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Abstract: The data collection for eventual analysis is an old concept that today receives a revisited interest due to the 
emerging of new research trend such Big Data. Furthermore, considering that a current market trend is to 
provide integrated solution to achieve multiple purposes (such as ISOC, SIEM, CEP, etc.), the data became 
very heterogeneous. In this paper a flexible and efficient solution about the data collection of heterogeneous 
data is presented, describing the approach used to collect heterogeneous data and the additional features (pre-
processing) provided with it. 

1 INTRODUCTION 

Current market shows a trend of the vendors to offer 
integrated solution to their customers in the domain 
of the Big Data. This is the case, for example, of the 
Information Security Operations Center (ISOC) 
where enterprise information systems (applications, 
databases, web sites, networks, desktops, data 
centers, servers, and other endpoints) are monitored, 
assessed, and protected using advanced processing 
techniques (Complex Event Processing CEP). 
Another example is the new generation of Security 
Information and Event Management (SIEM) systems 
that combine Security Information Management 
(SIM) and Security Event Management (SEM) 
technologies (Coppolino et al., 2015). These 
examples are characterized by the high heterogeneity 
of the data produced by the sensors used to monitor 
the infrastructure to be protected. 

The Data Collection Framework that is presented 
in this paper aims at mastering the data heterogeneity 
by providing a flexible and efficient tool for gathering 
and normalising security relevant information. 
Furthermore, we believe that, in many cases the 
possibility to perform a coarse-grain analysis of the 
data at the edge of the domain to be monitored can 
provide relevant advantages, such as an early 
detection of particular conditions, a reduction of the 

data stream volume that feeds the data and event 
processing platform, and the anonymization of the 
data with respect to privacy requirements. 

This tool has been developed in the context of the 
LeanBigData (LBD) EU project. LeanBigData 
targets at building an ultra-scalable and ultra-efficient 
integrated big data platform addressing important 
open issues in big data analytics. 

This paper is organized as follows. Section 2 
describes the developed Data Collection Framework, 
Section 2.1 provides global implementation details, 
Section 2.2 describes the DCF Input Adapters, 
Section 2.3 describes the DCF Output Adapters, 
Section 2.4 describes the Processing At The Edge 
Component, Section 2.5 describes the DCF 
deployment schemas, and Section 3 provides some 
concluding remarks. 

2 DATA COLLECTION 
FRAMEWORK 

The main features of the Data Collection Framework 
(DCF) are 1) effective (i.e. high throughput) 
collection of data via a declarative approach and 2) 
efficient inclusion of new data sources. The Data 
Collection Framework enables the user to configure 
data sensors via a declarative approach, and to 
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transform data that can be described via EBNF 
(Extended Backus-Naur Form) notation into 
structured data, by leveraging a “compiler-compiler” 
approach (Compiler-compiler, 2015). 

The data collection framework allows users: 

 to specify via a grammar the structure of the 
data to be collected,  

 to provide a bidirectional data collection layer, 
with the capability to perform simple 
operations on data, such as aggregation, 
filtering, and pattern recognition, at the edge of 
the domain,  

 to provide sensors for a broad set of common 
data sources, such as: operating system and 
server logs, network and security device logs, 
CPU information, VM information, IPMI, and 
application level information.  

The Data Collection Framework is able to 
translate the format of virtually any data source into a 
general format in a declarative manner, by providing 
the translation scheme. 

Figure 1 shows the global architecture of the Data 
Collection Framework. 

 

Figure 1: DCF architecture. 

It is composed of three main building blocks, namely: 
1. Data Acquisition module; 
2. Data Parsing/Processing at the edge module; 
3. Data Output module. 

The Data Acquisition module is the part 
responsible for acquiring data from the sources, and 
of forwarding them to the Data Parsing/ Processing at 
the edge module. The Data Acquisition module 
provides many Agents in order to gather data from 
different types of sources and uses two possible 
collection modes: 

1. Push - with this mechanism, the sources are 
responsible for forwarding data to the 
acquisition agent. The Syslog protocol (Syslog, 
2015) is used to allow a simple integration of 
systems that already use this protocol to log 
their data. 

2. Pull - with this mechanism, the agent reads data 
directly from the source (log file). 

The Data Parsing/Processing at the edge module 
is in charge of transforming raw data to structured 
data by leveraging a “compiler-compiler” approach. 
Furthermore, each generated parser also converts raw 
data to a format compatible with the one used by the 
LeanBigData CEP and possibly pre-processes them 
using a State Machine Approach (SMC, 2015) 
depending on the requirements of the application 
domain. The result of this module is passed to the 
Data Output module. 

The Data Output module is in charge of 
forwarding parsed data to one or more components 
responsible for attack detection. 

2.1 DCF Implementation 

The Data Collection Framework has been 
implemented in Java for the following reasons:  

 The APIs of the LeanBigData CEP are 
provided for this language; 

 The “write once, run anywhere (WORA)” 
advantages of Java code allow to run an 
application on different architectures without 
rebuild it; 

 Only the presence of a Java Virtual Machine 
(JVM) is required. 

The DCF is provided as a single runnable jar file that 
can be executed by a user: 

 to acquire raw data; 
 to parse data; 
 to format data; 
 to pre-process data; 
 to provide input to a correlator. 

All these functionalities are fully integrated in a 
single component to allow the execution on a single 
machine (the host to monitor). 

2.2 DCF Input Adapters 

The DCF comes with a series of input adapters 
already available to cover a high range of sources: 

 Grammar Based 
 Syslog source 
 Log source 
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 Ganglia source 
 DB source 

New input adapters can be added in a simple way 
to allow future extensions. It is worth noting that at 
runtime only a single type of input adapter can be 
configured for each DCF instance (if more input 
adapters are configured only one will be executed). 

2.2.1 Grammar based Input Adapters 

This class of adapters covers a high range of possible 
sources. These adapters will be responsible for 
transforming raw data (that can be described using an 
EBNF notation) to structured data, leveraging a 
“compiler-compiler” approach, that consists in the 
generation of a data parser. 

Since 1960, the tools that offer automatic 
generation of parsers are increased in number and 
sophistications. Today about one hundred different 
parser generator tools, including commercial 
products and open source software, are available. We 
analysed such tools and compared them taking into 
account the following requirements: 
 Formal description of the target language in 

EBNF or EBNF-like notation; 
 Generated parser in Java programming 

language; 
 Optimized and high performance parsing; 
 Low or no-runtime dependencies; 
 BSD license; 
 High quality error reporting; 
 High availability of online/literature 

documentation. 
The result of the comparison is that JavaCC 

(JAVACC, 2015) and ANTLR (ANTLR, 2015) are 
both valuable solutions for generating a parser. We 
selected them for the DCF implementation for the 
following motivations:  
 Input Grammar notation 

Both JavaCC and ANTLR accept a formal 
description of the language in EBNF notation. The 
EBNF notation is the ISO standard, well-known by 
developers and allows high flexibility. 
 Type of parsers generated 

JavaCC produces top-down parsers. ANTLR 
generates top-down parsers as well. A top-down 
parser is strongly customizable, simple to read and 
understand. These advantages allow high 
productivity and improve the debugging process. 
 Output language 

ANTLR, and in particular version 4, is able to 
generate parsers in Java, C# , Python2 and 3. JavaCC 
is strongly targeted to Java, but also supports C++ and 

JavaScript. The main advantage of a parser in Java is 
its high portability.  
 Run-time dependencies 

JavaCC generates a parser with no runtime 
dependencies, while ANTLR needs external libraries. 
 Performance 

To test the performance of JavaCC and ANTLR 
we have conducted many tests. One of the 
performance indicator that has been evaluated is the 
parsing time. 

An example of the conducted tests (on the same 
machine – Windows 7 - 64 bit - i7 - 6GB) is the 
measurement of the time needed to parse the 
following mathematical expression: 

11+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)
+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+1
1+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+
12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+11
+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+1

2*(24/8)+(1204*3)+12*(24/8)+(1204*3) 

(1) 

The grammar files written for the two parser 
generators are perfectly equivalent to have a common 
starting point. JavaCC is faster than ANTLR, in fact 
after repeated measures it is capable to parse the 
expression in an average time less than 3ms, while 
ANTLR(version 4) takes over 60ms. 
 Generated code footprint 

Starting from the same code used to evaluate the 
performance, JavaCC and ANTLR require, for the 
generated code, a comparable footprint (less than 
20KB). ANTLR however, due to runtime 
dependencies, requires adding into the project an 
external library that takes about 1 MB. 
 License 

Both parser generators are under BSD license. 
BSD provides high flexibility for the developers and 
minimum restrictions for the redistribution of the 
software.  

From this analysis, even if the features of JavaCC 
and ANTLR are comparable, the best performance in 
parsing and generation of the output source code, the 
smaller code footprint and the absence of runtime 
dependencies, have led us to select JavaCC as the 
parser generator to be used in the Data Collection 
Framework. 

The adoption of the JavaCC parser generator, 
requires a declarative description of the data 
structure. 

The declarative description of the data structure is 
provided via a grammar file (.jj) that describes the 
tokens and the relative semantics of the data to parse 
using an Extended-Backus-Naur Form (EBNF, 
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2015). The following classes have been used to 
optimize the integration of the parser with the DCF: 

 The TupleElement class, to represent a parsed 
value in the paradigm (Name,Type,Value); 

 The Tuple class, to represent a collection of 
parsed events (TupleElement) 

 The ConvertAndSend class, to format the data 
in the DCF format and to forward them to the 
data analysis module. 

The push and the pull operation mode have been 
implemented as shown in Figure 2. 

In the push mode, the DCF instantiates a SysLog 
server to receive data using the SysLog protocol. In 
this way a generic method is provided to receive data 
from external sources and to integrate, with no 
overhead, sources that already use the SysLog format 
to log information. 

In the pull mode data are retrieved from a log file. 
This method is useful when the sources save 
information in log files. The input adapters will be 
responsible for gathering data from the log files. This 
is implemented using a non-blocking (for the source) 
piped mechanism. In particular, the log file is read as 
a “RandomAccessFile” and, when it reaches the end 
of file, the reader goes into sleep mode for a pre-
configured amount of time. On wakeup, it checks if 
there have been any changes in the file. The raw data 
is read and is pushed to an output pipe, which is 
connected to an input pipe that is used as input by the 
parsers during the parsing phase. 

 

Figure 2: DCF push and pull mode. 

2.2.2 Ganglia Source 

This adapter has been implemented to retrieve data 
from sources that already use the Ganglia monitoring 
system (Ganglia, 2015). Ganglia is a scalable 
distributed monitoring system for high-performance 
computing systems, such as clusters and Grids. 
Ganglia allows to monitor a lot of physical machine 
parameters defined as metrics with very low per-node 
overhead and high concurrency. The physical machine 
metrics that are of interest to the application can be 
measured by appropriately configuring Ganglia. This 
input adapter uses a TCP server hosted by Ganglia to 
retrieve all monitored data. 

2.2.3 DB Source Input Adapter 

This adapter has been implemented to retrieve data 
from a specific table of a database. Typically, this 
adapter requires a trigger enabled on the table to be 
monitored in order to notify the adapter when a new 
value is ready. This adapter requires the table be 
ordered by means of an identifier of Integer type. This 
is needed to retrieve only new rows of the table. 

2.3 DCF Output Adapters 

The DCF provides the following output adapters to 
forward parsed data: 

 Lean Big Data CEP Adapter 
 Ganglia adapter 
 TCP JSON adapter 

New output adapter can be easily added to allow 
future extensions. It is worth noting that at runtime 
multiple types of output adapters can be configured 
for each DCF instance. 

2.3.1 LDB CEP Output Adapter 

This adapter is used to forward data to the Lean Big 
Data CEP using the LBD JCEPC driver. In particular, 
data are forwarded to a specific stream of a topology 
loaded into the LBD CEP. 

2.3.2 Ganglia Output Adapter 

This adapter is used to forward data to the Ganglia 
monitoring system. It is useful to create specific 
metrics using the DCF data. This adapter can be used 
in a machine running Ganglia. 

2.3.3 TCP JSON Output Adapter 

This adapter provides a general output adapter. It 
forwards data to a TCP server using the JSON format 
(JSON, 2015). An example of the output format is 
provided in the code below. This example is about the 
output produced by a DCF configured with a Ganglia 
input adapter and a TCP JSON output adapter. The 
code shows that all metrics configured in Ganglia are 
forwarded to the destination in a generic JSON 
format. 

{"Type":"Long", 
"Attribute":"ganglia_timestamp", 
"Value":"1449740799000"}, 
{"Type":"String", 
"Attribute":"ganglia_IP", 
"Value":"127.0.0.1"}, 
{"Type":"String", 
"Attribute":"ganglia_location", 
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"Value":"192.168.10.206"}, 
{"Type":"Double", 
"Attribute":"cpu_user", 
"Value":"6.4"}, 
{"Type":"Double", 
"Attribute":"cpu_nice", 
"Value":"0.0"}, 
{"Type":"Double", 
"Attribute":"load_five", 
"Value":"1.03"}, 
{"Type":"Double", 
"Attribute":"cpu_system", 
"Value":"5.6"},… 

2.4 DCF Processing at the Edge 

The “Processing At The Edge” (PATE) has been 
implemented using the State Machine Compiler 
technologies. This component is optional and can be 
enabled via a configuration file. 

The idea is that the user can perform simple 
processing operation on the collected data before 
forwarding them to the output adapter. This pre-
processing task allows for an early detection of 
specific conditions end events, a reduction of the data 
stream volume, and the anonymization of the data 
with respect to privacy requirements. 

Many technological solutions have been 
evaluated, based on the following criteria: 
 Simple processing operation definable by the 

user 
 Low dependences 
 Low overhead 
 Good performance 
 JAVA support 

Based on the results of the evaluation process we 
adopted the Finite State Machine Approach. The user 
specifies the operations to perform on the data using 
a state machine description. Starting from the 
declarative description of the state machine the DCF 
generates and runs the corresponding finite state 
machine using the State Machine Compiler (SMC, 
2015). The template for writing a state machine is 
provided in the following code excerpt. 

%class Manager 
%import com.parser.Tuple 
%package com.stateMachine 
%start StateMachineMap::State1 
%fsmclass StateMachineName 
%map StateMachineMap 
%% 
State1 { 
  “transition(input: 
Tuple)[condition]  NextState 
{ actions…}” 
… 
} 

… 
StateN {…} 
%% 
In each state machine one or more states can be 

defined and each state is characterized by one or more 
transitions. Each transition has an input value of the 
Tuple type (i.e. a collection of parsed values), an 
activating condition (if the condition is true the 
transition is activated), a next state to be reached 
when the activating condition is satisfied, and a list of 
actions to be performed during the transition 
activation. The current implementation provides the 
following list of possible actions that can be 
performed while activating the transition: 

 send(Tuple) to forward event to the DCF 
Output Adapter; 

 print(Object) for debug purpose; 
 getIntField(Tuple, String) to retrieve an integer 

field form the input Tuple; 
 getStringField(Tuple, String); 
 getDoubleField(Tuple, String); 
 getTimestampField(Tuple, String); 
 getLongField(Tuple, String); 
 getFloatField(Tuple, String); 
 addToAVG(int index, double value), 

resetAVG(int index), getAVG(int index) a set 
of functionalities to allow the computation of 
average values. Many averages can be 
managed, and each average is identified by a 
numeric index; 

 incCounter(int index, int x), decCounter(int 
index, int x), getCounter(int index) a set of 
functionalities to allow the counting operation. 
Many counters can be managed, and each 
counter is identified by a numeric index; 

 anonymize(Tuple tuple, String... name) to 
anonymize specific fields of the input tuple; 

 addField(Tuple tuple, String name, types type, 
Object value) to add a new field to the input 
tuple; 

 saveValue(String name, types type, Object 
value ), sendSavedData(String id), 
getIntSavedData(String name), 
getDoubleSavedData(String name), 
getLongSavedData(String name) to save and 
retrieve data between states; 

 sendValue(String id, String name, types type, 
Object value) to forward specific value to the 
DCF Output Adapter. 

2.5 DCF Deployment Schemas 

Thanks to the high modularity of the DCF 
components three deployment schemas can be 
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adopted: Basic Schema, Thin Client Schema, and 
Clustered Schema. 

The Basic Schema represents the basic 
configuration of the DCF where a full instance of the 
DCF (including the PATE) is running on each data 
source as described in Figure 3. 

 

Figure 3: DCF Basic Schema. 

 

Figure 4: DCF Thin Client Schema. 

  

Figure 5: DCF Cluster Schema. 

The Thin Client Schema (Figure 4) represents a 
configuration where only the data acquisition agent is 
deployed on the data source. The PATE component is 
possibly deployed in a separate machine. This is 
useful when the data source has low resources 
available (ex. Raspberry). 

The Clustered Schema (  
Figure 5) represents a configuration where all the 

gathered data are forwarded to a central PATE 
component, thus achieving a clustered data 
collection. 

3 CONCLUSIONS 

This paper presents the final implementation of a 
Data Collection Framework. The proposed 

framework provides an integrated and modular 
framework for instrumentation and performance 
analysis that has been explicitly designed to support 
the LeanBigData project, but can be used also in 
different context. The collection framework includes 
a number of features for achieving high-throughput, 
such as being able to handle thousands asynchronous 
data streams as well as having processing capabilities 
at the edge. 
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