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Abstract: One of the benefits of OCCI stems from simplifying the life of developers aiming to integrate multiple cloud
managers. It provides them with a single protocol to abstract the differences between cloud service implemen-
tations used on sites run by different providers. This comes particularly handy in federated clouds, such as
the EGI Federated Cloud Platform, which bring together providers who run different cloud management plat-
forms on their sites: most notably OpenNebula, OpenStack, or Synnefo. Thanks to the wealth of approaches
and tools now available to developers of virtual resource management solutions, different paths may be cho-
sen, ranging from a small-scale use of an existing command line client or single-user graphical interface, to
libraries ready for integration with large workload management frameworks and job submission portals relied
on by large science communities across Europe. From lone wolves in the long-tail of science to virtual or-
ganizations counting thousands of users, OCCI simplifies their life through standardization, unification, and
simplification. Hence cloud applications based on OCCI can focus on user specifications, saving cost and
reaching a robust development life-cycle. To demonstrate this, the paper shows several EGI Federated Cloud
experiences, demonstrating the possible approaches and design principles.

1 INTRODUCTION

OCCI, the Open Cloud Computing Interface (Nyrén
et al., 2011; Nyrén et al., 2011; Metsch and Ed-
monds, 2011b; Metsch and Edmonds, 2011a), is a
standard developed by the Open Grid Forum to stan-
dardize virtual resource management in a cloud site
(OGF, 2016). It was released in 2011 and several im-
plementations and real-world deployments followed.
Among others, OCCI also became the standard of
choice for the management of virtualized resources
in EGI’s Federated Cloud Platform (Wallom et al.,
2015).

The EGI Federated Cloud Platform has been con-
ceived as an alternative way to access EGI’s consid-
erable computing resources, which are primarily ac-
cessed through grid middleware. Cloud-flavoured ser-
vices are meant to:
• Attract user communities relying on tools that are

not easily ported to grid but can scale well in the

cloud – for instance tools only available for oper-
ating systems not compatible with available grid
infrastructures, tools distributed by vendors in the
form of virtual machine images, etc.

• Lower the acceptance threshold for users trained
in using their existing environment without hav-
ing to change it or re-qualify for a different one.

On reflection, this suits the need of users in the “long
tail of science” who typically lack the resources to
have their solutions tailored or adjusted to the grid
and cannot invest in re-training for different tools or
environments. Even relatively small-scale resources,
available in the EGI Federated Cloud Platform at the
time of writing, can fit the needs of these “long-tail”
communities.

Firstly, this article will introduce relevant imple-
mentations of OCCI, both on the server and client side
(Section 2). Secondly, Section 3 will introduce a scale
of cloud usage patterns relying on OCCI for interop-
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erability and abstraction, and also briefly expand on
other mechanisms users must ensure beyond the ba-
sic OCCI functionality for their solutions to be truly
productive. Finally, Section 4 will briefly outline new
developments, and Section 5 will sum up the topic of
experience with OCCI in the area of scientific com-
puting.

2 OCCI IMPLEMENTATIONS

OCCI was gradually gaining support throughout its
lifetime and there are currently multiple implementa-
tions available on the server side as well as the client
side. At the time of writing, the version of OCCI
supported by most implementations mentioned below
is 1.1. They will all follow their own, independent
schedules to adopt OCCI 1.2, which is due to come
into effect shortly.

2.1 Server-side OCCI Support

Server-side OCCI implementations originate mostly
from service providers who wish to make their re-
sources available in a standardized way. Where appli-
cable, the OCCI interfaces are being pushed upstream
to Cloud Management Framework developers.

In the EGI Federated Cloud Platform, multiple
sites make their cloud resources available to users.
Although different contributing sites employ differ-
ent Cloud Management Frameworks (CMFs), OCCI
(plus an X.509-based authentication mechanism) is
the unifying factor, allowing users to access any site
in a uniform way, indeed, without actually know-
ing what flavor of CMF is installed on the end-
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Figure 1: Ecosystem of OCCI implementations envisioned
for products relevant to EGI Federated Cloud and its user
communities.

point (Fig. 1). There are several of such server-side
frameworks whose resources can be managed through
OCCI:
• OpenStack, which comes with an OCCI interface

(occi-os) as part of the stack and is soon due to
receive an all-new implementation in the form
of OOI – the OpenStack OCCI Interface (Garcı́a
et al., 2016).

• Synnefo with its own OCCI implementation (GR-
NET, 2016).

• OpenNebula, which is accessed through an OCCI
translation service – the rOCCI-server (Parák
et al., 2014).

Although there is currently no such site participat-
ing in the Federated Cloud Platform, it is also techni-
cally possible to use OCCI to manage resources in a
fourth type of cloud management framework:
• Amazon Web Services (AWS), which can be ac-

cessed with OCCI through the rOCCI-server as
well (CESNET, 2016).

Aside from the aforementioned, there are other
cloud services which support OCCI or its subsets
(Fogbow, 2016), or which are going to be made
OCCI-capable in the foreseeable future. For instance,
the development work is underway to implement an
OCCI translation layer for Microsoft Azure.

For the sake of completeness, it is also worth
mentioning that there are OCCI implementations cur-
rently being used in existing solutions, but apparently
no longer maintained. They are:
• pyssf – the Service Sharing Facility (PySSF,

2016), which strives to provide building blocks
for grid, cloud, cluster or HPC services.

• occi-os – the original OpenStack OCCI interface
(occi os, 2016), which is gradually being replaced
with OOI, already mentioned above.

While the latter is scheduled to phase out in fa-
vor of OOI, the former – it must be acknowledged –
has never been declared as discontinued, and devel-
opment activity may resume; especially with the in-
troduction of OCCI 1.2 specification.

2.2 Client-side Tools and Libraries
Available

OCCI is a text-based protocol. Although there are un-
official extensions to support OCCI transport through
message queues (Limmer et al., 2014), the only of-
ficially standardized transport method for OCCI is
HTTP. Therefore it is technically possible to interact
with an OCCI-capable server through a generic HTTP
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client, and implement at least a subset of OCCI func-
tionality with a few pre-formatted OCCI messages.
This approach is often used in interoperability test-
ing, where a fixed set of actions is tested over and
over, but is highly unsuitable for real world applica-
tions wherein a general-purpose client is required.

At present, there are at least two independent
client-side stacks available: the rOCCI framework
and the jOCCI library (Kimle et al., 2015).

The rOCCI framework offers a set of Ruby li-
braries (rOCCI-core and rOCCI-api), wherein the
former implements the OCCI class structure, pars-
ing and rendering, while the latter implements HTTP
transport. Calls to these libraries may be used by na-
tive Ruby clients to interact with any OCCI-enabled
cloud site.

The rOCCI framework also comes with a general-
purpose command line client – the rOCCI-cli – which
can be used by end users to complete simple tasks, or
to wrap around with scripts. Some user communities
also choose to wrap around the command line inter-
face if the programming language of choice cannot
use Ruby or Java libraries directly.

Finally the jOCCI is an independent OCCI imple-
mentation in Java. Like rOCCI, it exposes the OCCI
class structure, parsing and rendering functions, plus
HTTP transport. It is intended primarily for use by
orchestration or submission frameworks implemented
in Java.

3 CLOUD USAGE PATTERNS
WITH OCCI

The ability to manage cloud resources in a stan-
dardized way is useful in many different scenarios.
Although the benefits are greatest with automation,
OCCI can also be used by end users if necessary.

From the users’ perspective, the main advan-
tage of using OCCI is that a single client-side solu-
tion works with multiple server-side implementations.
That provides for better scaling across heterogeneous
resources and helps protect users’ investment into de-
veloping their client-side tools as it allows for seam-
less transition between providers. There are other
possible approaches, but the discussion of their rel-
ative merits is out of the scope of this article. A
comparison is made for instance in (Parák and Šustr,
2014). The OCCI based approach was chosen as a
key part of the EGI Cloud Federation Platform archi-
tecture by the EGI Federated Cloud Task as described
in the EGI Federated Cloud Blueprint (EGI, 2014).

The following sections discuss distinct OCCI us-
age patterns as seen mainly in communities gathered

around the EGI Federated Cloud.

3.1 Science Gateways and Workload
Management Frameworks

The great potential offered by OCCI is evident when
high-level tools are built on or connected to its inter-
face. End users of PaaS and SaaS services that ex-
ploit cloud resources through OCCI can benefit from
a large amount of resources belonging to heteroge-
neous cloud sites adopting different cloud manage-
ment frameworks.

In the context of the EGI Federated Cloud (Wal-
lom et al., 2015; del Castillo et al., 2015), this oppor-
tunity has been exploited by many technical providers
who have extended their platforms to support the
OCCI standard providing an alternative and auto-
mated way to access the Federated Cloud, hiding the
IaaS layer from their users.

This has greatly increased the added value that
the EGI Federated Cloud offers to its users, who can
choose to access its resources at IaaS level or via one
of the various OCCI-compliant tools now available.

Notable high-level tools currently available in the
EGI ecosystem supporting OCCI are:
• for PaaS: Vac/VCycle (VCycle, 2016), Slipstream

(Slipstream, 2016) and Infrastructure Manager
(IM) (IM, 2016)

• for SaaS development frameworks: VMDirac
(VMDirac, 2016) (also discussed in greater de-
tail in 3.1.1), COMPSs (Lezzi et al., 2014), the
Catania Science Gateway Framework (Ardizzone
et al., 2012) and WS-PGRADE (WS-PGRADE,
2016).
The Vac/VCycle cloud infrastructure broker has

been developed by the University of Manchester and
has been adopted by CERN, who have developed an
OCCI connector for their WLCG experiments. Slip-
stream (SixSq) is the central broker of the Helix-
Nebula infrastructure (Helix-Nebula, 2016). IM (by
Universitat Politècnica de València) is a tool that de-
ploys complex and customized virtual infrastructures
on IaaS Cloud deployments, automating the VMI se-
lection, deployment, configuration, software installa-
tion, monitoring and update of Virtual Appliances.
IM will be used to implement the broker features in
the EGI Cloud Marketplace (EGI-CM, 2016) hosted
by the AppDB (AppDB, 2016).

VMDirac, the Catania Science Gateway Frame-
work by INFN, and WS-PGRADE by SZTAKI are
well-known tools to develop Science Gateways in the
grid environment. These have been extended to ex-
ploit cloud resources, too. COMPSs by BSC is a pro-
gramming framework, composed of a programming
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model and an execution runtime which supports it,
whose main objective is to ease the development of
applications for distributed environments keeping the
programmers unaware of the execution environment
and parallelization details.

Furthermore, the EGI Federated Cloud and its ac-
cess model based on OCCI has been envisioned as
the ideal infrastructure to host several community
platforms exposing services tailored for specific user
groups. Integration of several platforms into the in-
frastructure is currently underway; the most relevant
are listed below:
• The Geohazard and Hydrology Thematic Ex-

ploitation Platforms (TEPs) (ECEO, 2016) devel-
oped by the European Space Agency (ESA) (ESA,
2016);

• the D4Science infrastructure (D4Science, 2016)
that hosts more than 25 Virtual Research Environ-
ments to serve the biological, ecological, environ-
mental, and statistical communities world-wide;

• a uniform platform for international astronomy
research collaboration developed in collaboration
with the Canadian Advanced Network for Astro-
nomical Research (CANFAR) (CANFAR, 2016);

• selected EPOS thematic core services (TCS)
(EPOS, 2016);

3.1.1 dirac.egi.eu Case Study

Dirac is introduced in greater depth as an example of
a typical OCCI-enabled scientific gateway.

DIRAC platform eases scientific computing by
overlaying distributed computing resources in a trans-
parent manner to the end-user. DIRAC integrates the
principles of grid and cloud computing (Foster et al.,
2009) and its ecology for virtual organizations (VOs)
(Foster and Kesselman, 1999). Depending on context,
this category is commonly referred to as either Virtual
Research Environments (VREs) (Carusi and Reimer,
2010) or Scientific Gateways (SGs) (Wilkins-Diehr,
2007), among other terms. The dirac.egi.eu service is
a deployment of a DIRAC instance with a particular
setup for multiple communities in EGI, accessing the
resources on a per-VO basis, providing storage and
computing allocation, dealing with grid and cloud in
an interoperable manner from a single access point.

The interfaces to connect to dirac.egi.eu are (1)
a Web Portal serving as a generic human interface,
(2) a DIRAC client oriented to simplify bulk opera-
tions with the command line, and (3) a python API
and a REST interface to be used by VREs/SGs in or-
der to delegate resource and service management in
the DIRAC platform, thus focusing on the high level

requirements in their communities (Mendez et al.,
2014).

Hereby, dirac.egi.eu engages two roles: the one-
off user and the VRE/SG support. The former ac-
tually uses DIRAC Web portal as a basic VRE for
job submission, retrieval and data management oper-
ations, such as searching in a catalog, data transfers
or downloading results. The latter is disaggregating
the concept of VRE/SG in two levels, the back-end
is the DIRAC platform for all the resource manage-
ment and service science. The front-end, the spe-
cific VRE/SG providing a Web environment for hous-
ing, indexing, and retrieving specifics of large data
sets, as well as, eventually, suppling leverage Web 2.0
technologies and social networking solutions to give
researchers a collaboration environment for resource
discovery. This disaggregated VRE model eases the
social component of collaborations built in a walnut
shell of well-known technologies, which are dealing
with the increasing complexity of the interoperability
between different resources. Therefore, in the years
to follow, generic VRE from scratch will be avoided,
relaying infrastructure management in standard prac-
tices and tools such as the DIRAC platform.

So far, dirac.egi.eu is connecting several third
party infrastructures and services in a coherent man-
ner, accepting logical job and data management re-
quest, which are processed with the corresponding
computing and storage resources to obtain results. In
this sense, a central part of DIRAC framework is a
Workload Management System (WMS), based on the
pull job scheduling model, also known as the pilot job
model (Casajus et al., 2010). The pull model only
submits a pre-allocation container, which performs
basic sanity checks of the execution environment, in-
tegrates heterogeneous resources and pulls the job
from a central queue. Thus, proactive measures (be-
fore job matching) can be applied in case of problems,
and several transfers and platform issues are avoided.
The second asset is provided from the DIRAC WMS
service side, and the late binding of jobs to resources
allows further optimization by global load balancing.

Experience using dirac.egi.eu as a back-end ser-
vice for the WeNMR VRE (Bencivenni et al., 2014) in
structural biology and life science, and the VINA vir-
tual drug screening SG (Jaghoori et al., 2015), shows
an efficiency improvement up to 99%, saving on the
usage of important resources and alleviating daily op-
erations in comparison with the previous push job
model.

In the particular case of cloud computing, DIRAC
treats the virtual resources as standard worker nodes
and assigns work to them, following the same pull
job scheduling model. For this purpose, WMS is us-
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ing the DIRAC cloud extension named VMDIRAC
(Méndez et al., 2013) to pre-allocate virtual machine
resources. This VMDIRAC scheduler has finally con-
verged in a common cloud driver technology for most
of the IaaS – a rOCCI client wrapped in DIRAC
Python code.

There are certain historical highlights worth men-
tioning. Initially, VMDIRAC was designed for AWS
boto python library, then the pre-standard OCCI 0.8
for OpenNebula. VMDIRAC 1.0 was adopting a flex-
ible architecture for federated hybrid cloud, also inte-
grating OpenStack by means of libcloud. This hetero-
geneous cloud driver ecosystem was lacking in soft-
ware convergence. Then, OCCI 1.1 became available,
with rOCCI on the client side and also as an OCCI
interface for OpenNebula, followed by more OCCI
implementations for OpenStack and other cloud man-
agement frameworks. Since OCCI APIs are in Ruby
or Java, and DIRAC is in Python, the decision was
made was to adopt the rOCCI-cli client. Among its
other traits, rOCCI-cli is the most frequently used in-
terface, thus, the best updated.

From dirac.egi.eu experience the main assets in
the rOCCI adoption are:
• The releasing convergence and updated features;

once a new feature is out, then it is ready for all
the underlying IaaS technologies.

• The alignment with EGI Federated cloud comput-
ing model, for example, the straightforward im-
plementation of the credentials based on X.509,
avoiding dealing with HTML text request to dif-
ferent native OCCI servers with their particular
details, as always devil is in the details.

Figure 2: dirac.egi.eu stage with fedcloud.egi.eu.

Currently, dirac.egi.eu has two main stages sup-
ported by rOCCI client connecting EGI Federated
cloud resources. Figure 2 shows a first stage with the
pull job scheduling model draw for the dirac.egi.eu
service and fedcloud.egi.eu VO resources. Any
user belonging to fedcloud.egi.eu is automatically in-
cluded in dirac.egi.eu by polling the VOMS server,
so that they can use the service through the Web por-
tal or through the other interfaces. VMDIRAC sub-
mits VMs to the IaaS endpoints of the EGI FedCloud,
with a credential of the VO proxy. VMs are contex-
tualized with cloud-init, which is supported by OCCI

implementations and at the same time it is required to
be supported by the cloud manager and the requested
image. It is a single method to dynamically contex-
tualize VMs for different IaaS endpoints and DIRAC
client install in VO basis.

Figure 3: EISCAT use case in dirac.egi.eu with fed-
cloud.egi.eu.

Figure 3 shows the EISCAT use case of the fed-
cloud.egi.eu stage of Figure 2. EISCAT is a work in
progress in dirac.egi.eu for the data processing of in-
coherent scatter radar systems to study the interac-
tion between the Sun and the Earth as revealed by
disturbances in the ionosphere and magnetosphere.
The overall architecture in Figure 3 is showing the
integration of storage and computing resources, with
the explained disaggregated VRE schema. In the top
left, the EISCAT user front-end is a web applica-
tion developed for the community data and metadata
management needs, using for this purpose the We-
bAppDIRAC framework, a tornado development kit
completely integrated in DIRAC engine, or alterna-
tively another VRE Portal accessing by APIs to the
dirac.egi.eu back-end service. An EISCAT File Cat-
alog contains all the metadata of the project. The
data are stored in an EISCAT filesystem, accessed
by a DIRAC Storage Element built on the top of
such filesystem, securing connection with VO creden-
tials. The data processing jobs are submitted from
the EISCAT front-end to dirac.egi.eu back-end to pre-
allocate VMs in EGI FedCloud, then matching jobs,
downloading input data from EISCAT file server, pro-
cessing the workload and uploading output files to the
EISCAT file server.

A second stage overall architecture is in Figure 4,
connecting dirac.egi.eu with cloud resources of the
training.egi.eu VO. This stage is used in EGI train-
ing sessions, starting with a pre-configured VM de-
ployment, including a DIRAC client and dynamically
requesting a temporal PUSP proxy to the EGI service
(Fernandez et al., 2015). DIRAC is matching the VM
user and the corresponding PUSP proxy with a pool
of generic DIRAC users. Then, following the same
pull job scheduling model preallocating VM train-
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Figure 4: dirac.egi.eu stage with training.egi.eu.

ing.egi.eu resources to latter match the temporal user
jobs.

3.2 Processing in a Remote
Data-holding Domain

A standard-compliant management interface can be
exposed by a cloud site – regardless even of whether
it is part of a wider cloud federation or not – to allow
users to run prepared and pre-approved workload in
the provider’s domain. This may come particularly
useful in view of the needs of new communities.

An example of this is bioinformatics, where the
principal problem with specific and very strict data
policies, often subject to legal restrictions, can be
solved by moving the computation into the adminis-
trative domain holding the data. In other words: as
long as the data must not leave a certain domain, let
the computation follow that data into the domain and
run there.

Providing researchers with templates for virtual
compute resources to process those data gives, on one
hand, the providers a chance to precisely choose what
tools will be available and how the researcher will be
able to use them, while on the other hand it gives the
user more flexibility and is easier to implement than
a full-featured interface that would have to assume all
possible methods of processing the data beforehand.

Offering an open standard-based interface to do
that is only logical, and becomes necessary if such site
wishes to be included in a heterogeneous federation.

3.3 Small-scale and One-off Use of the
Cloud

OCCI is primarily a machine-to-machine protocol
wherein the client side is expected to (and usually
does) expose a user-friendly front-end that hide the in-
ternals of OCCI-based communication behind a por-
tal. Additional scheduling and workload management
logic is also often hidden behind the scenes. Yet use

cases also exist with so little dynamism and so simple
requirements that users can easily set up their virtual
resources themselves, “by hand”.

This is most frequently done through the com-
mand line interface (rOCCI-cli), which makes it pos-
sible to set attributes for all common OCCI actions
as arguments in the command line, and send them to
a selected OCCI endpoint. Though somewhat crude,
this is sufficient for use cases wherein a reasonably
low number of virtual machines – a few dozen at max-
imum – can be started and kept track of manually.
Such machines are then usually created at the same
time at the beginning of the experiment, not necessar-
ily at a single site within the federation, and disposed
of once the experiment ends.

This is a “poor-man’s” approach to cloud resource
provisioning and management, but it is fully sufficient
for user groups or single users who require a fixed
set of resources for batch processing over a limited
period of time – typical in the often cited “long tail
of science”. The advantage of using OCCI here is
the same as in use cases where OCCI is used by au-
tomated client-side tools – users do not need to care
about the flavor of cloud management framework they
find on the server side. The interaction is always the
same.

3.4 Beyond the Current Scope of OCCI

Although users can use OCCI to instantiate resources
on demand across large heterogeneous infrastruc-
tures, there are additional tasks they need to complete
before they can use their freshly spawned resources
efficiently, and which cannot be taken care of through
OCCI at the moment. The purpose of this section is
not a thorough overview, but rather a warning for po-
tential users to think about the missing pieces, and
also showing where future OCCI might be addressing
some of the areas that are currently out of its scope

First and foremost, one needs to realize that
procuring compute resources from an IaaS cloud
leaves the user with just that – a set of virtual ma-
chines. A tool to manage the workload is always
needed:
• One that runs outside the pool of cloud resources:

– either one that is aware of the nature of the re-
sources, having them possibly instantiated it-
self, (such as in use cases discussed in Sec-
tion 3.1) in which case all the components re-
quired are probably already in place for the user
and the infrastructure is complete.

– or such that treats the virtual resources as stan-
dard worker nodes and can assign work to
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them. This can be a local resource manage-
ment system such as TORQUE, or even a sim-
ple script. It just needs to be made aware of
the resources, and then users can submit their
work. Here, OCCI could be of further use in
the future, when an intended OCCI Monitoring
extension is finished.

• One that runs inside the pool of cloud resources:
That borders, or even falls into the scope of PaaS
(Platform as a Service) cloud provisioning model.
As of the upcoming OCCI 1.2 specification, an
OCCI PaaS extension will be available, applicable
exactly to these cases.

OCCI is going to gradually address these more
complex workflows, and provide extensions to cover
relevant areas for larger-scale computing. At the mo-
ment, service providers, integrators as well as users
must keep in mind that with OCCI, they are only man-
aging their resources while managing their workload
is up to them.

4 FUTURE WORK

There may be usage patterns as yet unexplored, but
there are also several patterns that are already known
and will be made possible with the OCCI 1.2 spec-
ification. Therefore much of the foreseeable future
work, both among cloud service developers and user
community specialists, is going to revolve around
OCCI 1.2 adoption.

One of the most visible new usage patterns will
be enabled by improved support for resource template
prototyping. That is, it will be possible to derive tem-
plates from existing virtual machines, and have them
instantiated multiple times not only on the local site,
but with sufficient support also across the federation.

OCCI 1.2 will also introduce a JSON rendering
specification, which will make it possible to describe
resource collections and other complicated concepts
with better precision, avoiding the possible ambiguity
of text/occi rendering used to-date.

Finally, OCCI 1.2 is first OCCI release to intro-
duce a PaaS specification. This will have to be care-
fully assessed, and candidates for adoption will have
to be selected from among the plethora of server-side
products first. Then it will be possible for user com-
munities to experiment with the new model of cloud
service provisioning.

5 CONCLUSIONS

OCCI proves to be an invaluable binding compo-
nent in heterogeneous cloud federations. Although it
may require additional effort from service providers
to achieve and maintain standard compliance, it sim-
plifies the life and work of user communities, espe-
cially the small-scale ones coming from the long tail
of science. Traditionally short on technical support
and development staff, or lacking it completely, an
interoperability standard such as OCCI helps them by
providing a single interface to interact with multiple
different cloud specifications, helping them protect
their investment into whatever workload management
solution they have developed, and avoid vendor lock-
in. With their client side being OCCI-capable, they
can simply move among provider sites, or scale across
multiple providers, without having to adjust their own
processes.
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