large scale scenarios. The
are know to struggle with deployments of more than
a few tens of nodes.

In the pursuit of available, scalable and usable
storage systems, compromises between availability
and the guarantees offered have been proposed. In
particular, the idea of eventual consistency has been
the subject of intense research work (Vogels, 2009).
Eventual consistency considers that data is allowed to
be temporarily inconsistent but eventually converges
to a consistent state. This relaxation allows data stor-
age systems to avoid costly coordination protocols
and offer continuous availability even in the presence
of failures. Even so, the concrete implementations of
the notion of eventual consistency are several and dis-
tinct. There is no clear and consensual definition of
the term and of the programming model it implies.
Different implementations originate different models
and there is no easy way to quantify the guarantees
provided by each model or even to compare them. As
a consequence, using and reasoning about an eventual
consistent system becomes very complex.

In this paper, we propose a new approach to data
storage. We leverage previous work on epidemic large
scale data storage and on a disruptive epidemic total
order protocol. We discuss a system that can effort-
lessly be configured to provide strong consistency or
a weaker consistency model.

2 DataFlasks - LARGE SCALE
STORAGE

DataFlasks (Maia et al., 2014) is a data store aimed at
very large scale deployments. Entirely built on top of

368
Maia, F., Matos, M. and Coelho, F.
Towards Quantifiable Eventual Consistency.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 368-370
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



epidemic protocols, this system is able to guarantee
data persistence even in the presence of high levels of
failures.

In DataFlasks, nodes are organized into groups.
Each group is responsible for a subset of the data
and groups do not overlap. A client application can
write key-value objects to DataFlasks by issuing a
put operation and later retrieve them via a get op-
eration. Objects are carry a version and the triple
(key,version,value) is considered unique by the stor-
age system. However, DataFlasks does not enforce
any kind of data consistency. As a consequence a
client application is responsible for explicitly manage
data versioning in order to provide consistency.

We leverage the work on DataFlasks in order to
take advantage of its resilience properties. Our pro-
posal is to use DataFlasks as a persistence layer.

3 EpTO- STRONG CONSISTENCY
WITH HIGH PROBABILITY

EpTO(Matos et al., 2015) is a scalable and robust total
order protocol. While validity, integrity and total or-
der properties are deterministic, the agreement prop-
erty of classic total order is relaxed to be probabilistic
and implemented at the expense of epidemic dissem-
ination protocols, know precisely for their scalability
and robustness. This allows EpTO to scale to thou-
sands of nodes, at least an order of magnitude larger
than previous proposals, which enables building very
large systems with strong (consistency) semantics.

Combining DataFlasks with EPTO, allows us to
offer total order on data writes to the store and, as a
consequence, a strong consistency model. DataFlasks
group construction mechanism and the fact that each
group dataset is disjoint (Guerraoui and Schiper,
1997) allows us to use the EPTO protocol only on
a restricted subset of the system nodes allowing the
system to scale.

4 RELAXED CONSISTENCY

With DataFlasks and the EPTO protocol we are able
to provide a storage system with strong consistency
with high probabiility. Moreover, we are able to
achieve this even for a deployment of several thou-
sand of nodes. Naturally, in order to achieve such
level of consistency a latency cost must be paid.

In DataFlasks, every node can receive requests.
When a write request is received, in order to guar-
antee strong consistency with high probability, nodes

must follow the EPTO protocol to ensure they assign
the correct version to that write operation. This may
result in increased request latency.

Our proposal is offering a weaker consistency
model where there is a small probability of temporar-
ily considering an incorrect version for write opera-
tions. It works as follows. Let us consider a system
component that gives nodes an estimate of the time it
takes a message to reach all nodes in their DataFlasks
group. Recall that each group is responsible for a cer-
tain subset of the data. This time estimate is associ-
ated with a probability of being correct. When a node
receives a write request automatically becomes the
coordinator for that write. It looks at its current state
and assigns the write a version it thinks is the correct
one based only on local knowledge. It disseminates
to all the other nodes in the system the write opera-
tion and the version. Next, it waits for an amount of
time equal to that given by the estimation. If no write
is received for that object in such time, it stores the
object with the assigned version. All the other nodes,
when receiving such object and version go through
the same procedure. Each time a node receives a con-
flicting request the one that was proposed by the node
with smaller identification wins.

This simple model allows the user to explicitly
tune the desired level of consistency by configuring
the time estimation component. When the time es-
timation component is configured with a probability
of 1 of being correct, the system automatically dis-
cards this algorithm and uses the EPTO protocol. For
every value smaller than 1, the system will relax con-
sistency guarantees and become faster. This way, the
same system architecture is able to provide a stronger
or a weaker consistency model according to the prior-
ity given to consistency and performance.

5 CHALLENGES

The weaker consistent model we propose shares simi-
larities with the unconscious model presented in (Bal-
doni et al., 2006). In it, processes are not aware -
i.e. are unconscious - of when consistency has been
reached. Our proposal allows for consciousness in the
sense that processes may know with probability 1 that
a consistency state has been reached while also allow-
ing for unconscious operation. We believe exposing
and quantifying these notions to the application is an
interesting research path, and in particularly its inter-
play with the reliability guarantees of the gossip mu-
tation and the freshness of the membership provided
by DataFlasks group construction protocols. Besides,
the consistency constraints imposed by operations af-

Towards Quantifiable Eventual Consistency

369



fecting multiple DataFlasks groups need to be stud-
ied (Guerraoui and Schiper, 1997).

We aim at quantifying these trade-offs and con-
straints such that one can achieve a better understand-
ing of the consistency models underlying modern dis-
tributed applications and in particular, studying how
the relaxations proposed compare with the stronger
consistency models.

ACKNOWLEDGMENT

This work was part-funded by project CoherentPaaS:
A Coherent and Rich PaaS with a Common Program-
ming Model (FP7-611068).

REFERENCES

Baldoni, R., Guerraoui, R., Levy, R. R., Quéma, V., and
Piergiovanni, S. T. (2006). Unconscious eventual con-
sistency with gossips. In Stabilization, Safety, and Se-
curity of Distributed Systems, pages 65–81. Springer.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2006). Bigtable: a distributed storage sys-
tem for structured data. In The Symposium on Oper-
ating Systems Design and Implementation. USENIX.

Guerraoui, R. and Schiper, A. (1997). Total order mul-
ticast to multiple groups. In Distributed Computing
Systems, 1997., Proceedings of the 17th International
Conference on, pages 578–585. IEEE.

Lakshman, A. and Malik, P. (2010). Cassandra: a decen-
tralized structured storage system. In ACM SIGOPS
Operating Systems Review. ACM.

Maia, F., Matos, M., Vilaça, R., Pereira, J., Oliveira, R.,
and Riviere, E. (2014). Dataflasks: epidemic store
for massive scale systems. In 2014 IEEE 33rd Inter-
national Symposium on Reliable Distributed Systems
(SRDS), pages 79–88. IEEE.

Matos, M., Mercier, H., Felber, P., Oliveira, R., and Pereira,
J. (2015). Epto: An epidemic total order algorithm
for large-scale distributed systems. In Proceedings of
the 16th Annual Middleware Conference, Middleware
’15, pages 100–111, New York, NY, USA. ACM.

Schroeder, B. and Gibson, G. A. (2007). Disk failures in the
real world: What does an MTTF of 1,000,000 hours
mean to you? In Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies. USENIX.

Vogels, W. (2009). Eventually consistent. Communications
of the ACM, 52(1):40–44.

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

370


