Evolution of the Open Cloud Computing Interface

Boris Pardk!, Zden&k Sustr!, Michal Kimle', Pablo Orviz Fernandez 2, Alvaro Lépez Garcia?,

Stavros Sachtouris® and Victor Méndez Mufioz

4

L Department of Distributed Computing, CESNET z.s.p.o, Zikova 4, Prague, Czech Republic
2 Instituto de Fisica de Cantabria (CSIC-UC), Avda. de los Castros s/n, Santander, Spain
3Greek Research & Technology Network, Mesogion Av. 56/11527, Athens, Greece

4 Computer Architecture & Operating Systems Department, Universitat Autonoma de Barcelona, Bellaterra, Spain

Keywords:

Abstract:

Cloud, Standards, Architecture, Interoperability, Management, OCCI.

The OCCI standard has been in use for half a decade, with multiple server-side and client-side implemen-

tations in use across the world in heterogeneous cloud environments. The real-world experience uncovered
certain peculiarities or even deficiencies which had to be addressed either with workarounds, agreements be-
tween implementers, or with updates to the standard. This article sums up implementers’ experience with the
standard, evaluating its maturity and discussing in detail some of the issues arising during development and
use of OCCI-compliant interfaces. It shows how particular issues were tackled at different levels, and what
the motivation was for some of the most recent changes introduced in the OCCI 1.2 specification.

1 INTRODUCTION

The Open Cloud Computing Interface (OCCI) is a
RESTful protocol and API for a variety of manage-
ment tasks. OCCI was originally designed to cre-
ate a remote management API for [aaS (Infrastruc-
ture as a Service) model-based services, allowing
for the development of inter-operable tools for com-
mon tasks including deployment, autonomous scal-
ing, and monitoring of virtual machines and related
resources (Metsch and Edmonds, 2011b).

Since its publication in April 2011, OCCI has
been adopted by a variety of cloud, cloud-like and
cloud-adjacent platforms as the interoperability in-
terface of choice. The strength of OCCI lies in its
well though out and rather abstract core specifica-
tion (Nyrén et al., 2011) resembling more a mod-
eling language than a communication protocol. It
gives OCCI its extensibility and wide-range applica-
bility. Every other part of OCCI builds on top of
the core specification by proposing various extensions
targeting specific areas such as infrastructure manage-
ment, monitoring, accounting, over-the-wire render-
ing, transport protocol, billing, and many others.

The OCCI standard specification currently (in ver-
sion 1.1) consists of three separately published docu-
ments:

1. GFD.183 — OCCI Core

Parak, B., Sustr, Z., Kimle, M., Fernandez, P, Garcia, A., Sachtouris, S. and Mufioz, V.
Evolution of the Open Cloud Computing Interface.

(Nyrén et al., 2011)

2. GFD.184 — OCCI Infrastructure
(Metsch and Edmonds, 2011b)

3. GFD.185 — OCCI HTTP Rendering
(Metsch and Edmonds, 2011a)

However, the abstract and minimalistic nature of
OCCI has its disadvantages. Most notably, signifi-
cant parts of the standard require careful interpreta-
tion when creating a real-world implementation. This
often leads to incompatibilities between implemen-
tations provided by different developers. This paper
is an attempt to briefly introduce popular implemen-
tations of OCCI (Section 2), collect as much feed-
back from their developers as possible, describe most
commonly encountered issues based on the aforemen-
tioned feedback (Section 3), and propose solutions
wherever possible either by referencing the upcoming
OCCI 1.2 standard (a set of not yet published docu-
ments, which have been, however, made available for
public comment during 2015) or by suggesting future
improvements (Section 4). Finally, Section 5 makes
an overall statement on the suitability and maturity of
OCCIT as it stands today.

339

In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 339-346

ISBN: 978-989-758-182-3

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

OCCI 2016 - Special Session on Experiences with OCCI

2 IMPLEMENTATIONS

Over the last five years, OCCI gained multiple experi-
mental and production-grade implementations in vari-
ous states of usability. These implementations helped
the overall evolution of the standard and contributed
to the work being done by the OGF OCCI Working
Group on the OCCI 1.2 standard. The following sec-
tions briefly describe the most prominent or widely
used open-source OCCI implementations whilst also
mentioning particular development challenges. This
list is by no means all-encompassing; it is meant to
provide a quick overview. The implementations listed
here are also closely related to EGI and EGI Federated
Cloud (del Castillo et al., 2015) due to existing affili-
ations of involved authors. Other prominent projects
and implementations of OCCI not mentioned in this
section include OCClware (OCClware Consortium,
2016), erocci (Parpaillon, 2016), and pysst (Metsch,
2016). Readers are hereby encouraged to explore
these as well.

2.1 The rOCCI Framework

The rOCCI framework, originally developed by
GWDG, later adopted and now maintained by CES-
NET, was written to simplify implementation of the
OCCIT 1.1 protocol in Ruby and later provided the
base for working client and server components giving
OCCIT support to multiple cloud platforms while en-
suring interoperability with other existing implemen-
tations (Pardk et al., 2014).

At the time of writing this paper, the rOCCI
framework has two published components:
rOCCI-core and rOCCI-api. These serve as
the base for two end-user products: rOCCI-cli and
rOCCI-server.

The initial server-side component provided basic
functionality and served as a proof of concept when it
was adopted by the EGI Federated Cloud Task Force
and was chosen to act as the designated virtual ma-
chine management interface (Wallom et al., 2015).
This led to further funding from the EGI-InSPIRE
project, development of a full featured client and a
new rOCCI-server suitable for production environ-
ment.

rOCCI-core is a central component of the frame-
work. It implements classes representing entities de-
fined by the OCCI standard, provides parsing and
rendering capabilities to/from multiple message for-
mats. Currently supported, as both input and output
formats, are plain-text and JSON which is based on
an early draft of OCCI 1.2 JSON rendering (not yet
published). It also introduces various helper classes

340

such as Collection or Model, simplifying the han-
dling and rendering of complex OCCI messages, pro-
vides advanced logging and attribute validation facil-
ities. Using Ruby’s meta-programming techniques,
the core is able to “extend itself”” with new classes and
definitions provided dynamically at run-time. This
works well with OCCT’s inherent extensibility.

rOCCI-api builds on top of rOCCI-core and im-
plements support for transport protocols and corre-
sponding authentication methods. It also provides an
extended set of various helpers simplifying the use of
rOCCI-core and targeting the development of client-
side applications and tools. HTTP (Fielding and Get-
tys, 2014) is currently the only supported transport
protocol.

rOCCI-api also implements a pluggable authen-
tication mechanism capable of fall-backs. Every au-
thentication plug-in can declare a set of alternatives
to be used in case of failure. This concept is capable
of masking differences between various cloud frame-
works implementing OCCI using their own authenti-
cation schemes.

rOCCI-cli, built on top of rOCCI-api, serves
as an end-user client providing a shell-based in-
terface. It allows users to interact with OCCI-
compliant interfaces and perform basic operations
and actions. Similarly, rOCCI-server, built on top of
rOCCI-core, provides a server-side implementation
supporting multiple cloud management frameworks
or public cloud providers as its back-ends, expos-
ing their resources via an OCCI-compliant interface.
It currently supports OpenNebula (The OpenNebula
Project, 2016) and Amazon Web Services EC2 (Ama-
zon Web Services, Inc., 2016), with plans to imple-
ment support for Microsoft Azure (Microsoft, 2016).

The most notable challenges encountered whilst
implementing parts of the rOCCI framework were, in
no particular order, the plain-text rendering, the lack
of clear authentication guidelines, missing parts of
the attribute model, and vague (side-)effect descrip-
tions for the infrastructure extension. The following
paragraphs will briefly address each of these issues in
greater detail.

Implementing a plain-text-based rendering of a
non-trivial protocol is always a challenge. The un-
structured nature of a plain text requires customized
regular expressions or state machines for extract-
ing relevant information. It also prevents the devel-
oper from using existing well-tested parsers or seri-
alization and de-serialization libraries. Writing cus-
tomized parsers is always time-consuming and prone
to errors, which are difficult to discover.

The lack of clear authentication guidelines is a
feature of the OCCI standard. It simply points the

reader to mechanisms appropriate (and standardized)
for the given transport protocol, which helps to keep
the standard extensible. However, it makes the im-
plementation of working OCCl-enabled components
difficult, especially in a heterogeneous environment
where a certain level of interoperability is desirable.
This forces developers to implement complex fall-
back or discovery mechanisms, with wildly varying
levels of success.

Parts of the OCCI standard, especially the core
specification, are rather abstract and the mechanisms
described therein are difficult to implement. Develop-
ers are often left to their own devices, which leads to
further discrepancies in interpretation between imple-
mentations. One such part is the attribute model, lack-
ing detailed description and implementation guide-
lines.

Last but not least, effects or side-effects of particu-
lar operations or actions defined in various extensions
of the OCCI standard often have vague descriptions.
This makes aligning the behavior of implementations
across multiple platforms very difficult. A unified be-
havior is a strong requirement for the user.

2.2 The jOCCI Framework

The jOCCI framework is a set of Java libraries im-
plementing the OCCI standard. jOCCI currently con-
sists of two client-side components, JOCCI-core and
jOCCI-api, which together create a communication
layer for OCCI clients and servers alike (Kimle et al.,
2015).

jOCCI-core covers basic OCCI class hierarchy
from both OCCI Core and OCCI Infrastructure and
relations between them. Furthermore, jOCCI-core
provides methods for parsing and rendering plain-text
representations of OCCI classes. This functionality
is crucial for transporting data between the client and
the remote server via HTTP messages. In addition,
jOCCI-core also validates any OCCI request with re-
spect to the declared OCCI model. This helps identify
requests that would be rejected by server, even before
they are sent.

jOCCI-api is a Java library implementing the
transport layer functionality for rendered OCCI ob-
jects and queries. It is built on top of jOCCI-core and
currently provides only HTTP transport functionality
with a set of authentication methods and basic inter-
faces to simplify client-server communication.

The jOCCI library stack is currently used in the
jsaga-adaptor-jocci (Rocca, 2016) project de-
veloped primarily for the Catania Science Gateway
Framework (Fargetta, 2016). The aim of this project
is to develop JSAGA (Reynaud and Schwarz, 2016)

Evolution of the Open Cloud Computing Interface

adaptor which will expose an interface for submitting
grid jobs into automatically provisioned virtual ma-
chines in OCCI-compliant clouds. Another project
utilizing JOCCI as the cloud-facing backend is the
Karamel (Hakimzadeh, 2016) orchestration frame-
work, heavily used in the bio-informatics commu-
nity (Bessani et al., 2015). The so-called OCCI
“launcher” adds support for the provisioning of on-
demand virtual machines in OCCI-compliant clouds.
The Karamel OCCI launcher is currently being devel-
oped and tested at CESNET.

As mentioned before, JOCCI is written in the Java
programming language. This language was selected
because of its popularity and demand by the commu-
nity. Since Java is a strongly typed language, some of
the concepts of the OCCI standard (e.g., mixins) were
somewhat challenging to implement. Nevertheless,
JOCCTI’s API was designed to meet the requirements
of the OCCI standard whilst keeping Java’s best prac-
tices in mind. For details, see Figure 1.

JOCCI currently implements version 1.1 of the
OCCI standard. During the development of the li-
braries the authors encountered multiple caveats in
this version of the standard. One of the problems is
that the specification does not clearly state which at-
tributes are internal and which should be available in
rendering. Another problem comes from the plain text
rendering, which is lacking the expressive power of
other standard formats such as XML or JSON, mak-
ing it difficult to render complex data structures.

Both jOCCI-core and jOCCI-api are distributed
via Maven Central Repository utilizing well-known
dependency management practices common in the
Java developers community.

2.3 OpenStack OCCI Interface

ooi (Lépez Garcia et al., 2016) is an implementation
of OCCI for the OpenStack Compute project, written
entirely in Python so as to make exhaustive usage and
profit from the already available OpenStack modules,
such as authentication. coi was designed to be easily
integrated with the OpenStack core components, but
with the aim of being independent from any Open-
Stack version or release.

The main motivation for this recent development
stems from the need to overcome key architectural de-
sign issues found in the previous OCCI implemen-
tation, OCCI-OS (Metsch et al., 2016), namely the
fact of using the internal OpenStack APIs directly.
In contrast with the public APIs, the private ones are
not versioned and are subject to change at any time
in the development cycle, even between minor re-
leases. Instead, ooi interacts with OpenStack lever-

341

OCCI 2016 - Special Session on Experiences with OCCI

JOCCI libraries
[O\

N
JOCCl-api
HTTP client
] . BASIC
« DIGEST
= « X.509
. VOMS

occl « Keystone
Server \
(Parser
jOCCI
Client
OCCI Core Classes
C OCGCI Infrastructure Classes)

A J
AN J

Figure 1: jOCCI-* architecture overview.

Authentication
Methods

J

JocCl-core)

aging its public APIs to process any incoming OCCI
request, translating it forth and rendering it back to
get a proper and valid OCCI response. Unlike OCCI-
OS, ooi has been designed as a WSGI middleware
embedded in the OpenStack pipeline, located prior to
the public API request processing and, accordingly,
appearing as the first step once the API returns the
response object.

At the time of writing this paper, ooi supports the
OpenStack API version 2.1, but additionally it can be
deployed on top of the previous and backwards com-
patible API version 2.0. Moreover, ooi allows the co-
existence of isolated environments in terms of multi-
ple OCCI endpoints mapped to different OpenStack
API versions in the same installation, making it pos-
sible for providers to deploy several OCCI versions
in different endpoints using the same deployment. In
this regard, the current version of ooi implements
version 1.1 of the OCCI standard, but the aforemen-
tioned design would make it possible to deploy sev-
eral OCCI versions using the same installation.

The most relevant challenge faced when develop-
ing ooi was the implementation of text rendering for
such a complex protocol. The parsing of plain-text
structures representing more complex structures has
been also identified as one of the major drawbacks
in the other OCCI implementations, such as rOCCI
(Section 2.1) and jOCCI (Section 2.2). In this re-
gard, the adoption of JSON rendering in version 1.2
of the standard would be a step forward when com-

342

(5 co;:p;an 8
"Il 4

mod_ssl

‘inod_sslg
Apache HTTP Server _gg®*

] Phusion Passenger ;& B

rOCCl-server rOCCI
1 Backend —
OpenNebula One

OpenNebula Master Node

Figure 2: rOCCI-server in a typical setup with the Open-
Nebula Cloud Manager.

pared with OCCI 1.1.

Since its release, ooi has been adopted in the EGI
Federated Cloud as the reference implementation for
the OpenStack providers.

2.4 OpenNebula OCCI Interface

As mentioned in Section 2.1, rOCCI-server acts
as an OCClI-compliant interface for OpenNebula. It
has been designed as a stateless proxy translating
OCCI messages to native API calls for OpenNebula.
Its main purpose is to hide platform-specific behav-
ior from the user and create the illusion of a seam-
less OCCI-compliant service across multiple hetero-
geneous cloud platforms. As rOCCI-server is built
on top of rOCCI-core, discussed in greater detail in
Section 2.1, further description of its OCClI-related in-
ternals is omitted here.

For detailed description of rOCCI-server’s archi-
tecture and deployment, see Figure 2.

2.5 Synnefo OCCI Interface

The Synnefo OCCI interface (Athanasia Asiki, 2014)
acts as an API middleware between the OCCI pro-
tocol and the Synnefo API (synnefo.org, 2015).
Synnefo cloud software (synnefo.org, 2014) utilizes
Ganeti (Guido Trotter, 2013) as a low-level virtualiza-
tion layer to provide compute and storage cloud over

an extended OpenStack API. The “okeanos IaaS (Van-
gelis Koukis, 2013), which provides compute and
storage resources to the Greek and European aca-
demic communities, is the largest Synnefo deploy-
ment.

Synnefo (open source IaaS software) and
“okeanos (IaaS service powered by Synnefo) are
maintained and provided by the Greek Research
and Technology Network (GRNET), which is the
National Research and Education Network (NREN)
provider of Greece. The principal role of GRNET is
to operate the Greek Academic network, connect it
with global academic communities and institutions,
and provide them with cutting edge IT services and
technology. GRNET is a key national level facilitator
in the fields of distributed and large-scale research
infrastructures including Grid, Cloud and HPC. It
coordinates the Greek National Grid Initiative —
HellasGrid and is a member of the EGI pan-european
grid infrastructure.

The Synnefo OCCI interface features a distributed
design of separate components (e.g., snf-occi and
astakos-vo-proxy) which are connected via REST-
ful APIs. The rationale behind the aforementioned
design choice is to ensure adaptability to the evolution
of both OCCI and Synnefo, as well as robustness and
security through the deployment on isolated nodes.

The main component of the interface is called
snf-occi, a service that maps OCCI v1.1 requests
to OpenStack/Synnefo. It is designed to run as a
stand-alone service, connected to Synnefo through
its RESTful API. Incoming (OCCI) requests are val-
idated syntactically and corresponding users are au-
thenticated. Synnefo credentials are retrieved through
an API call to the astakos-vo-proxy component.
The credentials are attached as headers to requests to
the Synnefo API. Results are then reverse-mapped to
be OCClI-compliant and returned as the response to
the initial request.

astakos-vo-proxy acts as a user mapping agent
with user creation and modification capabilities. As-
takos is the authentication and policy (e.g., user
quota) enforcement component of Synnefo. To facil-
itate the mapping between OCCI and Synnefo users,
the proxy maintains an LDAP directory with the min-
imum user information needed for the mapping. Pos-
sible changes in the status of the supported user pool
are reflected by frequently updating the directory with
the assistance of a human operator.

Authenticating OCCI users who do not exist in
the Synnefo user base was one of the most intriguing
challenges while developing the interface. To tackle
this issue, astakos-vo-proxy is equipped with the
ability to create and modify Synnefo users and their

Evolution of the Open Cloud Computing Interface

quota policies. Every time a new but valid OCCI user
attempts to access a Synnefo cloud through the OCCI
interface, the proxy will create a new Synnefo user.
On the other hand, if the user exists, the correspond-
ing information is retrieved from the directory.

The mapping of OCCI users to Synnefo users con-
stitutes a security challenge, because it allows users
outside of the scope of a standard Synnefo deploy-
ment to be created on demand and also because it
maintains a directory of sensitive user information
and credentials. To protect astakos-vo-proxy, it
must be deployed in a trusted and isolated environ-
ment.

A stable version of the snf-occi and the
astakos-vo-proxy components are deployed for the
“okeanos IaaS. Both components are deployed on sep-
arate virtual nodes powered by the said [aaS.

3 ISSUES

This section collects input from Section 2, finds
language-independent commonalities and draws con-
clusions on the usability of OCCI 1.1 in real-
world implementations. It aims at identifying the
most severe obstacles preventing further adoption of
the OCCI standard among developers and service
providers.

Issues outlined below were selected from Sec-
tion 2 based on the following criteria:

e impact on future standard development (1)
e number of occurrences (2)

e subjective significance (3)
Formal Documents

The overall readability of documents formalizing the
standard is a very important factor, especially in early
stages of its adoption. In this area, a number of devel-
opers expressed concern. Specifically, the more ab-
stract parts should be explained in greater detail, with
practical examples if applicable.

In many cases, a single word has two or three
different meanings depending on the current context.
This should be avoided wherever possible by intro-
ducing new terminology or, at least, carefully aligned
across all published documents to minimize inconsis-
tencies, especially with regard to third-party exten-
sions.

343

OCCI 2016 - Special Session on Experiences with OCCI

Design

With regard to the minimalistic and extension-based
design of OCCI, no major issues were reported. There
are certain interoperability challenges specific to this
particular design; however, no explicit objections
were raised by developers.

Core

In the core specification, attribute description and dis-
covery was the most commonly reported problem. In
OCCI 1.1, attributes are not properly specified and de-
fined in the context of the OCCI (meta)model. This
leads to implementation-specific solutions and differ-
ences in behavior.

In the next revision of the standard, attributes
should be clearly defined in the OCCI (meta)model,
including attribute properties and validation mecha-
nisms.

Extension

When it comes to extensions, most developers
have experience only with the Infrastructure exten-
sion. In this extension, vague descriptions of var-
ious operations and actions on resource instances
were the most frequently reported issues. When
the specification does not provide a clear descrip-
tion of effects and side-effects, these are left to
implementation/developer-specific interpretation. It
leads to issues with interoperability.

In the next revision of the standard, additional ex-
planations and descriptions should be added wherever
possible. However, it is understood that strict guide-
lines in this area would limit further proliferation and
adoption of the standard due to platform-specific lim-
itations.

Transport

No issues were reported for transport-layer specifica-
tions, currently represented only by the HTTP specifi-
cation (Metsch and Edmonds, 2011a). Improvements
were suggested for the parts dealing with authenti-
cation and authorization mechanisms; however, these
are designated as “out-of-scope” by the standard.

Rendering
All reported issues were targeting the plain-text ren-
dering (Metsch and Edmonds, 2011a), being the only

currently published rendering specification. Issues
ranged from relatively minor (parsing difficulties and

344

performance) to distinctly major ones (inability to
represent complex data types or advertise/discover
necessary endpoint information).

The overall consensus on these issues is the need
for new rendering formats with accompanying exten-
sions/specifications outlining their use, including ex-
tensive examples.

4 TOWARDS OCCI 1.2

This section aims to address recent advancements to-
wards the final OCCI 1.2 specification with regard to
issues outlined in Section 3. The following subsec-
tions focus on the aforementioned issues one by one.
Work on the OCCI 1.2 specification is performed by
the OGF OCCI Working Group; this paper provides
only an overview. The following list of changes is by
no means complete.

Formal Documents

The OCCI documents underwent a significant refac-
toring. The OCCI 1.2 standard consists of seven sep-
arate documents covering core (Nyrén et al., 2016b),
infrastructure (Edmonds et al., 2016), HTTP proto-
col (Nyrén et al., 2016a), text rendering (Edmonds
and Metsch, 2016), JSON rendering (Nyrén et al.,
2016¢), PaaS (Platform as a Service) (Metsch and
Mohamed, 2016), and SLAs (Service-Level Agree-
ments) (Katsaros, 2016). With the addition of one
profile document (Drescher et al., 2015) attempting
to standardize available compute resource sizes. This
should greatly improve readability and decouple un-
related extension specifications. At the time of writ-
ing the paper, the official documents are not yet pub-
lished.

Design

No significant changes were made to the overall de-
sign of the OCCI protocol in order to maintain good
backward compatibility with OCCI 1.1.

Core

Attribute description in the OCCI (meta)model has
been appropriately updated and OCCI 1.2 clearly de-
fines how to represent model attributes, including at-
tribute properties. This change is based on existing
implementations and should hence cover all required
use cases such as attribute discovery or attribute value
validation.

Extension

Information regarding the use of OS and Resource
template mixins has been updated and extended to
give deeper insight into their intended purpose. In-
consistencies in other parts of the infrastructure exten-
sion have been corrected (removed useless attributes
and unusable actions, adjusted vague wording wher-
ever possible). However, key parts of the document
outlining effects and side-effects of various actions
remain unchanged to avoid overly restricting future
implementations.

Transport

No significant changes were made to the transport-
layer specification, aside from major document refac-
toring which separated HTTP protocol from the plain
text rendering specification and minor clarification re-
garding the use of HTTP status codes to relay action
results.

Rendering

To maintain backward compatibility with OCCI 1.2,
no significant changes could be made to the plain text
rendering of OCCI. However, to address issues raised
by a number of developers, a new mandatory render-
ing was introduced as an extension — the JSON ren-
dering. Using JSON (Crockford, 2006), including an
example JSON Schema (Galiegue et al., 2013) for
OCCI messages, should greatly simplify implemen-
tation and provide much needed reliability.

5 CONCLUSION

OCCI is a well-matured and well-accepted protocol,
with a wide user base — mainly among academic
users — and a number of independent implementa-
tions. Given that its authors were always striving
for flexibility, discrepancies naturally had to occur
in OCClI-compliant tools, especially in the early ver-
sions. However, the OCCI community was able to
overcome that: firstly by being able to find common
interpretation in problem areas, and secondly by be-
ing able to keep the standard evolving, answering
not only to new needs but also to old aches of inter-
operable clouds.

Evolution of the Open Cloud Computing Interface

ACKNOWLEDGEMENTS

In no particular order, authors would like to acknowl-
edge their home institutions: CESNET, Masaryk Uni-
versity, Instituto de Fisica de Cantabria, GRNET, and
Universitat Autdnoma de Barcelona. They would also
like to thank their colleagues from EGI and members
of the EGI Federated Cloud. The credit for work
on the OCCI standard and its continuous evolution
goes to Open Grid Forum and OGF’s OCCI Work-
ing Group.

This work is co-funded by the EGI-Engage project
(Horizon 2020) under Grant number 654142.

REFERENCES

Amazon Web Services, Inc. (2016). Amazon Web
Services - Elastic Compute Cloud. [Online]
https://aws.amazon.com/ec2/. Accessed: March 10,
2016.

Athanasia Asiki, C. (2014). Synnefo OCCI Interface.
[Online] https://code.grnet.gr/projects/snf-occi. Ac-
cessed: March 10, 2016.

Bessani, A., Brandt, J., Bux, M., Cogo, V., Dimitrova, L.,
Dowling, J., Gholami, A., Hakimzadeh, K., Hum-
mel, M., Ismail, M., et al. (2015). Biobankcloud: a
platform for the secure storage, sharing, and process-
ing of large biomedical data sets. the First Interna-
tional Workshop on Data Management and Analytics
for Medicine and Healthcare (DMAH 2015).

Crockford, D. (2006). The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627 (Infor-
mational).

del Castillo, E. F., Scardaci, D., and Alvaro Lopéz Garcia
(2015). The egi federated cloud e-infrastructure. Pro-
cedia Computer Sceince, (68):196-205.

Drescher, M., Pardk, B., and Wallom, D. (2015). OCCI
Compute Resource Templates Profile rev. 2. [Online]
https://goo.gl/puR6JG.

Edmonds, A. and Metsch, T. (2016). Open Cloud Com-
puting Interface — Text Rendering rev. 1.2. [Online]
https://goo.gl/puR6JG.

Edmonds, A., Metsch, T., and Pardk, B. (2016). Open Cloud
Computing Interface — Infrastructure rev. 1.2. [On-
line] https://goo.gl/puR6JG.

Fargetta, M. (2016). Catania Science Gateway Framework.
[Online] http://www.catania-science-gateways.it/.
Accessed: March 10, 2016.

Fielding, R. and Gettys, J. (2014). Hypertext Transfer Pro-
tocol (HTTP/1.1): Message Syntax and Routing. RFC
7230.

Galiegue, F., Zyp, K., and Court, G. (2013). Json schema:
core definitions and terminology. draft-zyp-json-
schema-04.

Guido Trotter, T. (2013). Ganeti: Cluster Virtualization
Manager. USENIX;login, (3).

345

OCCI 2016 - Special Session on Experiences with OCCI

Hakimzadeh, K. (2016). karamel.
https://github.com/kamalhakim/karamel.
March 10, 2016.

Katsaros, G. (2016). Open Cloud Computing Interface

[Online]
Accessed:

— Service Level Argeements rev. 1.2. [Online]
https://goo.gl/puR6JG.
Kimle, M., Pardk, B., and Sustr, Z. (2015). jOCCI

— general-purpose OCCI client library in java. In
ISGC15, The International Symposium on Grids and
Clouds 2015. PoS.

Lépez Garcia, A., Fernandez del Castillo, E., and Orviz
Fernandez, P. (2016). ooi: OpenStack OCCI interface.
SoftwareX, (xxxx):1-6.

Metsch, T. (2016). Service sharing facility. [Online]
https://github.com/tmetsch/pyssf. Accessed: March
10, 2016.

Metsch, T. and Edmonds, A. (2011a). Open Cloud Com-
puting Interface — HTTP Rendering. GFD-P-R.185.

Metsch, T. and Edmonds, A. (2011b). Open Cloud Com-
puting Interface — Infrastructure. GFD-P-R.184.

Metsch, T., Edmonds, A., and Lépez Garcia, A.
(2016). OCCI Interface for OpenStack. [On-
line] https://github.com/stackforge/occi-os. Accessed:
March 10, 2016.

Metsch, T. and Mohamed, M. (2016). Open Cloud
Computing Interface — Platform rev. 1.2. [Online]
https://goo.gl/puR6JG.

Microsoft (2016). Microsoft Azure: Cloud Computing
Platform. [Online] https://azure.microsoft.com/. Ac-
cessed: March 10, 2016.

Nyrén, R., Edmonds, A., Metsch, T., and Pardk, B. (2016a).
Open Cloud Computing Interface — HTTP Protocol
rev. 1.2. [Online] https://goo.gl/puR6JG.

Nyrén, R., Edmonds, A., Papaspyrou, A., and Metsch, T.
(2011). Open Cloud Computing Interface — Core.
GFD-P-R.183.

Nyrén, R., Edmonds, A., Papaspyrou, A., Metsch, T., and
Pardk, B. (2016b). Open Cloud Computing Interface
— Core rev. 1.2. [Online] https://goo.gl/puR6JG.

Nyrén, R., Feldhaus, F,, Pardk, B., and Sustr, Z. (2016¢).
Open Cloud Computing Interface — JSON Rendering
rev. 1.2. [Online] https://goo.gl/puR6JG.

OCClware Consortium (2016). Occiware project. [Online]
http://goo.gl/M1rZKv. Accessed: March 10, 2016.

Parék, B., Sustr, Z., Feldhaus, F., Kasprzak, P., and Srba, M.
(2014). The rOCCI project — providing cloud interop-
erability with OCCI 1.1. In ISGC14, The International
Symposium on Grids and Clouds 2014. PoS.

Parpaillon, J. (2016). Occi compliant rest framework.
[Online] https://github.com/erocci/erocci. Accessed:
March 10, 2016.

Reynaud, S. and Schwarz, L. (2016). JSAGA. [Online]
http://software.in2p3.fr/jsaga/dev/index.html. Ac-
cessed: March 10, 2016.

Rocca, G. L. (2016). jsaga-adaptor-jocci. [On-
line] https://github.com/csgt/jsaga-adaptor-jocci. Ac-
cessed: March 10, 2016.

synnefo.org (2014). Synnefo White Paper. [Online]
https://goo.gl/LDvTsf. Accessed: March 10, 2016.

346

synnefo.org (2015). Synnefo APIL [Online]
https://www.synnefo.org/docs/synnefo/latest/api-
guide.html. Accessed: March 10, 2016.

The OpenNebula Project (2016). OpenNebula
Cloud Management Framework. [Online]
http://www.opennebula.org/. Accessed: March

10, 2016.

Vangelis Koukis, Constantinos Venetsanopoulos, N. (2013).
okeanos: Building a Cloud, Cluster by Cluster. /IEEE
Internet Computing, (3):67-71.

Wallom, D., Turilli, M., Drescher, M., Scardaci, D., and
Newhouse, S. (2015). Federating infrastructure as a
service cloud computing systems to create a uniform
e-infrastructure for research. In IEEE 1l1th Interna-
tional Conference on e-Science, 2015. IEEE.

