
Data Collection Framework
A Flexible and Efficient Tool for Heterogeneous Data Acquisition

Luigi Sgaglione1, Gaetano Papale1, Giovanni Mazzeo1, Gianfranco Cerullo1,
Pasquale Starace1 and Ferninando Campanile2

1Department of Engineering, University of Naples “Parthenope”, Naples, Italy
2Sync Lab S.r.l., Naples, Italy

Keywords: Big Data, Data Collection.

Abstract: The data collection for eventual analysis is an old concept that today receives a revisited interest due to the
emerging of new research trend such Big Data. Furthermore, considering that a current market trend is to
provide integrated solution to achieve multiple purposes (such as ISOC, SIEM, CEP, etc.), the data became
very heterogeneous. In this paper a flexible and efficient solution about the data collection of heterogeneous
data is presented, describing the approach used to collect heterogeneous data and the additional features (pre-
processing) provided with it.

1 INTRODUCTION

Current market shows a trend of the vendors to offer
integrated solution to their customers in the domain
of the Big Data. This is the case, for example, of the
Information Security Operations Center (ISOC)
where enterprise information systems (applications,
databases, web sites, networks, desktops, data
centers, servers, and other endpoints) are monitored,
assessed, and protected using advanced processing
techniques (Complex Event Processing CEP).
Another example is the new generation of Security
Information and Event Management (SIEM) systems
that combine Security Information Management
(SIM) and Security Event Management (SEM)
technologies (Coppolino et al., 2015). These
examples are characterized by the high heterogeneity
of the data produced by the sensors used to monitor
the infrastructure to be protected.

The Data Collection Framework that is presented
in this paper aims at mastering the data heterogeneity
by providing a flexible and efficient tool for gathering
and normalising security relevant information.
Furthermore, we believe that, in many cases the
possibility to perform a coarse-grain analysis of the
data at the edge of the domain to be monitored can
provide relevant advantages, such as an early
detection of particular conditions, a reduction of the

data stream volume that feeds the data and event
processing platform, and the anonymization of the
data with respect to privacy requirements.

This tool has been developed in the context of the
LeanBigData (LBD) EU project. LeanBigData
targets at building an ultra-scalable and ultra-efficient
integrated big data platform addressing important
open issues in big data analytics.

This paper is organized as follows. Section 2
describes the developed Data Collection Framework,
Section 2.1 provides global implementation details,
Section 2.2 describes the DCF Input Adapters,
Section 2.3 describes the DCF Output Adapters,
Section 2.4 describes the Processing At The Edge
Component, Section 2.5 describes the DCF
deployment schemas, and Section 3 provides some
concluding remarks.

2 DATA COLLECTION
FRAMEWORK

The main features of the Data Collection Framework
(DCF) are 1) effective (i.e. high throughput)
collection of data via a declarative approach and 2)
efficient inclusion of new data sources. The Data
Collection Framework enables the user to configure
data sensors via a declarative approach, and to

374
Sgaglione, L., Papale, G., Mazzeo, G., Cerullo, G., Starace, P. and Campanile, F.
Data Collection Framework - A Flexible and Efficient Tool for Heterogeneous Data Acquisition.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 374-379
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

transform data that can be described via EBNF
(Extended Backus-Naur Form) notation into
structured data, by leveraging a “compiler-compiler”
approach (Compiler-compiler, 2015).

The data collection framework allows users:

 to specify via a grammar the structure of the
data to be collected,

 to provide a bidirectional data collection layer,
with the capability to perform simple
operations on data, such as aggregation,
filtering, and pattern recognition, at the edge of
the domain,

 to provide sensors for a broad set of common
data sources, such as: operating system and
server logs, network and security device logs,
CPU information, VM information, IPMI, and
application level information.

The Data Collection Framework is able to
translate the format of virtually any data source into a
general format in a declarative manner, by providing
the translation scheme.

Figure 1 shows the global architecture of the Data
Collection Framework.

Figure 1: DCF architecture.

It is composed of three main building blocks, namely:
1. Data Acquisition module;
2. Data Parsing/Processing at the edge module;
3. Data Output module.

The Data Acquisition module is the part
responsible for acquiring data from the sources, and
of forwarding them to the Data Parsing/ Processing at
the edge module. The Data Acquisition module
provides many Agents in order to gather data from
different types of sources and uses two possible
collection modes:

1. Push - with this mechanism, the sources are
responsible for forwarding data to the
acquisition agent. The Syslog protocol (Syslog,
2015) is used to allow a simple integration of
systems that already use this protocol to log
their data.

2. Pull - with this mechanism, the agent reads data
directly from the source (log file).

The Data Parsing/Processing at the edge module
is in charge of transforming raw data to structured
data by leveraging a “compiler-compiler” approach.
Furthermore, each generated parser also converts raw
data to a format compatible with the one used by the
LeanBigData CEP and possibly pre-processes them
using a State Machine Approach (SMC, 2015)
depending on the requirements of the application
domain. The result of this module is passed to the
Data Output module.

The Data Output module is in charge of
forwarding parsed data to one or more components
responsible for attack detection.

2.1 DCF Implementation

The Data Collection Framework has been
implemented in Java for the following reasons:

 The APIs of the LeanBigData CEP are
provided for this language;

 The “write once, run anywhere (WORA)”
advantages of Java code allow to run an
application on different architectures without
rebuild it;

 Only the presence of a Java Virtual Machine
(JVM) is required.

The DCF is provided as a single runnable jar file that
can be executed by a user:

 to acquire raw data;
 to parse data;
 to format data;
 to pre-process data;
 to provide input to a correlator.

All these functionalities are fully integrated in a
single component to allow the execution on a single
machine (the host to monitor).

2.2 DCF Input Adapters

The DCF comes with a series of input adapters
already available to cover a high range of sources:

 Grammar Based
 Syslog source
 Log source

Data Collection Framework - A Flexible and Efficient Tool for Heterogeneous Data Acquisition

375

 Ganglia source
 DB source

New input adapters can be added in a simple way
to allow future extensions. It is worth noting that at
runtime only a single type of input adapter can be
configured for each DCF instance (if more input
adapters are configured only one will be executed).

2.2.1 Grammar based Input Adapters

This class of adapters covers a high range of possible
sources. These adapters will be responsible for
transforming raw data (that can be described using an
EBNF notation) to structured data, leveraging a
“compiler-compiler” approach, that consists in the
generation of a data parser.

Since 1960, the tools that offer automatic
generation of parsers are increased in number and
sophistications. Today about one hundred different
parser generator tools, including commercial
products and open source software, are available. We
analysed such tools and compared them taking into
account the following requirements:
 Formal description of the target language in

EBNF or EBNF-like notation;
 Generated parser in Java programming

language;
 Optimized and high performance parsing;
 Low or no-runtime dependencies;
 BSD license;
 High quality error reporting;
 High availability of online/literature

documentation.
The result of the comparison is that JavaCC

(JAVACC, 2015) and ANTLR (ANTLR, 2015) are
both valuable solutions for generating a parser. We
selected them for the DCF implementation for the
following motivations:
 Input Grammar notation

Both JavaCC and ANTLR accept a formal
description of the language in EBNF notation. The
EBNF notation is the ISO standard, well-known by
developers and allows high flexibility.
 Type of parsers generated

JavaCC produces top-down parsers. ANTLR
generates top-down parsers as well. A top-down
parser is strongly customizable, simple to read and
understand. These advantages allow high
productivity and improve the debugging process.
 Output language

ANTLR, and in particular version 4, is able to
generate parsers in Java, C# , Python2 and 3. JavaCC
is strongly targeted to Java, but also supports C++ and

JavaScript. The main advantage of a parser in Java is
its high portability.
 Run-time dependencies

JavaCC generates a parser with no runtime
dependencies, while ANTLR needs external libraries.
 Performance

To test the performance of JavaCC and ANTLR
we have conducted many tests. One of the
performance indicator that has been evaluated is the
parsing time.

An example of the conducted tests (on the same
machine – Windows 7 - 64 bit - i7 - 6GB) is the
measurement of the time needed to parse the
following mathematical expression:

11+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)
+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+1
1+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+
12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+11
+12*(24/8)+(1204*3)+12*(24/8)+(1204*3)+1

2*(24/8)+(1204*3)+12*(24/8)+(1204*3)

(1)

The grammar files written for the two parser
generators are perfectly equivalent to have a common
starting point. JavaCC is faster than ANTLR, in fact
after repeated measures it is capable to parse the
expression in an average time less than 3ms, while
ANTLR(version 4) takes over 60ms.
 Generated code footprint

Starting from the same code used to evaluate the
performance, JavaCC and ANTLR require, for the
generated code, a comparable footprint (less than
20KB). ANTLR however, due to runtime
dependencies, requires adding into the project an
external library that takes about 1 MB.
 License

Both parser generators are under BSD license.
BSD provides high flexibility for the developers and
minimum restrictions for the redistribution of the
software.

From this analysis, even if the features of JavaCC
and ANTLR are comparable, the best performance in
parsing and generation of the output source code, the
smaller code footprint and the absence of runtime
dependencies, have led us to select JavaCC as the
parser generator to be used in the Data Collection
Framework.

The adoption of the JavaCC parser generator,
requires a declarative description of the data
structure.

The declarative description of the data structure is
provided via a grammar file (.jj) that describes the
tokens and the relative semantics of the data to parse
using an Extended-Backus-Naur Form (EBNF,

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

376

2015). The following classes have been used to
optimize the integration of the parser with the DCF:

 The TupleElement class, to represent a parsed
value in the paradigm (Name,Type,Value);

 The Tuple class, to represent a collection of
parsed events (TupleElement)

 The ConvertAndSend class, to format the data
in the DCF format and to forward them to the
data analysis module.

The push and the pull operation mode have been
implemented as shown in Figure 2.

In the push mode, the DCF instantiates a SysLog
server to receive data using the SysLog protocol. In
this way a generic method is provided to receive data
from external sources and to integrate, with no
overhead, sources that already use the SysLog format
to log information.

In the pull mode data are retrieved from a log file.
This method is useful when the sources save
information in log files. The input adapters will be
responsible for gathering data from the log files. This
is implemented using a non-blocking (for the source)
piped mechanism. In particular, the log file is read as
a “RandomAccessFile” and, when it reaches the end
of file, the reader goes into sleep mode for a pre-
configured amount of time. On wakeup, it checks if
there have been any changes in the file. The raw data
is read and is pushed to an output pipe, which is
connected to an input pipe that is used as input by the
parsers during the parsing phase.

Figure 2: DCF push and pull mode.

2.2.2 Ganglia Source

This adapter has been implemented to retrieve data
from sources that already use the Ganglia monitoring
system (Ganglia, 2015). Ganglia is a scalable
distributed monitoring system for high-performance
computing systems, such as clusters and Grids.
Ganglia allows to monitor a lot of physical machine
parameters defined as metrics with very low per-node
overhead and high concurrency. The physical machine
metrics that are of interest to the application can be
measured by appropriately configuring Ganglia. This
input adapter uses a TCP server hosted by Ganglia to
retrieve all monitored data.

2.2.3 DB Source Input Adapter

This adapter has been implemented to retrieve data
from a specific table of a database. Typically, this
adapter requires a trigger enabled on the table to be
monitored in order to notify the adapter when a new
value is ready. This adapter requires the table be
ordered by means of an identifier of Integer type. This
is needed to retrieve only new rows of the table.

2.3 DCF Output Adapters

The DCF provides the following output adapters to
forward parsed data:

 Lean Big Data CEP Adapter
 Ganglia adapter
 TCP JSON adapter

New output adapter can be easily added to allow
future extensions. It is worth noting that at runtime
multiple types of output adapters can be configured
for each DCF instance.

2.3.1 LDB CEP Output Adapter

This adapter is used to forward data to the Lean Big
Data CEP using the LBD JCEPC driver. In particular,
data are forwarded to a specific stream of a topology
loaded into the LBD CEP.

2.3.2 Ganglia Output Adapter

This adapter is used to forward data to the Ganglia
monitoring system. It is useful to create specific
metrics using the DCF data. This adapter can be used
in a machine running Ganglia.

2.3.3 TCP JSON Output Adapter

This adapter provides a general output adapter. It
forwards data to a TCP server using the JSON format
(JSON, 2015). An example of the output format is
provided in the code below. This example is about the
output produced by a DCF configured with a Ganglia
input adapter and a TCP JSON output adapter. The
code shows that all metrics configured in Ganglia are
forwarded to the destination in a generic JSON
format.

{"Type":"Long",
"Attribute":"ganglia_timestamp",
"Value":"1449740799000"},
{"Type":"String",
"Attribute":"ganglia_IP",
"Value":"127.0.0.1"},
{"Type":"String",
"Attribute":"ganglia_location",

Data Collection Framework - A Flexible and Efficient Tool for Heterogeneous Data Acquisition

377

"Value":"192.168.10.206"},
{"Type":"Double",
"Attribute":"cpu_user",
"Value":"6.4"},
{"Type":"Double",
"Attribute":"cpu_nice",
"Value":"0.0"},
{"Type":"Double",
"Attribute":"load_five",
"Value":"1.03"},
{"Type":"Double",
"Attribute":"cpu_system",
"Value":"5.6"},…

2.4 DCF Processing at the Edge

The “Processing At The Edge” (PATE) has been
implemented using the State Machine Compiler
technologies. This component is optional and can be
enabled via a configuration file.

The idea is that the user can perform simple
processing operation on the collected data before
forwarding them to the output adapter. This pre-
processing task allows for an early detection of
specific conditions end events, a reduction of the data
stream volume, and the anonymization of the data
with respect to privacy requirements.

Many technological solutions have been
evaluated, based on the following criteria:
 Simple processing operation definable by the

user
 Low dependences
 Low overhead
 Good performance
 JAVA support

Based on the results of the evaluation process we
adopted the Finite State Machine Approach. The user
specifies the operations to perform on the data using
a state machine description. Starting from the
declarative description of the state machine the DCF
generates and runs the corresponding finite state
machine using the State Machine Compiler (SMC,
2015). The template for writing a state machine is
provided in the following code excerpt.

%class Manager
%import com.parser.Tuple
%package com.stateMachine
%start StateMachineMap::State1
%fsmclass StateMachineName
%map StateMachineMap
%%
State1 {
 “transition(input:
Tuple)[condition] NextState
{ actions…}”
…
}

…
StateN {…}
%%
In each state machine one or more states can be

defined and each state is characterized by one or more
transitions. Each transition has an input value of the
Tuple type (i.e. a collection of parsed values), an
activating condition (if the condition is true the
transition is activated), a next state to be reached
when the activating condition is satisfied, and a list of
actions to be performed during the transition
activation. The current implementation provides the
following list of possible actions that can be
performed while activating the transition:

 send(Tuple) to forward event to the DCF
Output Adapter;

 print(Object) for debug purpose;
 getIntField(Tuple, String) to retrieve an integer

field form the input Tuple;
 getStringField(Tuple, String);
 getDoubleField(Tuple, String);
 getTimestampField(Tuple, String);
 getLongField(Tuple, String);
 getFloatField(Tuple, String);
 addToAVG(int index, double value),

resetAVG(int index), getAVG(int index) a set
of functionalities to allow the computation of
average values. Many averages can be
managed, and each average is identified by a
numeric index;

 incCounter(int index, int x), decCounter(int
index, int x), getCounter(int index) a set of
functionalities to allow the counting operation.
Many counters can be managed, and each
counter is identified by a numeric index;

 anonymize(Tuple tuple, String... name) to
anonymize specific fields of the input tuple;

 addField(Tuple tuple, String name, types type,
Object value) to add a new field to the input
tuple;

 saveValue(String name, types type, Object
value), sendSavedData(String id),
getIntSavedData(String name),
getDoubleSavedData(String name),
getLongSavedData(String name) to save and
retrieve data between states;

 sendValue(String id, String name, types type,
Object value) to forward specific value to the
DCF Output Adapter.

2.5 DCF Deployment Schemas

Thanks to the high modularity of the DCF
components three deployment schemas can be

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

378

adopted: Basic Schema, Thin Client Schema, and
Clustered Schema.

The Basic Schema represents the basic
configuration of the DCF where a full instance of the
DCF (including the PATE) is running on each data
source as described in Figure 3.

Figure 3: DCF Basic Schema.

Figure 4: DCF Thin Client Schema.

Figure 5: DCF Cluster Schema.

The Thin Client Schema (Figure 4) represents a
configuration where only the data acquisition agent is
deployed on the data source. The PATE component is
possibly deployed in a separate machine. This is
useful when the data source has low resources
available (ex. Raspberry).

The Clustered Schema (
Figure 5) represents a configuration where all the

gathered data are forwarded to a central PATE
component, thus achieving a clustered data
collection.

3 CONCLUSIONS

This paper presents the final implementation of a
Data Collection Framework. The proposed

framework provides an integrated and modular
framework for instrumentation and performance
analysis that has been explicitly designed to support
the LeanBigData project, but can be used also in
different context. The collection framework includes
a number of features for achieving high-throughput,
such as being able to handle thousands asynchronous
data streams as well as having processing capabilities
at the edge.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from European Commission within the
context of Seventh Framework Programme
(FP7/2007-2013) for research, technological
development and demonstration under Grant
Agreement No. 619606 (Ultra-Scalable and Ultra-
Efficient Integrated and Visual Big Data Analytics,
LeanBigData Project).

REFERENCES

Coppolino, L.; D'Antonio, S.; Formicola, V.; Romano, L.,
2014. "Real-time Security & Dependability monitoring:
Make it a bundle". In Security Technology (ICCST)

Compiler-compiler, 2015. Available from: princeton.edu:
https://www.princeton.edu/~achaney/tmve/wiki100k/d
ocs/Compiler-compiler.html

SMC, 2015. Available from Sourceforge: http://smc.
sourceforge.net/

Syslog, 2015. Wikipedia. Available from: https://en.
wikipedia.org/wiki/Syslog

EBNF. 2015. Available from www.iso.org: http://www.iso.
org/iso/catalogue_detail.htm?csnumber=26153

JAVACC, 2015. Available from https://javacc.java.net/
ANTLR, 2015. Available from http://www.antlr.org/
Ganglia, 2015. Ganglia. Available from Sourceforge:

http://ganglia.sourceforge.net
JSON, 2015. Available from JSON: http://www.json.org/

Data Collection Framework - A Flexible and Efficient Tool for Heterogeneous Data Acquisition

379

