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Abstract: The era of Internet of Things and big data has seen individuals, businesses, and organizations increasingly 
rely on data for routine operations, decision making, intelligence gathering, and knowledge discovery. As the 
big data is being generated by all sorts of sources at accelerated velocity, in increasing volumes, and with 
unprecedented variety, it is also increasingly being traded as commodity in the new “data economy” for 
utilization. With regard to data analytics for knowledge discovery, this leads to the question, among various 
others, of how much data is really necessary and/or sufficient for getting the analytic results that will 
reasonably satisfy the requirements of an application. In this work-in-progress paper, we address the sampling 
problem in big data analytics and propose that (1) the problem of sampling the big data for analytics is 
“hard”−specifically, it is a theoretically intractable problem when formal measures are incorporated into 
performance evaluation; therefore, (2) heuristic, rather than algorithmic, methods are necessarily needed in 
data sampling, and a plausible heuristic method is proposed (3) a measure of dataset quality is proposed to 
facilitate the evaluation of the worthiness of datasets with respect to model building and knowledge discovery 
in big data analytics. 

1 INTRODUCTION 

As the Internet of Things (IoT) connects an ever 
increasing variety of devices, sensors, and other 
physical objects to the Internet, the big data will only 
get bigger and usher in the era of the “data economy”, 
where businesses and organizations generate, buy, and 
sell data much like commodity (Datanami, 2016). 

For many applications in data analytics, such as 
business intelligence, the “value” of a dataset is 
directly proportional to its volume.  However, for 
applications such as knowledge mining or scientific 
discovery, where the results of data analytics needs to 
be deeper than merely descriptive (e.g. finding 
frequent items sets in shopping baskets or correlation 
among features in patient datasets), the value of a 
dataset may not necessarily be proportional to its 
volume. This is because to extract the heretofore 
unknown knowledge from the available data (say, by 
first building a learning machine model, then validate 
it), the available data must be of sufficiently good 
quality to allow model building without resulting in 
overfitting or underfitting, etc., and the quality of the 
data has little to do with its quantity.  Worse, there are 
problems where data is plentiful and clearly provides 

hope for knowledge discovery that will lead to new 
insights or solutions, but the quality of the data is 
insufficient. For examples: important features may 
have been overlooked and not measured and collected 
at all, such as in a patient dataset; or the features are 
not even directly available, such as in the 
cybersecurity problem of detecting steganography or 
the multimedia forensics problem of detecting image 
tampering (Liu et al., 2015); for another perspective, 
see (Wiederhold, 2016).  

This leads to two questions in dealing with the big 
data analytics for knowledge discovery: 1. how to 
sample a given dataset to facilitate good model 
building for knowledge discovery; 2. how to evaluate 
the quality of datasets with respect to their potential 
for sound knowledge discovery? 

The second question is interesting and very 
challenging: in view of the rapidly evolving landscape 
of the data economy, an effective and practicable 
measure of data quality will be extremely helpful; 
however, the question seems too application 
dependent to allow universally applicable measures to 
be developed such as the common statistics-based 
formulas, e.g. sample mean vs. population mean, 
confidence intervals, etc. (Hastie et al., 2009). 
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This position paper addresses the first question, 
namely how to sample a dataset for performing 
analytics in knowledge discovery. It is noted that, in 
addition to sampling, feature selection is also an 
important task in preprocessing datasets for analytics 
(and it likewise contributes to reducing the volume by 
eliminating useless features), and many feature 
selection methods have been proposed and studied 
experimentally to evaluate their performance, e.g. 
(Guyon and Elisseeff, 2003) (Liu et al., 2006). In 
contrast, there are relatively fewer studies on 
sampling, even though the problem is equally−if not 
more−important, especially for data analytics tasks in 
the current era of big data. 

We show that the sampling problem is intractable 
in a formal sense, thereby necessitates heuristic 
methods for solution.  We then propose a practical 
method for sampling as a promising method deserving 
experimental study for further refinement. Finally, 
based on our ongoing study of the critical sampling 
problem, and in conjunction with our previous study 
on the concomitant problem of feature selection, a 
metric for dataset quality−with respect to its capacity 
for knowledge discovery through data mining−is 
proposed as a first step in developing more practically 
useful metrics for dataset quality. 

2 CRITICAL SAMPLING 

In this section we outline a proof that the problem of 
selecting an optimal sample for model building using 
learning machines is intractable. To analyze the 
problem in a formal setting, assume a given dataset is 
represented as an n by p matrix Dn,p with n points or 
patterns, each represented as a p-dimensional vector. 
In other words, the relevant datasets from the big data 
have been selected and fully integrated into a uniform 
format before the data analytics task commences, this 
assumption may be simplistic but makes the proof 
easier without losing generality. 

The concept of the Critical Sampling Size of a 
dataset with n points is that there may exist, with 
respect to a specific learning machine M and a given 
performance threshold T, a unique number ν ≤ n such 
that the performance of M exceeds T when some 
suitable sample of ν data points is used; further, the 
performance of M is always below T when any sample 
with less than ν data points is used. Thus, ν is the 
critical (or absolute minimal) number of data points 
required in any sample to ensure that the performance 
of M meets the given performance threshold T. 

Formally, for dataset Dn with n points (the number 

of features in the dataset, p, is considered fixed here 
when we are concerned only with sampling, and 
therefore dropped as a subscript of the data matrix 
Dn,p), ν  (an integer between 1 and n) is called the T-
Critical Sampling Size of (Dn, M) if the following two 
conditions hold: 
1. There exists Dν, a ν-point sampling of Dn (i.e., Dν 

containsν of the n vectors in Dn) which lets M 
achieve a performance of at least T, i.e., 
(∃Dν ⊂ Dn) [PM(Dν) ≥ T], where PM(Dν) denotes 
the performance of M on dataset Dν. 

2. For all j < ν, a j-point sampling of Dn fails to let 
M achieve performance of at least T, i.e., 
(∀Dj ⊂ Dn) [j < ν  ⇒ PM(Dj) < T] 
In the above, the specific meaning of PM(Dν), the 

performance of machine (or algorithm) M on sample 
Dν, is left to be defined by the user to reflect a 
consistent setup of the data analytic (e.g. data mining) 
task and the associated performance measure.  For 
examples, the setup may be to train the machine M 
with Dν  and define PM(Dν) as the overall testing 
accuracy of M on a fixed test set which is distinct 
from Dν; alternatively, the setup may be to use Dν as 
training set and use (Dn − Dν) or a subset of it as the 
testing set. The value of threshold T, which is to be 
specified by the user as well, represents a reasonable 
performance requirement or expectation of the 
specific learning machine that is used for the data 
analytic task. 

To determine whether a critical sampling size 
exists, for a Dn and M combination, is a very difficult 
problem. Precisely, the problem of deciding, given 
Dn, T, k (1 < k ≤ n), and a fixed M, whether k is the T-
critical sampling size of (Dn, M) belongs to the class 
DP = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}, where it is 
assumed that the given machine M runs in polynomial 
time (in n). In fact, it can be shown to be DP-hard, as 
presented next. 

2.1 Critical Sampling Problem is Hard 

The problem is first restated formally: Let CSSP (the 
Critical Sampling Size Problem) be the problem of 
deciding if a given k is the T-critical sampling size of 
a given dataset Dn when a learning machine M is 
used. Then we show that the problem belongs to the 
class DP under the assumption that, for any Di ⊂Dn, 
whether PM(Di) ≥ T  can be decided in polynomial (in 
n) time, i.e., the machine M can “process” Di  and has 
its performance measured against T in polynomial 
time. Otherwise, the problem may belong to some 
possibly larger complexity class, e.g., Δp

2.  Note here 
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that NP ⊆ (NP ∪ coNP)  ⊆  DP  ⊆  Δp
2 in the 

polynomial hierarchy of complexity classes (Garey 
and Johnson, 1979). 

To prove that the CSSP is a DP-hard problem, we 
take a known DP-complete problem and transform it 
into the CSSP. We begin by considering the maximal 
independent set problem. In graph theory, a Maximal 
Independent Set (MIS) is an independent set that is 
not a subset of any other independent set; so the size 
of an MIS of the graph is between 1 and n, the number 
of nodes; also, a graph may have multiple MIS’s. 

EXACT-MIS Problem (EMIS) – Given a graph 
with n nodes, and k ≤ n, decide if there is a maximal 
independent set of size exactly k in the graph. This is 
a problem proved to be DP-complete (Papadimitriou 
and Yannakakis 1984). Now we describe how to 
transform the EMIS problem to the CSSP. 

Given an instance of EMIS (a graph G with n 
nodes, and integer k ≤ n), construct an instance of the 
CSSP such that the answer to the given instance of 
EMIS is Yes iff the answer to the constructed instance 
of CSSP is Yes, as follows: let dataset Dn represent 
the given graph G with n nodes (e.g., Dn is made to 
contain n data points, each with n features, 
representing the symmetric adjacency matrix of G); 
let T be the value “T“ from the binary range {T, F}; 
let ν = k  be the value in the given instance of EMIS; 
and let M, the learning machine, be simply an 
algorithm that decides if the dataset represents a 
graph containing an MIS of size exactly ν, if yes PM 
= “T“, otherwise PM = “F“; then a given instance of 
the DP-complete EMIS problem is transformed into 
an instance of the CSSP. 

To explain the transformation in the proof, three 
examples are shown for the given instance of EMIS 
in Figure 1.  

 

0  0  1  1  0  0
0  0  0  1  0  0
1  0  0  1  1  0
1  1  1  0  1  1
0  0  1  1  0  1
0 0 0 1 1 0

Figure 1: A 6-node graph with multiple MIS of 3 nodes: 
{1,2,5}, {1,2,6}, {2,3,6}. 

Example 1: k=3. Threshold T = “T“ from the 
binary range {T, F} to mean true, ν = 3, and an MIS 
of size 3 exists in D6 as highlighted in the adjacency 
matrix of G above. So, algorithm M that decides if the 
dataset D6 contains an MIS of size exactly 3 (or M 
“verifies“ that some D3  corresponds to a MIS of size 
3) succeeds; i.e., PM(D3) = “T“ for some D3. Since the 
solution to the instance of EMIS problem is Yes, 

solution to the constructed instance of the CSSP is 
also yes, as required for a correct transformation. 

Example 2: k=4. The constructed instance of 
CSSP has T = “T“ and ν = 4.  From D6 it can be seen 
that there does not exist any independent sets of size 
4, so no exact MIS of size 4 exists.  Let M be an 
algorithm that decides if the dataset D6 represents a 
graph containing a maximal independent set of size 4. 
In this instance M fails to find an exact MIS of size 4 
and thus PM = “F“, i.e., PM(D4) = “F“ for all possible 
D4.  So the solution to the constructed instance of 
CSSP is No, as is the solution to the given instance of 
EMIS.  

Example 3: k=2. The constructed instance of 
CSSP has T = “T“ and ν = 2. Independent sets of size 
2 exist but they are not MIS’s, so algorithm M that 
decides that some D2 ⊂ D6 correspond to an MIS of 
size exactly 2 fails. The solution to the constructed 
instance of CSSP is No, as is the solution to the given 
instance of EMIS, as required. 

The DP-hardness of the Critical Sampling Size 
Problem indicates that it is both NP-hard and coNP-
hard; therefore, it’s most likely to be intractable (that 
is, unless P = NP). 

In mining a big dataset Dn,p the data analyst is 
naturally interested in obtaining Dν,μ (a ν-point 
sampling with μ selected features, and hopefully ν << 
n and μ << p) to achieve high accuracy in model 
building or knowledge extraction. From the above 
analysis of the CSSP and the analysis of the Critical 
Feature Dimension Problem in (Suryakumar, Sung, 
and Liu, 2014), this is clearly a highly intractable 
problem and therefore calls for heuristic solutions. 

Discussions: the proof outlined above is rather 
general and its validity depends on a loose definition 
of “learning machines”. The conclusion that 
determining the critical sampling size for a given 
learning machine with respect to a given performance 
criteria is highly intractable, however, is hardly 
surprising, as many other optimality problems 
pertaining to machine learning have been proved to 
be intractable.  

2.2 Heuristic Method for Finding 
Critical Sampling 

Due to the symmetry or similarity of the CSSP and 
CFDP problems and the convincing examples of 
using simple heuristic methods to solve the CFDP 
problem (Suryakumar et al., 2013), we are naturally 
led to believe that simple heuristic methods can be 
developed to be sufficiently useful for practical 
purposes in solving the CSSP problem. Therefore, 
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proposed in the following is a heuristic method for 
finding a critical sampling: 
1. Apply a clustering algorithm like k-means to 

partition Dn into k clusters.  (The choice of k may 
be determined, for example, by the number of 
classes that the learning machine is intended to be 
trained for performing classification.) 

2. Select, say randomly, m points from each cluster 
to form a sampling with m⋅k points. (The value m 
is set to be fairly small.) 

3. Supplement the sampling with additional d⋅k (for 
some d) points, selected randomly from the whole 
dataset Dn, to form a sampling D. 

4. Apply M (learning machine, analytic algorithm, 
etc.) on the sample, then measure performance 
PM(D). 

5. If PM(D) ≥ T, then D is a critical sampling, and its 
size ν is the critical sampling size for (Dn, M).  
Otherwise enlarge D by randomly select another 
m points from each cluster, then supplement with 
additional, randomly selected points from the 
entire dataset, and repeat the above procedure 
until a critical sampling is found, or until the 
whole Dn is exhausted and procedure fails to 
findν. 
The values of the parameters k and m are to be 

decided in consideration of the size and nature of the 
dataset, the specific data analytic problem or task 
being undertaken, and the amount of resource 
available. As usual in all data analytic problems, prior 
knowledge and domain expertise are always helpful 
in designing the experimental setup. Likewise, 
whether the random sampling is done with or without 
replacement is a decision to be made according to the 
dataset and the problem.  Also, experiments may need 
to be performed repeatedly and adaptively (with 
regard to k and m) to obtain good results. 

The authors are conducting experiments on many 
large datasets that are publicly available to observe if 
the “critical sampling size” indeed exists for most 
datasets, and if so whether it is generally much 
smaller than the size of the whole dataset. 

3 DATASET QUALITY METRICS 

As more and more networked physical objects 
become components of the Internet of Things and 
techniques of big data analytics advance (NRC, 
2013), the society is experiencing the transformation 
into a “data economy” where individuals, businesses, 
and organizations alike are contributing to both the 
generation and consumption of the big data. Further, 

various types of data may be traded in the market 
place much like commodity.     

There are many techniques of data mining for 
different purposes; an ultimate goal of data analytics, 
however, is knowledge discovery for problems that 
have thus far defied solutions through conventional 
methods of study. Many believe that in the big data 
one can find the answers to complex problems, if only 
there is sufficient amount of data (that contains 
sufficient amount of knowledge) and that proper 
analytic techniques are applied.  This belief, in fact, is 
one of the driving forces of the big data phenomenon: 
the exponential growth of data in nearly all areas of 
human activity and interest. 

In view of the above, a quantitative measure for 
the quality of datasets would be very useful for all 
concerned in big data analytics. 

With regard to the capacity or potential for 
knowledge discovery or knowledge extraction from a 
dataset, we propose the following quality metrics for 
a given dataset Dn,p (the dataset is represented as a 
matrix with n points, each represented as a p-
dimensional vector). 

From the concept of the critical sampling size 
discussed in Section 2, the Sample Quality of Dn,p is 
defined as 

Qs =  ν / n 
where ν  is the critical sampling size of Dn,p.  So, ν ≤ 
n; and ν = 0, by definition, if the critical sample does 
not exist (or, equivalently, heuristic methods for 
finding ν fail), in which case Qs = 0 as well. In the 
optimal case, ν = n and so Qs = 1, indicating that all 
data in the dataset are essential for the data mining task 
for knowledge discovery.  

Likewise, the Feature Quality of Dn,p is defined as 
Qf  =  μ / p 

where μ is the critical feature dimension of Dn,p 
(Suryakumar, Sung, and Liu, 2014).  So, μ ≤ p; and μ 
= 0, by definition, if no critical feature sets exist, in 
which case Qf  = 0 as well, indicating that the dataset 
is insufficient due to the lack of certain features that 
are necessary. In the optimal case, Qf  = 1 when μ = p, 
indicating that all the features are essential for the 
data mining for knowledge discovery task. 

QD, the Overall Quality of the dataset Dn,p (with 
respect to a specific learning machine M that is applied 
in mining it for model building and knowledge 
discovery), can therefore be defined as 

QD = Qs × Qf  = 
ν × μ ௡ × ௣  

Note that 0 ≤ QD ≤ 1.  QD = 0 when either the critical 
feature set or critical sample does not exist (or cannot 
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be found experimentally, with the respective heuristic 
methods employed to find them), indicating that the 
dataset is inadequate for the purpose of model 
building to achieve acceptable performance. At the 
other extreme, QD = 1 when ν = n and μ = p, 
indicating that the dataset Dn,p is indeed optimal, in 
terms of both the number of features and the number 
of data points, when it is evaluated with respect to the 
data mining task of model building and knowledge 
discovery for the problem under study. 

4 CONCLUDING REMARKS 

This position paper addresses the dataset sampling 
problem in model building for knowledge discovery. 
The issue of data mining and association rule 
extraction, etc. from small samples of large datasets 
have been studied by many authors before (Domingo 
et al., 2002) (Provost et al., 1999), and sampling 
techniques have been studied extensively.  However, 
the problem of the critical sampling size of a dataset 
has not been studied thoroughly. It is shown in this 
paper that the problem of searching for an optimal 
sampling is, unsurprisingly, intractable, as in many 
other optimality problems encountered in machine 
learning and data mining. Inspired by previous 
successful results of using heuristic methods to find 
optimal feature set, we similarly propose a heuristic 
method for finding an optimal sample of a dataset. 

Finally, a quality metric for a dataset, which is 
computed experimentally by finding a critical feature 
set and a critical sample, is proposed. This measure 
indicates the percentage of data in the dataset that is 
essential for model building in knowledge discovery 
to meet performance requirements. A low value (close 
to 0) indicates that the dataset contains much 
“unimportant” data; an exact zero (0) value indicates 
that the dataset is in fact inadequate for model 
building; while a high value (close to 1) indicates that 
the dataset is “knowledge-intensive” and contains 
very little unimportant data. 

It is our position that the proposed quality 
metric−perhaps combined with some of the statistics 
based “static” measures (i.e. those computed from the 
dataset alone without having to carry out experiments 
using learning machines)−holds great promise to be 
refined into practically useful quality measures for 
datasets, which will be very helpful to the big data 
industry in the emerging “data economy”. 

The authors’ ongoing study includes investigating 
the possible interrelation between critical feature 
dimension and critical sampling, as well as conducting 
experiments on different datasets for proof of concept. 
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